

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	HCS08
Core Size	8-Bit
Speed	48MHz
Connectivity	FIFO, I ² C, SCI, SPI, USB
Peripherals	LVD, POR, PWM, WDT
Number of I/O	46
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x12b SAR
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08je128clk

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1 Devices in the MC9S08JE128 series	3
2 Preliminary Electrical Characteristics	12
2.1 Parameter Classification	12
2.2 Absolute Maximum Ratings	13
2.3 Thermal Characteristics	14
2.4 Electrostatic Discharge (ESD) Protection Characteristics	
2.5 DC Characteristics	16
2.6 Supply Current Characteristics	19
2.7 Comparator (PRACMP) Electricals	21
2.8 12-Bit Digital-to-Analog Converter (DAC12LV) Electricals	22
2.9 ADC Characteristics	23
2.10 MCG and External Oscillator (XOSC) Characteristics	28
2.11 AC Characteristics	31
2.12 SPI Characteristics	32
2.13 Flash Specifications	35
2.14 USB Electricals	36

2.15	VREF	Specifications	35
------	------	----------------	----

3 Ordering Information	41
3.1 Device Numbering System	42
3.2 Package Information	
3.3 Mechanical Drawings	42
4 Revision History	43

Related Documentation

Find the most current versions of all documents at: http://www.freescale.com.

Reference Manual —MC9S08JE128RM

Contains extensive product information including modes of operation, memory, resets and interrupts, register definition, port pins, CPU, and all module information.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

© Freescale Semiconductor, Inc., 2009-2010. All rights reserved.

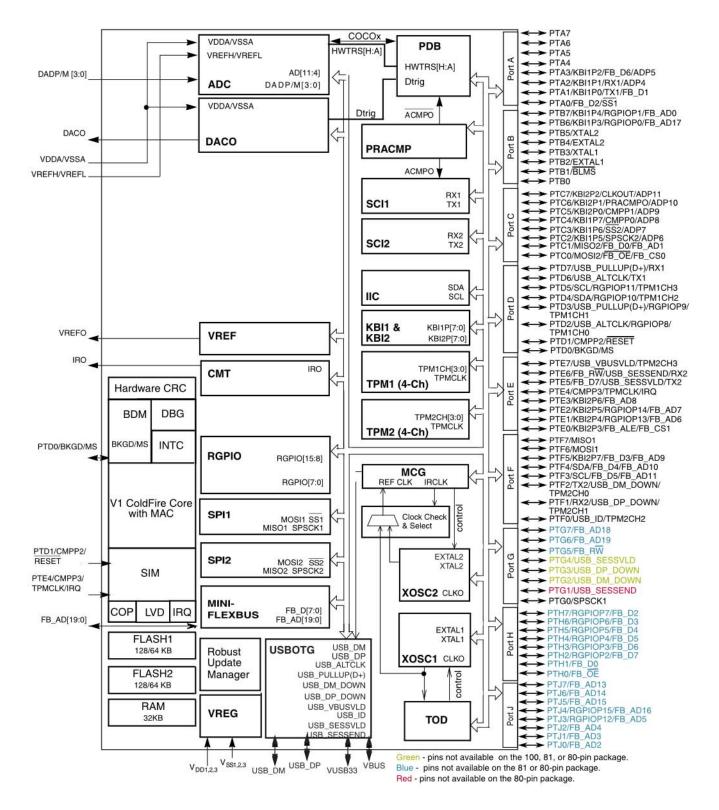


Figure 1. MC9S08JE128 series Block Diagram

Devices in the MC9S08JE128 series

1.1 Pin Assignments

This section shows the pin assignments for the MC9S08JE128 series devices.

1.1.1 64-Pin LQFP

The following two figures show the 64-pin LQFP pinout configuration.

