

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SCI, SPI, USB
Peripherals	LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 6x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08je64vlh

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Devices in the MC9S08JE128 series

A complete description of the modules included on each device is provided in the following table.

Module	Version
Analog-to-Digital Converter (ADC12)	1
Digital to Analog Converter (DAC)	1
Programmable Delay Block	1
Inter-Integrated Circuit (IIC)	3
Central Processing Unit (CPU)	5
On-Chip In-Circuit Debug/Emulator (DBG)	3
Multi-Purpose Clock Generator (MCG)	3
Low Power Oscillator (XOSCVLP)	1
Carrier Modulator Timer (CMT)	1
Programable Analog Comparator (PRACMP)	1
Serial Communications Interface (SCI)	4
Serial Peripheral Interface (SPI)	5
Time of Day (TOD)	1
Universal Serial Bus (USB)	1
Timer Pulse-Width Modulator (TPM)	3
System Integration Module (SIM)	1
Cyclic Redundancy Check (CRC)	3
Keyboard Interrupt (KBI)	2
Voltage Reference (VREF)	1
Voltage Regulator (VREG)	1
Interrupt Request (IRQ)	3
Flash Wrapper	1
GPIO	2
Port Control	1

Table 2. Versions of On-Chip Modules

The block diagram in Figure 1 shows the structure of the MC9S08JE128 series MCU.

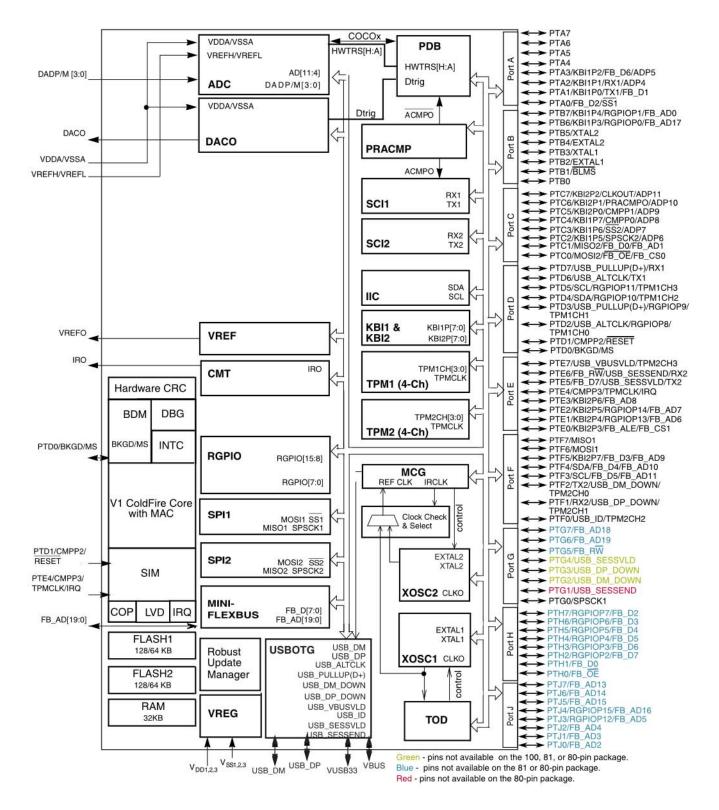


Figure 1. MC9S08JE128 series Block Diagram

1.1.2 80-Pin LQFP

The following figure shows the 80-pin LQFP pinout configuration.

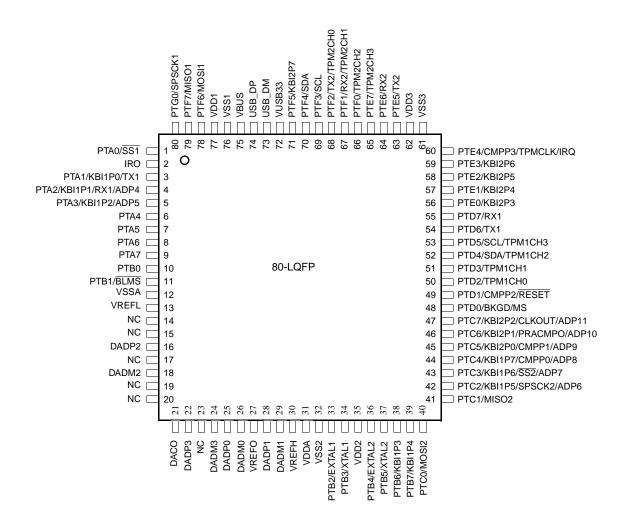


Figure 3. 80-Pin LQFP

Devices in the MC9S08JE128 series

1.1.3 81-Pin MAPBGA

The following figure shows the 81-pin MAPBGA pinout configuration.

