

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	48MHz
Connectivity	I²C, SCI, SPI, USB
Peripherals	LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 6x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08je128vlh

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1 Devices in the MC9S08JE128 series	3
2 Preliminary Electrical Characteristics	12
2.1 Parameter Classification	12
2.2 Absolute Maximum Ratings	13
2.3 Thermal Characteristics	14
2.4 Electrostatic Discharge (ESD) Protection Characteristics	15
2.5 DC Characteristics	16
2.6 Supply Current Characteristics	19
2.7 Comparator (PRACMP) Electricals	21
2.8 12-Bit Digital-to-Analog Converter (DAC12LV) Electricals	22
2.9 ADC Characteristics	23
2.10 MCG and External Oscillator (XOSC) Characteristics	28
2.11 AC Characteristics	31
2.12 SPI Characteristics	32
2.13 Flash Specifications	35
2.14 USB Electricals	36

2.15	VREF	Specifications	35
------	------	----------------	----

3 Ordering Information	41
3.1 Device Numbering System	42
3.2 Package Information	42
3.3 Mechanical Drawings	42
4 Revision History	43

Related Documentation

Find the most current versions of all documents at: http://www.freescale.com.

Reference Manual —MC9S08JE128RM

Contains extensive product information including modes of operation, memory, resets and interrupts, register definition, port pins, CPU, and all module information.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

© Freescale Semiconductor, Inc., 2009-2010. All rights reserved.

1 Devices in the MC9S08JE128 series

The following table summarizes the feature set available in the MC9S08JE128 series of MCUs.

Feature	MC9S08JE128		MC9S08JE64	
Pin quantity	81 80 64			64
FLASH size (bytes)		131072		65535
RAM size (bytes)		12K		12K
Programmable Analog Comparator (PRACMP)		yes		yes
Debug Module (DBG)		yes		yes
Multipurpose Clock Generator (MCG)		yes		yes
Inter-Integrated Communication (IIC)		yes		yes
Interrupt Request Pin (IRQ)		yes		yes
Keyboard Interrupt (KBI)	16	16	7	7
Port I/O ¹	47	46	33	33
Dedicated Analog Input Pins		12		12
Power and Ground Pins	8			8
Time Of Day (TOD)	yes		yes	
Serial Communications (SCI1)		yes	yes	
Serial Communications (SCI2)		yes		yes
Serial Peripheral Interface 1 (SPI1 (FIFO))		yes		yes
Serial Peripheral Interface 2 (SPI2)		yes		yes
Carrier Modulator Timer pin (IRO)		yes		yes
TPM input clock pin (TPMCLK)		yes		yes
TPM1 channels		4		4
TPM2 channels	4	4	2	2
XOSC1		yes		yes
XOSC2		yes		yes
USB		yes		yes
Programmable Delay Block (PDB)		yes		yes
SAR ADC differential channels ²	4	4	3	
SAR ADC single-ended channels	8	8	6	6
Voltage reference output pin (VREFO)		yes		yes

Table 1. MC9S08JE128 series Features by MCU and Package

¹ Port I/O count does not include two (2) output-only and one (1) input-only pins.

² Each differential channel is comprised of 2 pin inputs.

2.2 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in the following table may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section.

#	Rating	Symbol	Value	Unit
1	Supply voltage	V _{DD}	-0.3 to +3.8	V
2	Maximum current into V _{DD}	I _{DD}	120	mA
3	Digital input voltage	V _{In}	–0.3 to V _{DD} + 0.3	V
4	Instantaneous maximum current Single pin limit (applies to all port pins) ^{1, 2, 3}	Ι _D	± 25	mA
5	Storage temperature range	T _{stg}	–55 to 150	°C

Table 5. Absolute	Maximum	Ratings
-------------------	---------	---------

¹ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

 $^2\,$ All functional non-supply pins are internally clamped to V_{SS} and $V_{DD}.$

³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low (which would reduce overall power consumption).

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}).