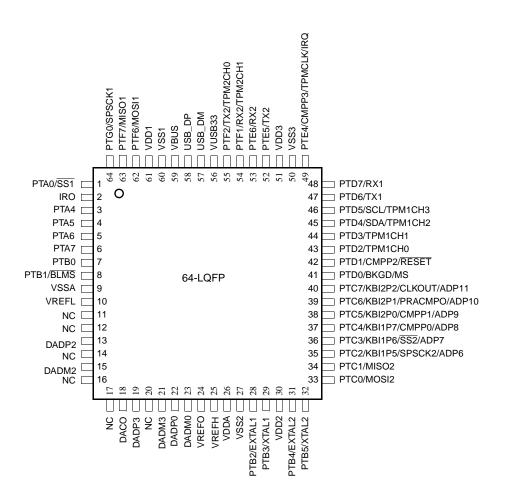


Figure 2. 64-Pin LQFP

1.2 Pin Assignments by Packages

Pa	ackag	е					
81 MAPBGA	80 LQFP	64 LQFP	Default Function	ALT1	ALT2	ALT3	Composite Pin Name
B2	1	1	PTA0	SS1	_	_	PTA0/SS1
A1	2	2	IRO	_	_	-	IRO
C4	3		PTA1	KBI1P0	TX1	_	PTA1/KBI1P0/TX1
D5	4		PTA2	KBI1P1	RX1	ADP4	PTA2/KBI1P1/RX1/ADP4
D6	5		PTA3	KBI1P2	ADP5	_	PTA3/KBI1P2/ADP5
C1	6	3	PTA4	_		_	PTA4
C2	7	4	PTA5	_	_		PTA5
C3	8	5	PTA6	_	_	_	PTA6
D2	9	6	PTA7	_	_		PTA7
D3	10	7	PTB0	_			PTB0
D4	11	8	PTB1	BLMS	_	_	PTB1/BLMS
J1	12	9	VSSA	_	_	_	VSSA
J2	13	10	VREFL	_	_	_	VREFL
D1	14	11	NC		_	_	NC
E1	15	12	NC	_	_	_	NC
F2	16	13	DADP2	_	_	_	DADP2
F1	17	14	NC	_			NC
E2	18	15	DADM2	_	_	_	DADM2
F3	19	16	NC	_	_	_	NC
E3	20	17	NC	_		_	NC
G2	21	18	DACO	_	_	_	DACO
G3	22	19	DADP3	_	_	_	DADP3
H4	23	20	NC	—	_	_	NC
G4	24	21	DADM3	_	_	_	DADM3
G1	25	22	DADP0			_	DADP0
H1	26	23	DADM0	_	_	_	DADM0
G5	27	24	VREFO	_	_	_	VREFO
H3	28		DADP1	_	_	_	DADP1
H2	29	—	DADM1	_	_	_	DADM1

Table 3	8. Package	Pin Assigr	ments		

2.3 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and it is user-determined rather than being controlled by the MCU design. In order to take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

#	Symbol		Value	Unit	
1	T _A	Operating temperature	range (packaged):		°C
			MC9S08JE128	-40 to 105	-
			MC9S08JE64	-40 to 105	
2	T _{JMAX}	Maximum junction tem	perature	135	°C
3	θ_{JA}	Thermal resistance ^{1,2,3}	^{3,4} Single-layer board — 1s		°C/W
			81-pin MBGA	77	
			80-pin LQFP	55	
			64-pin LQFP	68	
4	θ_{JA}	Thermal resistance ^{1, 2,}	^{3, 4} Four-layer board — 2s2p		°C/W
			81-pin MBGA	47	
			80-pin LQFP	40	
			64-pin LQFP	49	

0	. 22		
Table 6.	Therma	I Characteristics	5

¹ Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

- ² Junction to Ambient Natural Convection
- ³ 1s Single layer board, one signal layer
- ⁴ 2s2p Four layer board, 2 signal and 2 power layers

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

where:

 $T_A = Ambient temperature, °C$

 θ_{JA} = Package thermal resistance, junction-to-ambient, °C/W

 $P_D = P_{int} + P_{I/O}$

 $P_{int} = I_{DD} \times V_{DD}$, Watts — chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins — user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 2