	1	2	3	4	5	6	7	8	9
А	IRO	PTG0	PTF6	USB_DP	VBUS	VUSB33	PTF4	PTF3	PTE4
в	PTF7	PTA0	PTG1	USB_DM	PTF5	PTE7	PTF1	PTF0	PTE3
С	PTA4	PTA5	PTA6	PTA1	PTF2	PTE6	PTE5	PTE2	PTE1
D		PTA7	PTB0	PTB1	PTA2	PTA3	PTD5	PTD7	PTE0
Е		DADM2		VDD2	VDD3	VDD1	PTD2	PTD3	PTD6
F		DADP2		VSS2	VSS3	VSS1	PTB7	PTC7	PTD4
G	DADPO	DACO	DADP3	DADM3	VREFO	PTB6	PTC0	PTC1	PTC2
н	DADMO	DADM1	DADP1		PTC3	PTC4	PTD0	PTC5	PTC6
J	VSSA	VREFL	VREFH	VDDA	PTB2	PTB3	PTD1	PTB4	PTB5

Figure 4. 81-Pin MAPBGA

1.2 Pin Assignments by Packages

Pa	ackag	е					
81 MAPBGA	80 LQFP	64 LQFP	Default Function	ALT1	ALT2	ALT3	Composite Pin Name
B2	1	1	PTA0	SS1	_	_	PTA0/SS1
A1	2	2	IRO	_	_	-	IRO
C4	3		PTA1	KBI1P0	TX1	_	PTA1/KBI1P0/TX1
D5	4		PTA2	KBI1P1	RX1	ADP4	PTA2/KBI1P1/RX1/ADP4
D6	5		PTA3	KBI1P2	ADP5	_	PTA3/KBI1P2/ADP5
C1	6	3	PTA4	_		_	PTA4
C2	7	4	PTA5	_	_		PTA5
C3	8	5	PTA6	_	_	_	PTA6
D2	9	6	PTA7	_	_		PTA7
D3	10	7	PTB0	_			PTB0
D4	11	8	PTB1	BLMS	_	_	PTB1/BLMS
J1	12	9	VSSA	_	_	_	VSSA
J2	13	10	VREFL	_	_	_	VREFL
D1	14	11	NC		_	_	NC
E1	15	12	NC	_	_	_	NC
F2	16	13	DADP2	_	_	_	DADP2
F1	17	14	NC	_	_		NC
E2	18	15	DADM2	_	_	_	DADM2
F3	19	16	NC	_	_	_	NC
E3	20	17	NC	_	_	_	NC
G2	21	18	DACO	_	_	_	DACO
G3	22	19	DADP3	_	_	_	DADP3
H4	23	20	NC	—	_	_	NC
G4	24	21	DADM3	_	_	_	DADM3
G1	25	22	DADP0			_	DADP0
H1	26	23	DADM0	_	_	_	DADM0
G5	27	24	VREFO	_	_	_	VREFO
H3	28		DADP1		_	_	DADP1
H2	29	—	DADM1	_	_	_	DADM1

Table 3	8. Package	Pin Assigr	ments		

Devices in the MC9S08JE128 series

Pa	ackag	e					
81 MAPBGA	80 LQFP	64 LQFP	Default Function	ALT1	ALT2	ALT3	Composite Pin Name
J3	30	25	VREFH	_	—	_	VREFH
J4	31	26	VDDA	_	—		VDDA
F4	32	27	VSS2	_	—		VSS2
J5	33	28	PTB2	EXTAL1	—		PTB2/EXTAL1
J6	34	29	PTB3	XTAL1	—	—	PTB3/XTAL1
E4	35	30	VDD2	_	—		VDD2
J8	36	31	PTB4	EXTAL2	—		PTB4/EXTAL2
J9	37	32	PTB5	XTAL2	—		PTB5/XTAL2
G6	38		PTB6	KBI1P3	—		PTB6/KBI1P3
F7	39		PTB7	KBI1P4	—		PTB7/KBI1P4
G7	40	33	PTC0	MOSI2	—	—	PTC0/MOSI2
G8	41	34	PTC1	MISO2	—	—	PTC1/MISO2
G9	42	35	PTC2	KBI1P5	SPSCK2	ADP6	PTC2/KBI1P5/SPSCK2/ADP6
H5	43	36	PTC3	KBI1P6	SS2	ADP7	PTC3/KBI1P6/SS2/ADP7
H6	44	37	PTC4	KBI1P7	CMPP0	ADP8	PTC4/KBI1P7/CMPP0/ADP8
H8	45	38	PTC5	KBI2P0	CMPP1	ADP9	PTC5/KBI2P0/CMPP1/ADP9
H9	46	39	PTC6	KBI2P1	PRACMPO	ADP10	PTC6/KBI2P1/PRACMPO/ADP10
F8	47	40	PTC7	KBI2P2	CLKOUT	ADP11	PTC7/KBI2P2/CLKOUT/ADP11
H7	48	41	PTD0	BKGD	MS	—	PTD0/BKGD/MS
J7	49	42	PTD1	CMPP2	RESET		PTD1/CMPP2/RESET
E7	50	43	PTD2	TPM1CH0	—		PTD2TPM1CH0
E8	51	44	PTD3	TPM1CH1	—		PTD3/TPM1CH1
F9	52	45	PTD4	SDA	TPM1CH2	—	PTD4/SDA/TPM1CH2
D7	53	46	PTD5	SCL	TPM1CH3	—	PTD5/SCL/TPM1CH3
E9	54	47	PTD6	TX1	—		PTD6/TX1
D8	55	48	PTD7	RX1	—	—	PTD7/RX1
D9	56	—	PTE0	KBI2P3	—	_	PTE0/KBI2P3
C9	57	—	PTE1	KBI2P4	—	_	PTE1/KBI2P4
C8	58	_	PTE2	KBI2P5	—	—	PTE2/KBI2P5
B9	59	—	PTE3	KBI2P6	—	—	PTE3/KBI2P6
A9	60	49	PTE4	CMPP3	TPMCLK	IRQ	PTE4/CMPP3/TPMCLK/IRQ