2.3 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and it is user-determined rather than being controlled by the MCU design. In order to take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

#	Symbol	Rating		Value	Unit
1	T _A	Operating temperature	range (packaged):		°C
		MC9S08JE128		-40 to 105	
			MC9S08JE64	-40 to 105	
2	T _{JMAX}	Maximum junction temp	erature	135	°C
3	θ_{JA}	Thermal resistance ^{1,2,3,4} Single-layer board — 1s			°C/W
			81-pin MBGA	77	
		80-pin LQFP		55	
			64-pin LQFP	68	
4	θ_{JA}	Thermal resistance ^{1, 2,}	^{3, 4} Four-layer board — 2s2p		°C/W
			81-pin MBGA	47	
			80-pin LQFP	40	
			64-pin LQFP	49	

0	33		
Table 6.	Thermal	Characteristics	

¹ Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

- ² Junction to Ambient Natural Convection
- ³ 1s Single layer board, one signal layer
- ⁴ 2s2p Four layer board, 2 signal and 2 power layers

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

where:

 $T_A =$ Ambient temperature, °C

 θ_{JA} = Package thermal resistance, junction-to-ambient, °C/W

 $P_D = P_{int} + P_{I/O}$

 $P_{int} = I_{DD} \times V_{DD}$, Watts — chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins — user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

$$K = P_D \times (T_A + 273^{\circ}C) + \theta_{JA} \times (P_D)^2$$
 Eqn. 3

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

2.4 ESD Protection Characteristics

Although damage from static discharge is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with CDF-AEC-Q00 Stress Test Qualification for Automotive Grade Integrated Circuits. (http://www.aecouncil.com/) This device was qualified to AEC-Q100 Rev E.

A device is considered to have failed if, after exposure to ESD pulses, the device no longer meets the device specification requirements. Complete dc parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Model	Description	Symbol	Value	Unit
Human Body	Series Resistance	R1	1500	Ω
	Storage Capacitance	С	100	pF
	Number of Pulse per pin	—	3	—
Machine	Series Resistance	R1	0	Ω
	Storage Capacitance	С	200	pF
	Number of Pulse per pin	—	3	—
Latch-up	Minimum input voltage limit	—	-2.5	V
	Maximum input voltage limit	_	7.5	V

Table 7. ESD and Latch-up Test Conditions

Table 8. ESD and Latch-Up Protection Characteristics

#	Rating	Symbol	Min	Мах	Unit	С
1	Human Body Model (HBM)	V _{HBM}	±2000	—	V	Т
2	Machine Model (MM)	V _{MM}	±200	—	V	Т
3	Charge Device Model (CDM)	V _{CDM}	±500	—	V	Т
4	Latch-up Current at T _A = 125°C	I _{LAT}	±100	—	mA	Т

Supply Current Characteristics Table 10. Supply Current Characteristics 2.6

#	Symbol	Para	ameter	Bus Freq	V _{DD} (V)	Typ ¹	Мах	Unit	Temp (°C)	С
1	RI _{DD}	Run supply current	FEI mode All modules	S ON						
				24 MHz	3	20	24	mA	-40 to 25	Ρ
				24 MHz	3	20	TBD	mA	105	Р
				20 MHz	3	18	_	mA	-40 to 105	Т
				8 MHz	3	8	_	mA	-40 to 105	Т
				1 MHz	3	1.8	_	mA	-40 to 105	Т
2	RI _{DD}	Run supply current	FEI mode;	All modules	OFF					
				24 MHz	3	12.3	TBD	mA	-40 to 105	С
				20 MHz	3	10.5	_	mA	-40 to 105	Т
				8 MHz	3	4.8	_	mA	-40 to 105	Т
				1 MHz	3	1.3	_	mA	-40 to 105	Т
3	RI _{DD}	Run supply current	LPS=0; All	modules OF	F					
				16 kHz FBILP	3	TBD	_	μΑ	-40 to 105	Т
				16 kHz FBELP	3	TBD	_	μA	-40 to 105	Т
4	RI _{DD}	Run supply current	LPS=1, all	modules OF	F					
				16 kHz FBELP	3	TBD	_	μΑ	0 to 70	Т
				16 kHz FBELP	3	TBD	_	μA	-40 to 105	Т