Num	Symbol		teristic	Condition	Min	, Typ ¹	Мах	Unit	С
7	V _{IL}	Input low voltage all digital inputs							
				all digital inputs, $V_{DD} > 2.7 V$	—	_	0.35 x V _{DD}	V	Р
				all digital inputs, $2.7 > V_{DD} \ge \\ 1.8 \text{ V}$	_	_	0.30 x V _{DD}	V	Р
8	V _{hys}	Input hysteresis	all digital inputs	—	0.06 x V _{DD}			mV	С
9	I _{In}	Input leakage current	all input only pins (Per pin)	$V_{In} = V_{DD}$ or V_{SS}	—	_	0.25 (TBD)	μΑ	Р
10	I _{OZ}	Hi-Z (off-state) leakage current	all input/output (per pin)	$V_{ln} = V_{DD} \text{ or } V_{SS}$	_		1(TBD)	μΑ	Р
11	I _{OZ}	Leakage current for analog output pins (DACO, VREFO)	all input/output (per pin)	V _{In} = V _{DD} or V _{SS}	_	_	(TBD)	μΑ	Ρ
12	I _{InT}	Total Leakage Current ³	For all pins		—	—	2	μΑ	D
13	R _{PU}	Pull-up resistors			17.5	_	52.5	kΩ	Р
14	R _{PD}	Internal pull-down resistors ⁴		_	17.5	—	52.5	kΩ	Р
15	Ι _{IC}	DC injection current ^{5, 6, 7}	Single pin limit		<u></u>				
				$\begin{array}{c} V_{SS} > V_{IN} > \\ V_{DD} \end{array}$	-0.2	—	0.2	mA	D
		Total MCU limit, includes sum of all stressed pins							
				$V_{SS} > V_{IN} > V_{DD}$	-5	_	5	mA	D
16	C _{In}	Input Capacitance	e, all pins	_	—	_	8	pF	С
17	V _{RAM}	RAM retention vo	tage		—	0.6	1.0	V	С
18	V _{POR}	POR re-arm volta	ge ⁸		0.9	1.4	1.79	V	С
19	t _{POR}	POR re-arm time		_	10	_	_	μS	D

Num	Symbol	Chara	Condition	Min	Typ ¹	Мах	Unit	С	
20	V _{LVDH} 9	Low-voltage detection threshold — high range	V _{DD} falling	1	I				
					2.11	2.16	2.22	V	Р
			V _{DD} rising						
				_	2.16	2.23	2.27	V	Р
21	V _{LVDL}	Low-voltage detection threshold — low range ⁹	V _{DD} falling						
					1.80	1.84	1.88	V	Ρ
			V_{DD} rising						
					1.88	1.93	1.96	V	Р
22	V _{LVWH}	Low-voltage warning threshold — high range ⁹	V _{DD} falling						
				_	2.36	2.46	2.56	V	Р
			V_{DD} rising						
				_	2.36	2.46	2.56	V	Р
23	V _{LVWL}	Low-voltage warning threshold — low range ⁹	V _{DD} falling						
				_	2.11	2.16	2.22	V	Р
			V _{DD} rising		•				
					2.16	2.23	2.27	V	Р
24	V _{hys}	Low-voltage inhi hysteresis ¹⁰	bit reset/recover	_	_	50	—	mV	С
25	V_{BG}	Bandgap Voltag	e Reference ¹¹	—	1.15	1.17	1.18	V	Р

Table 9. DC Characteristics (Continued)

¹ Typical values are measured at 25°C. Characterized, not tested

² As the supply voltage rises, the LVD circuit will hold the MCU in reset until the supply has risen above V_{LVDL}.

³ Total Leakage current is the sum value for all GPIO pins; this leakage current is not distributed evenly across all pins but characterization data shows that individual pin leakage current maximums are less than 250 nA.

⁴ Measured with $V_{In} = V_{DD}$.

 $^5\,$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD}.