Table 3. Package Pin Assignments (Continued)

2.2 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in the following table may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section.

#	Rating	Symbol	Value	Unit
1	Supply voltage	V _{DD}	-0.3 to +3.8	V
2	Maximum current into V _{DD}	I _{DD}	120	mA
3	Digital input voltage	V _{In}	-0.3 to V _{DD} + 0.3	V
4	Instantaneous maximum current Single pin limit (applies to all port pins) ^{1, 2, 3}	۱ _D	± 25	mA
5	Storage temperature range	T _{stg}	-55 to 150	°C

¹ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

 $^2\,$ All functional non-supply pins are internally clamped to V_{SS} and $V_{DD}.$

³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low (which would reduce overall power consumption).

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}).

2.5 DC Characteristics

This section includes information about power supply requirements, I/O pin characteristics, and power supply current in various operating modes.

Num	Symbol	Char	acteristic	Condition	Min	Typ ¹	Мах	Unit	С
1	V _{DD}	Operating Voltage			1.8 ²	_	3.6	V	_
2	V _{OH}	Output high voltage	All I/O pins, low-o	drive strength					
				1.8 V, I _{Load} = -600 μA	V _{DD} – 0.5	_	—	V	С
			All I/O pins, high-	-drive strengtl	h				
				2.7 V, I _{Load} = -10 mA	V _{DD} – 0.5	_	_	V	Ρ
				$1.8V, I_{Load} = -3 \text{ mA}$	V _{DD} – 0.5	_	_	V	С
3	I _{OHT}	Output high current	Max total I _{OH} for	all ports					
				—	—	_	100	mA	D
4	V _{OL}	Output low voltage	All I/O pins, low-o	drive strength					
				1.8 V, I _{Load} = 600 μA	_		0.5	V	С
			All I/O pins, high-	-drive strengtl	h			J	
				2.7 V, I _{Load} = 10 mA	_		0.5	V	Ρ
				1.8 V, I _{Load} = 3 mA		-	0.5	V	С
5	I _{OLT}	Output low current	Max total I _{OL} for all ports	—	_	_	100	mA	D
6	V _{IH}	Input high volta	ge all digital inputs						
				all digital inputs, V _{DD} > 2.7 V	0.70 x V _{DD}		—	V	Ρ
				all digital inputs, $2.7 \text{ V} > \text{V}_{\text{DD}} \\ \geq 1.8 \text{ V}$	0.85 x V _{DD}		_	V	Ρ

Table 9. DC Characteristics

- ⁷ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).
- ⁸ Maximum is highest voltage that POR is guaranteed.
- ⁹ Run at 1 MHz bus frequency
- ¹⁰ Low voltage detection and warning limits measured at 1 MHz bus frequency.
- ¹¹ Factory trimmed at $V_{DD} = 3.0$ V, Temp = 25°C

Supply Current Characteristics Table 10. Supply Current Characteristics 2.6

#	Symbol	Para	ameter	Bus Freq	V _{DD} (V)	Typ ¹	Мах	Unit	Temp (°C)	С
1	RI _{DD}	Run supply current	FEI mode All module	s ON	L	I	1	I	1 1	
				24 MHz	3	20	24	mA	-40 to 25	Ρ
				24 MHz	3	20	TBD	mA	105	Р
				20 MHz	3	18	_	mA	-40 to 105	Т
				8 MHz	3	8	_	mA	-40 to 105	Т
				1 MHz	3	1.8	_	mA	-40 to 105	Т
2	RI _{DD}	Run supply current	FEI mode;	All modules	OFF				· · ·	
				24 MHz	3	12.3	TBD	mA	-40 to 105	С
				20 MHz	3	10.5	_	mA	-40 to 105	Т
				8 MHz	3	4.8	_	mA	-40 to 105	Т
				1 MHz	3	1.3	_	mA	-40 to 105	Т
3	RI _{DD}	Run supply current	LPS=0; All	modules OF	F					
				16 kHz FBILP	3	TBD	_	μΑ	-40 to 105	Т
				16 kHz FBELP	3	TBD	_	μA	-40 to 105	Т
4	RI _{DD}	Run supply current	LPS=1, all	modules OF	F	·	•		· · ·	
				16 kHz FBELP	3	TBD	_	μΑ	0 to 70	Т
				16 kHz FBELP	3	TBD	—	μA	-40 to 105	Т