#	Symbol	Parameter	Bus Freq	V _{DD} (V)	Typ ¹	Max	Unit	Temp (°C)	С
5	WI _{DD}	Wait mode FEI mode, supply cur- rent	all modules	OFF		I	I	I	L
			24 MHz	3	TBD	6	mA	-40 to 105	С
			20 MHz	3	TBD	_	mA	-40 to 105	Т
			8 MHz	3	TBD	_	mA	-40 to 105	Т
			1 MHz	3	TBD	_	mA	-40 to 105	Т
6	S2I _{DD}	Stop2 mode supply cur- rent							
			N/A	3	0.39	0.6	μΑ	-40 to 25	Р
			N/A	3	TBD	TBD	μA	70	С
			N/A	3	7	TBD	μA	85	С
			N/A	3	16	TBD	μA	105	Р
			N/A	2	TBD	TBD	μA	-40 to 25	С
			N/A	2	TBD	TBD	μA	70	С
			N/A	2	TBD	TBD	μA	85	С
			N/A	2	TBD	TBD	μA	105	С
7	S3I _{DD}	Stop3mode No clocks supply cur- rent	active						
			N/A	3	0.55	0.9	μΑ	-40 to 25	Р
			N/A	3	TBD	TBD	μA	70	С
			N/A	3	14	TBD	μA	85	С
			N/A	3	37	TBD	μA	105	Р
			N/A	2	TBD	TBD	μA	-40 to 25	С
			N/A	2	TBD	TBD	μA	70	С
			N/A	2	14	TBD	μA	85	С
			N/A	2	TBD	TBD	μA	105	С

Table 10.	Supply	Current	Characteristics	(Continued)
	Cappij	ounone	onaraotoriotioo	(0011111100)

¹ Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value.

#	Parameter	Condition		Tem	perature	(°C)		Unite	C
#	Farameter	Condition	-40	25	70	85	105	Units	C
1	LPO	—	50	75	100	150	250	nA	D
2	EREFSTEN	RANGE = HGO = 0	600 (TBD)	650 (TBD)	750 (TBD)	850 (TBD)	1000 (TBD)	nA	D
3	IREFSTEN ¹	—	68	70	77	86	120	μA	Т
4	TOD	Does not include clock source current	50	75	100	150	250	nA	D
5	LVD ¹	LVDSE = 1	114	115	123	135	170	μΑ	Т
6	ACMP ¹	Not using the bandgap (BGBE = 0)	18	20	23	33	65	μA	Т
7	ADC ¹	ADLPC = ADLSMP = 1 Not using the bandgap (BGBE = 0)	75	85	100	115	165	μA	Т
8	DAC ¹	High power mode; no load on DACO	500	500	500	500	500	μA	Т

Table 11. Typical Stop Mode Adders

¹ Not available in stop2 mode.

2.7 PRACMP Electricals

#	Characteristic	Symbol	Min	Typical	Max	Unit	С
1	Supply voltage	V _{PWR}	1.8	_	3.6	V	Ρ
2	Supply current (active) (PRG enabled)	I _{DDACT1}	—	_	60	μΑ	С
3	Supply current (active) (PRG disabled)	I _{DDACT2}	_	_	40	μA	С
4	Supply current (ACMP and PRG all disabled)	I _{DDDIS}	_	_	2	nA	D
5	Analog input voltage	VAIN	$V_{SS} - 0.3$	_	V _{DD}	V	_
6	Analog input offset voltage	VAIO	—	5	40	mV	Т
7	Analog comparator hysteresis	V _H	3.0	_	20.0	mV	Т
8	Analog input leakage current	I _{ALKG}	_	_	1	nA	D
9	Analog comparator initialization delay	tAINIT	_	_	1.0	μS	Т

Table 12. PRACMP Electrical Specifications

#	Characteristic	Symbol	Min	Typical	Max	Unit	С
10	Programmable reference generator inputs	V _{In2} (V _{DD25})	1.8	—	2.75	V	_
11	Programmable reference generator setup delay	t _{PRGST}	_	1	_	μs	D
12	Programmable reference generator step size	Vstep	-0.25	1	0.25	LSB	D
13	Programmable reference generator voltage range	Vprgout	V _{In} /32		V _{in}	V	Ρ

Table 12. PRACMP Electrical Specifications

2.8 12-bit DAC Electricals

#	Characteristic	Symbol	Min	Max	Unit	С	Notes
1	Supply voltage	V _{DDA}	1.8	3.6	V	Р	
2	Reference voltage	V _{DACR}	1.15	3.6	V	С	
3	Temperature	T _A	-40	105	°C	С	
4	Output load capacitance	CL	_	100	pF	С	A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.
5	Output load current	١ _L	—	1	mA	С	