⁶ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

- ⁷ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).
- ⁸ Maximum is highest voltage that POR is guaranteed.
- ⁹ Run at 1 MHz bus frequency
- ¹⁰ Low voltage detection and warning limits measured at 1 MHz bus frequency.
- ¹¹ Factory trimmed at $V_{DD} = 3.0$ V, Temp = 25°C

Supply Current Characteristics Table 10. Supply Current Characteristics 2.6

#	Symbol	Para	ameter	Bus Freq	V _{DD} (V)	Typ ¹	Мах	Unit	Temp (°C)	С
1	RI _{DD}	Run supply current	FEI mode All module	s ON	L	I	1	I	1 1	
				24 MHz	3	20	24	mA	-40 to 25	Ρ
				24 MHz	3	20	TBD	mA	105	Р
				20 MHz	3	18	_	mA	-40 to 105	Т
				8 MHz	3	8	_	mA	-40 to 105	Т
				1 MHz	3	1.8	_	mA	-40 to 105	Т
2	RI _{DD}	Run supply current	FEI mode;	All modules	OFF				· · ·	
				24 MHz	3	12.3	TBD	mA	-40 to 105	С
				20 MHz	3	10.5	_	mA	-40 to 105	Т
				8 MHz	3	4.8	_	mA	-40 to 105	Т
				1 MHz	3	1.3	_	mA	-40 to 105	Т
3	RI _{DD}	Run supply current	LPS=0; All	modules OF	F					
				16 kHz FBILP	3	TBD	_	μΑ	-40 to 105	Т
				16 kHz FBELP	3	TBD	_	μA	-40 to 105	Т
4	RI _{DD}	Run supply current	LPS=1, all	modules OF	F	·	•		· · ·	
				16 kHz FBELP	3	TBD	_	μΑ	0 to 70	Т
				16 kHz FBELP	3	TBD	—	μA	-40 to 105	Т

#	Parameter	Condition		Tem	perature	(°C)		Units	с
#	Farameter	Condition	-40	25	70	85	105	Units	C
1	LPO	_	50	75	100	150	250	nA	D
2	EREFSTEN	RANGE = HGO = 0	600 (TBD)	650 (TBD)	750 (TBD)	850 (TBD)	1000 (TBD)	nA	D
3	IREFSTEN ¹	—	68	70	77	86	120	μA	Т
4	TOD	Does not include clock source current	50	75	100	150	250	nA	D
5	LVD ¹	LVDSE = 1	114	115	123	135	170	μA	Т
6	ACMP ¹	Not using the bandgap (BGBE = 0)	18	20	23	33	65	μA	Т
7	ADC ¹	ADLPC = ADLSMP = 1 Not using the bandgap (BGBE = 0)	75	85	100	115	165	μA	Т
8	DAC ¹	High power mode; no load on DACO	500	500	500	500	500	μA	Т

Table 11. Typical Stop Mode Adders

¹ Not available in stop2 mode.

2.7 PRACMP Electricals

#	Characteristic	Symbol	Min	Typical	Max	Unit	С
1	Supply voltage	V _{PWR}	1.8		3.6	V	Ρ
2	Supply current (active) (PRG enabled)	I _{DDACT1}	—	-	60	μΑ	С
3	Supply current (active) (PRG disabled)	I _{DDACT2}	—	_	40	μΑ	С
4	Supply current (ACMP and PRG all disabled)	I _{DDDIS}	-	_	2	nA	D
5	Analog input voltage	VAIN	$V_{SS} - 0.3$	_	V _{DD}	V	
6	Analog input offset voltage	VAIO	—	5	40	mV	Т
7	Analog comparator hysteresis	V _H	3.0		20.0	mV	Т
8	Analog input leakage current	I _{ALKG}	—	_	1	nA	D
9	Analog comparator initialization delay	tAINIT	_	_	1.0	μS	Т

Table 12. PRACMP Electrical Specifications

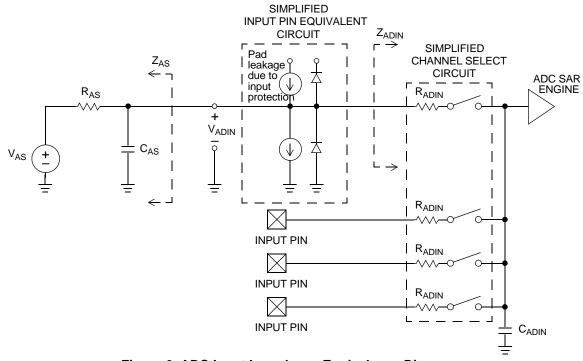


Figure 6. ADC Input Impedance Equivalency Diagram

Table 16. 12-bit SAR ADC Characteristics full operating range
(V _{REFH} = V _{DDAD} , > 1.8, V _{REFL} = V _{SSAD} \leq 8 MHz) (Continued)

Characterist ic	Conditions ¹	Symb	Min	Typ ²	Max	Unit	с	Comment
Zero-Scale Error	12-bit single-ended mode	E _{ZS}		±0.7	±2.0	LSB ²	Т	V _{ADIN} = V _{SSAD}
	11-bit differential mode 10-bit single-ended mode			±0.4 ±0.4	±1.0 ±1.0		Т	
	9-bit differential mode 8-bit single-ended mode			±0.2 ±0.2	±0.5 ±0.5		Т	
Full-Scale Error	12-bit single-ended mode	E _{FS}		±1.0	±3.5	LSB ²	Т	V _{ADIN} = V _{DDAD}
	11-bit differential mode 10-bit single-ended mode			±0.4 ±0.4	±1.5 ±1.5		Т	
	9-bit differential mode 8-bit single-ended mode			±0.2 ±0.2	±0.5 ±0.5		Т	
Quantization Error	All modes	E _Q	_	_	±0.5	LSB ²	D	
Input Leakage Error	all modes	E _{IL}		I _{In} * R _{AS}		mV	D	I _{In} = leakage current (refer to DC characteristi cs)
Temp Sensor Slope	−40°C − 25°C	m	_	1.646	—	mV/× C	С	
	25°C – 125°C		—	1.769	—			
Temp Sensor Voltage	25°C	V _{TEMP2} 5	_	701.2	_	mV	С	

¹ All accuracy numbers assume the ADC is calibrated with V_{REFH}=V_{DDAD}
 ² Typical values assume V_{DDAD} = 3.0V, Temp = 25°C, f_{ADCK}=2.0MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
 ³ 1 LSB = (V_{REFH} - V_{REFL})/2^N

- ³ This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- ⁴ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{BUS}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.
- ⁵ 625 ns represents 5 time quanta for CAN applications, under worst-case conditions of 8 MHz CAN bus clock, 1 Mbps CAN Bus speed, and 8 time quanta per bit for bit time settings. 5 time quanta is the minimum time between a synchronization edge and the sample point of a bit using 8 time quanta per bit.
- ⁶ Below D_{lock} minimum, the MCG is guaranteed to enter lock. Above D_{lock} maximum, the MCG will not enter lock. But if the MCG is already in lock, then the MCG may stay in lock.
- ⁷ Below D_{unl} minimum, the MCG will not exit lock if already in lock. Above D_{unl} maximum, the MCG is guaranteed to exit lock.

#	Char	acteristic	Symbol	Min	Typ ¹	Мах	Unit
	Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1)	• Low range (RANGE = 0)	f _{lo}	32	_	38.4	kHz
		 High range (RANGE = 1), FEE or FBE mode ² 	fhi	1	—	5	MHz
1		 High range (RANGE = 1), High gain (HGO = 1), FBELP mode 	fhi	1	_	16	MHz
		 High range (RANGE = 1), Low power (HGO = 0), FBELP mode 	fhi	1	_	8	MHz
2	Load capacitors		C ₁ C ₂	See Note ³			
3	Feedback resistor	Low range (32 kHz to 38.4 kHz)	R _F	_	10	_	ΜΩ
3		High range (1 MHz to 16 MHz)	—	_	1	—	10122
4	Series resistor — Low range	Low Gain (HGO = 0)	R _S		0	_	kΩ
4		High Gain (HGO = 1)			100		
	Series resistor — High range	• Low Gain (HGO = 0)					
		 High Gain (HGO = 1) 					
5		≥ 8 MHz	R _S	—	0	0	kΩ
		4 MHz		—	0	10	
		1 MHz		_	0	20	

Table 18. XOSC (Temperature Range = -40 to 105°C Ambient)

#	Ch	Characteristic			Typ ¹	Max	Unit
	Crystal start-up time ^{4, 5}	Low range, low gain (RANGE = 0, HGO = 0)	t CSTL	_	200	_	
6		Low range, high gain (RANGE = 0, HGO = 1)		_	400	_	
0		High range, low gain (RANGE = 1, HGO = 0)	t _{CSTH}	_	5	_	ms
		High range, high gain (RANGE = 1, HGO = 1)			15		

Table 18. XOSC (Temperature Range = -40 to 105°C Ambient)

¹ Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value.