Table 13. DAC 12LV Operating Requirements

Figure 6. ADC Input Impedance Equivalency Diagram

Table 16. 12-bit SAR ADC Characteristics full operating rang	е
(V _{REFH} = V _{DDAD} , > 1.8, V _{REFL} = V _{SSAD} \leq 8 MHz) (Continued)	

Characterist ic	Conditions ¹	Symb	Min	Typ ²	Max	Unit	С	Comment
Zero-Scale Error	12-bit single-ended mode	E _{ZS}	_	±0.7	±2.0	LSB ²	Т	V _{ADIN} = V _{SSAD}
	11-bit differential mode 10-bit single-ended mode			±0.4 ±0.4	±1.0 ±1.0		Т	
	9-bit differential mode 8-bit single-ended mode			±0.2 ±0.2	±0.5 ±0.5		Т	
Full-Scale Error	12-bit single-ended mode	E _{FS}	-	±1.0	±3.5	LSB ²	Т	V _{ADIN} = V _{DDAD}
	11-bit differential mode 10-bit single-ended mode			±0.4 ±0.4	±1.5 ±1.5		Т	
	9-bit differential mode 8-bit single-ended mode			±0.2 ±0.2	±0.5 ±0.5		Т	
Quantization Error	All modes	EQ	-	—	±0.5	LSB ²	D	
Input Leakage Error	all modes	E _{IL}	I _{In} * R _{AS}		mV	D	I _{In} = leakage current (refer to DC characteristi cs)	
Temp Sensor Slope	−40°C − 25°C	m	_	1.646	_	mV/× C	С	
	25°C – 125°C		—	1.769				
Temp Sensor Voltage	25°C	V _{TEMP2} 5	—	701.2	—	mV	С	

¹ All accuracy numbers assume the ADC is calibrated with V_{REFH}=V_{DDAD}
 ² Typical values assume V_{DDAD} = 3.0V, Temp = 25°C, f_{ADCK}=2.0MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
 ³ 1 LSB = (V_{REFH} - V_{REFL})/2^N

2.10 MCG and External Oscillator (XOSC) Characteristics

#	Rating		Symbol	Min	Typical	Max	Unit	С
1	Internal reference startup time		t _{irefst}	—	55	100	μS	D
2	Average internal reference frequency	factory trimmed at VDD=3.0 V and temp=25°C	f _{int_ft}		31.25	_	kHz	С
		user trimmed		31.25	_	39.0625		С
3	DCO output frequency range -	Low range (DRS=00)	fares	16		20	MH-7	С
	trimmed	Mid range (DRS=01)	'dco_t	32		40		С
		High range ¹ (DRS=10)		40	_	60		С
1	Resolution of trimmed DCO output fre-	with FTRIM	Af.	—	± 0.1	± 0.2	%f.	С
4	ture	without FTRIM	dco_res_t	_	± 0.2	± 0.4	^{/01} dco	С
	Total deviation of trimmed DCO output	over voltage and temperature		—	±1.0	±2		р
5	frequency over voltage and tempera- ture	over fixed voltage and temp range of 0 - 70 °C	∆f _{dco_t}	_	± 0.5	± 1	%f _{dco}	С
_	Acauisition time	FLL ²	t _{fll_acquire}	—		1		С
6		PLL ³	t _{pll_acquire}	—	_	1	ms	D
7	Long term Jitter of DCO output clock (a interval) 4	averaged over 2mS	C _{Jitter}	—	0.02	0.2	%f _{dco}	С
8	VCO operating frequency		f _{vco}	7.0		55.0	MHz	D
9	PLL reference frequency range		f _{pll_ref}	1.0	_	2.0	MHz	D
10	Jitter of PLL output clock measured over 625ns ⁵	Long term	f _{pll_jitter_625} ns	_	0.566 ⁴	—	%f _{pll}	D
4.4		Entry ⁶	D _{lock}	± 1.49	_	± 2.98	0/	D
11	Lock frequency tolerance	Exit ⁷	D _{unl}	± 4.47		± 5.97	70	D
		FLL	t _{fll_lock}	_	_	t _{fll_acquire+} 1075(1/ ^f int_t)		D
12	Lock time	PLL	t _{pll_lock}	_	_	t _{pll_acquire+} 1075(1/ ^f pll_re f)	S	D
13	Loss of external clock minimum freque	ncy - RANGE = 0	f _{loc_low}	(3/5) x f _{int_t}	—	_	kHz	D
14	Loss of external clock minimum freque	ncy - RANGE = 1	f _{loc_high}	(16/5) x f _{int_t}	_	_	kHz	D

Table 17. MCG (Temperature Range = -40 to 105°C Ambient)

¹ This should not exceed the maximum CPU frequency for this device.