² When MCG is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz.

³ See crystal or resonator manufacturer's recommendation.

⁴ This parameter is characterized and not tested on each device.

⁵ Proper PC board layout procedures must be followed to achieve specifications.

#	Symbol	Parameter		Min	Typical ¹	Max	С	Unit	
9	t _{Rise} , t _{Fall}	Port rise and fall time $(load = 50 \text{ pF})^4$, Low Drive							
			Slew rate control disabled (PTxSE = 0)	_	11	_	D		
			Slew rate control enabled (PTxSE = 1)	_	35		D		
			Slew rate control disabled (PTxSE = 0)	_	40	_	D		
			Slew rate control enabled (PTxSE = 1)	_	75		D		

Table 19. Control Timing

¹ Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.

² This is the shortest pulse that is guaranteed to be recognized as a reset pin request. Shorter pulses are not guaranteed to override reset requests from internal sources.

³ This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.

 4 Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range –40 °C to 105 °C.

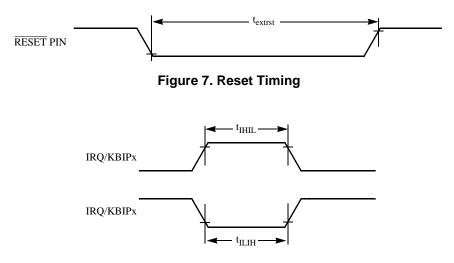


Figure 8. IRQ/KBIPx Timing

2.11.2 TPM Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

Table 20. TPM Input Timing

#	С	Function	Symbol	Min	Мах	Unit
1	—	External clock frequency	f _{TPMext}	dc	f _{Bus} /4	MHz
2	—	External clock period	t _{TPMext}	4	—	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	_	t _{cyc}
4	D	External clock low time	t _{clkl}	1.5	—	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

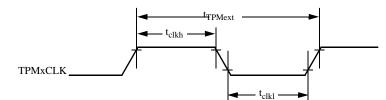


Figure 9. Timer External Clock

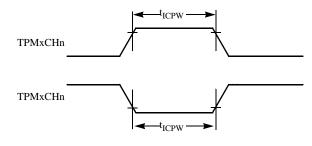


Figure 10. Timer Input Capture Pulse

2.13 Flash Specifications

This section provides details about program/erase times and program-erase endurance for the Flash memory.

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Memory chapter in the Reference Manual for this device (MC9S08JE128RM).

#	Characteristic	Symbol	Min	Typical	Мах	Unit	С
1	Supply voltage for program/erase -40°C to 105°C	V _{prog/erase}	1.8	_	3.6	V	D
2	Supply voltage for read operation	V _{Read}	1.8	—	3.6	V	D
3	Internal FCLK frequency ¹	f _{FCLK}	150	—	200	kHz	D
4	Internal FCLK period (1/FCLK)	t _{Fcyc}	5	—	6.67	μS	D
5	Byte program time (random location) ²	e program time (random location) ² t _{prog} 9			t _{Fcyc}	Р	
6	Byte program time (burst mode) ²	t _{Burst}		4			Р
7	Page erase time ²	t _{Page}		4000		t _{Fcyc}	Р
8	Mass erase time ²	t _{Mass}		20,000		t _{Fcyc}	Р
9	Program/erase endurance ³ T_L to $T_H = -40^{\circ}C$ to + 105°C $T = 25^{\circ}C$		10,000		_	cycles	С
10	Data retention ⁴	t _{D_ret}	15	100		years	С

Table 22. Flash Characteristics

¹ The frequency of this clock is controlled by a software setting.

² These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase.

³ **Typical endurance for flash** was evaluated for this product family on the HC9S12Dx64. For additional information on how Freescale defines typical endurance, please refer to Engineering Bulletin EB619, *Typical Endurance for Nonvolatile Memory*.

⁴ Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale defines typical data retention, please refer to Engineering Bulletin EB618, *Typical Data Retention for Nonvolatile Memory.*

2.14 USB Electricals

The USB electricals for the USB On-the-Go module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit http://www.usb.org.

If the Freescale USB On-the-Go implementation has electrical characteristics that deviate from the standard or require additional information, this space would be used to communicate that information.

#	Characteristic	Symbol	Min	Тур	Max	Unit	С
1	Regulator operating voltage	V _{regin}	3.9	—	5.5	V	С
2	VREG output	V _{regout}	3	3.3	3.6	V	Р
3	V _{USB33} input with internal VREG disabled	V _{usb33in}	3	3.3	3.6	V	С
4	VREG Quiescent Current	I _{VRQ}		0.5		mA	С

Table 23. Internal USB 3.3 V Voltage Regulator Characteristics

2.15 VREF Electrical Specifications

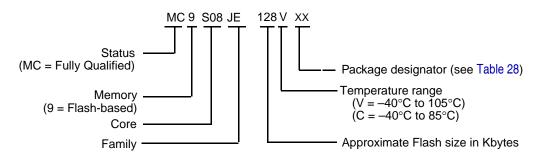
Table 24. VREF Electrical Specifications

Num	Characteristic	Symbol	Min	Мах	Unit	С
1	Supply voltage	V _{DDA}	1.80	3.6	V	С
2	Temperature	T _A	-40	105	°C	С
3	Output Load Capacitance	CL	_	100	nf	D
4	Maximum Load		_	10	mA	—
5	Voltage Reference Output with Factory Trim. $V_{DD} = 3 V$.	Vout	1.140	1.160	V	Р
6	Temperature Drift (Vmin - Vmax across the full temperature range)	Tdrift	-	10 (TBD)	mV ¹	Т
7	Aging Coefficient	Ac	_	TBD	ppm/year	С
8	Powered down Current (Off Mode, VREFEN=0, VRSTEN=0)	I	-	0.10	μA	С
9	Bandgap only (MODE_LV[1:0] = 00)	I	—	75	μΑ	Т
10	Low-Power buffer (MODE_LV[1:0] = 01)	I	_	125	μΑ	Т
11	Tight-Regulation buffer (MODE_LV[1:0] = 10)	I	-	1.1	mA	Т
12	Load Regulation MODE_LV = 10		—	100	μV/mA	С
13	Line Regulation (Power Supply	DC	—	TBD	mV	С
14	Rejection)	AC	TBD		dB	

¹ See typical chart below.

Table 25. VREF Limited Range Operating Requirements

#	Characteristic	Symbol	Min	Мах	Unit	С	Notes
1	Temperature	T _A	0	50	°C	С	


Table 26. VREF Limited Range Operating Behaviors

#	Characteristic	Symbol	Min	Мах	Unit	С	Notes
1	Voltage Reference Output with Factory Trim	Vout	TBD	TBD	μA	С	

Ordering Information

3.1 Device Numbering System

Example of the device numbering system:

Table 27. Device Numbering System

Device Number ¹	Men	nory	Available Packages ²	
Device Number	Flash	RAM	Available Fackages	
	131,072	12,288	64 LQFP	
MC9S08JE128	131,072	12,288	80 LQFP	
	131,072	12,288	81 MAPBGA	
MC9S08JE64	65,536	12,288	64 LQFP	

¹ See Table 2 for a complete description of modules included on each device.

² See Table 28 for package information.

3.2 Package Information

Table 28. Package Descriptions

Pin Count	Package Type	Abbreviation	Designator	Case No.	Document No.
64	Low Quad Flat Package	LQFP	LH	840F-02	98ASS23234W
80	Low Quad Flat Package	LQFP	LK	917-01	98ASS23174W
81	MAPBGA Package	Map PBGA	MB	1662-01	98ASA10670D

3.3 Mechanical Drawings

Table 28 provides the available package types and their document numbers. The latest package outline/mechanical drawings are available on the MC9S08JE128 series Product Summary pages at http://www.freescale.com.

To view the latest drawing, either:

- Click on the appropriate link in Table 28, or
- Open a browser to the Freescale[®] website (http://www.freescale.com), and enter the appropriate document number (from Table 28) in the "Enter Keyword" search box at the top of the page.