² This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bit is changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

- ³ This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- ⁴ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{BUS}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.
- ⁵ 625 ns represents 5 time quanta for CAN applications, under worst-case conditions of 8 MHz CAN bus clock, 1 Mbps CAN Bus speed, and 8 time quanta per bit for bit time settings. 5 time quanta is the minimum time between a synchronization edge and the sample point of a bit using 8 time quanta per bit.
- ⁶ Below D_{lock} minimum, the MCG is guaranteed to enter lock. Above D_{lock} maximum, the MCG will not enter lock. But if the MCG is already in lock, then the MCG may stay in lock.
- ⁷ Below D_{unl} minimum, the MCG will not exit lock if already in lock. Above D_{unl} maximum, the MCG is guaranteed to exit lock.

#	Char	acteristic	Symbol	Min	Typ ¹	Max	Unit
	Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1)	• Low range (RANGE = 0)	f _{lo}	32	_	38.4	kHz
		 High range (RANGE = 1), FEE or FBE mode ² 	fhi	1	—	5	MHz
1		 High range (RANGE = 1), High gain (HGO = 1), FBELP mode 	fhi	1	_	16	MHz
		 High range (RANGE = 1), Low power (HGO = 0), FBELP mode 	fhi	1	_	8	MHz
2	Load capacitors		C ₁ C ₂		See N	ote ³	
2	Feedback resistor	Low range (32 kHz to 38.4 kHz)	R _F	_	10		MO
3		High range (1 MHz to 16 MHz)	_	_	1		- 10122
4	Series resistor — Low range	Low Gain (HGO = 0)	R _S		0	—	kΩ
4		High Gain (HGO = 1)			100	—	
	Series resistor — High range	• Low Gain (HGO = 0)				•	
		 High Gain (HGO = 1) 					
5		≥ 8 MHz	R _S	—	0	0	kΩ
		4 MHz		—	0	10	
		1 MHz		_	0	20	

Table 18. XOSC (Temperature Range = -40 to 105°C Ambient)

#	Cha	Characteristic			Typ ¹	Max	Unit
	Crystal start-up time ^{4, 5}	Low range, low gain (RANGE = 0, HGO = 0)	t CSTL	_	200	_	
6		Low range, high gain (RANGE = 0, HGO = 1)		_	400	_	
0		High range, low gain (RANGE = 1, HGO = 0)	t _{CSTH}	_	5	_	ms
		High range, high gain (RANGE = 1, HGO = 1)		_	15	_	

Table 18. XOSC (Temperature Range = -40 to 105°C Ambient)

¹ Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value.

² When MCG is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz.

³ See crystal or resonator manufacturer's recommendation.

⁴ This parameter is characterized and not tested on each device.

⁵ Proper PC board layout procedures must be followed to achieve specifications.

#	Symbol	Parameter		Min	Typical ¹	Max	С	Unit
9	t _{Rise} , t _{Fall}	Port rise and fall time (load = 50) pF) ⁴ , Low Drive)				ns
			Slew rate control disabled (PTxSE = 0)	_	11	—	D	
			Slew rate control enabled (PTxSE = 1)		35		D	
			Slew rate control disabled (PTxSE = 0)		40	_	D	
			Slew rate control enabled (PTxSE = 1)	_	75	_	D	

Table 19. Control Timing

¹ Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.

² This is the shortest pulse that is guaranteed to be recognized as a reset pin request. Shorter pulses are not guaranteed to override reset requests from internal sources.

³ This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.

 4 Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range –40 °C to 105 °C.

Figure 8. IRQ/KBIPx Timing

2.14 USB Electricals

The USB electricals for the USB On-the-Go module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit http://www.usb.org.

If the Freescale USB On-the-Go implementation has electrical characteristics that deviate from the standard or require additional information, this space would be used to communicate that information.

#	Characteristic	Symbol	Min	Тур	Max	Unit	С
1	Regulator operating voltage	V _{regin}	3.9	_	5.5	V	С
2	VREG output	V _{regout}	3	3.3	3.6	V	Р
3	V _{USB33} input with internal VREG disabled	V _{usb33in}	3	3.3	3.6	V	С
4	VREG Quiescent Current	I _{VRQ}		0.5	—	mA	С

Table 23. Internal USB 3.3 V Voltage Regulator Characteristics

2.15 VREF Electrical Specifications

Table 24. VREF Electrical Specifications

Num	Characteristic	Symbol	Min	Мах	Unit	С
1	Supply voltage	V _{DDA}	1.80	3.6	V	С
2	Temperature	T _A	-40	105	°C	С
3	Output Load Capacitance	CL	—	100	nf	D
4	Maximum Load	_	—	10	mA	—
5	Voltage Reference Output with Factory Trim. $V_{DD} = 3 V$.	Vout	1.140	1.160	V	Ρ
6	Temperature Drift (Vmin - Vmax across the full temperature range)	Tdrift	—	10 (TBD)	mV ¹	Т
7	Aging Coefficient	Ac	—	TBD	ppm/year	С
8	Powered down Current (Off Mode, VREFEN=0, VRSTEN=0)	I	—	0.10	μA	С
9	Bandgap only (MODE_LV[1:0] = 00)	I	_	75	μA	Т
10	Low-Power buffer (MODE_LV[1:0] = 01)	I	_	125	μA	Т
11	Tight-Regulation buffer (MODE_LV[1:0] = 10)	I	_	1.1	mA	Т
12	Load Regulation MODE_LV = 10	_	—	100	μV/mA	С
13	Line Regulation (Power Supply	DC	—	TBD	mV	С
14	Rejection)	AC	TBD	_	dB	

¹ See typical chart below.

Table 25. VREF Limited Range Operating Requirements

#	Characteristic	Symbol	Min	Max	Unit	С	Notes
1	Temperature	T _A	0	50	°C	С	

Table 26. VREF Limited Range Operating Behaviors

#	Characteristic	Symbol	Min	Мах	Unit	С	Notes
1	Voltage Reference Output with Factory Trim	Vout	TBD	TBD	μA	С	

Ordering Information

Figure 15. Typical Output vs. Temperature

Figure 16. Typical Output vs. V_{DD}

3 Ordering Information

This appendix contains ordering information for the device numbering system. MC9S08JE128 and MC9S08JE64 devices.

Ordering Information

3.1 Device Numbering System

Example of the device numbering system:

Table 27. Device Numbering System

Device Number ¹	Men	nory	Available Packages ²	
Device Number	Flash	RAM	Available Fackages	
	131,072	12,288	64 LQFP	
MC9S08JE128	131,072	12,288	80 LQFP	
	131,072	12,288	81 MAPBGA	
MC9S08JE64	65,536	12,288	64 LQFP	

¹ See Table 2 for a complete description of modules included on each device.

² See Table 28 for package information.

3.2 Package Information

Table 28. Package Descriptions

Pin Count	Package Type	Abbreviation	Designator	Case No.	Document No.
64	Low Quad Flat Package	LQFP	LH	840F-02	98ASS23234W
80	Low Quad Flat Package	LQFP	LK	917-01	98ASS23174W
81	MAPBGA Package	Map PBGA	MB	1662-01	98ASA10670D

3.3 Mechanical Drawings

Table 28 provides the available package types and their document numbers. The latest package outline/mechanical drawings are available on the MC9S08JE128 series Product Summary pages at http://www.freescale.com.

To view the latest drawing, either:

- Click on the appropriate link in Table 28, or
- Open a browser to the Freescale[®] website (http://www.freescale.com), and enter the appropriate document number (from Table 28) in the "Enter Keyword" search box at the top of the page.

4 Revision History

To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to: http://freescale.com/

The following revision history table summarizes changes contained in this document.

Rev	Date	Description of Changes
0	6/2009	Initial release of the Data Sheet.
1	7/2009	Updated MCG and XOSC Average internal reference frequency.
2	04/2010	Updated electrical characteristic data.