#	Parameter	Condition		Tem		Units	с		
#	Farameter	Condition	-40	25	70	85	105	Units	C
1	LPO	_	50	75	100	150	250	nA	D
2	EREFSTEN	RANGE = HGO = 0	600 (TBD)	650 (TBD)	750 (TBD)	850 (TBD)	1000 (TBD)	nA	D
3	IREFSTEN ¹	—	68	70	77	86	120	μA	Т
4	TOD	Does not include clock source current	50	75	100	150	250	nA	D
5	LVD ¹	LVDSE = 1	114	115	123	135	170	μA	Т
6	ACMP ¹	Not using the bandgap (BGBE = 0)	18	20	23	33	65	μA	Т
7	ADC ¹	ADLPC = ADLSMP = 1 Not using the bandgap (BGBE = 0)	75	85	100	115	165	μA	Т
8	DAC ¹	High power mode; no load on DACO	500	500	500	500	500	μA	Т

Table 11. Typical Stop Mode Adders

¹ Not available in stop2 mode.

2.7 PRACMP Electricals

#	Characteristic	Symbol	Min	Typical	Max	Unit	С
1	Supply voltage	V _{PWR}	1.8		3.6	V	Ρ
2	Supply current (active) (PRG enabled)	I _{DDACT1}	—	-	60	μΑ	С
3	Supply current (active) (PRG disabled)	I _{DDACT2}	—	_	40	μΑ	С
4	Supply current (ACMP and PRG all disabled)	I _{DDDIS}	-	_	2	nA	D
5	Analog input voltage	VAIN	$V_{SS} - 0.3$	_	V _{DD}	V	
6	Analog input offset voltage	VAIO	—	5	40	mV	Т
7	Analog comparator hysteresis	V _H	3.0		20.0	mV	Т
8	Analog input leakage current	I _{ALKG}	—	_	1	nA	D
9	Analog comparator initialization delay	tAINIT	_	_	1.0	μS	Т

Table 12. PRACMP Electrical Specifications

#	Characteristic	Symbol	Min	Typical	Max	Unit	С
10	Programmable reference generator inputs	V _{In2} (V _{DD25})	1.8	—	2.75	V	
11	Programmable reference generator setup delay	t _{PRGST}	—	1	_	μs	D
12	Programmable reference generator step size	Vstep	-0.25	1	0.25	LSB	D
13	Programmable reference generator voltage range	Vprgout	V _{In} /32		V _{in}	V	Р

Table 12. PRACMP Electrical Specifications

2.8 12-bit DAC Electricals

#	Characteristic	Symbol	Min	Max	Unit	С	Notes
1	Supply voltage	V _{DDA}	1.8	3.6	V	Р	
2	Reference voltage	V _{DACR}	1.15	3.6	V	С	
3	Temperature	T _A	-40	105	°C	С	
4	Output load capacitance	CL	_	100	pF	с	A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.
5	Output load current	ΙL	—	1	mA	С	

Table 13. DAC 12LV Operating Requirements

2.9 ADC Characteristics

#	Symb	Characteristic	Conditions	Min	Typ ¹	Max	Unit	С	Comment
1	V _{DDAD}	Supply voltage	Absolute	1.8	—	3.6	V	D	
2	ΔV_{DDAD}		Delta to V _{DD} (V _{DD} -V _{DDAD}) ²	-100	0	+100	mV	D	
3	ΔV_{SSAD}	Ground voltage	Delta to V _{SS} (V _{SS} -V _{SSAD}) ²	-100	0	+100	mV	D	
4	V _{REFH}	Ref Voltage High		1.13	V _{DDAD}	V _{DDAD}	V	D	
5	V _{REFL}	Ref Voltage Low		V _{SSAD}	V_{SSAD}	V_{SSAD}	V	D	
6	V _{ADIN}	Input Voltage		V _{REFL}	—	V_{REFH}	V	D	
7	C _{ADIN}	Input Capacitance		_	4	5	pF	С	
8	R _{ADIN}	Input Resistance		_	2	5	kΩ	С	
9	R _{AS}	Analog Source Resistance							External to MCU Assumes ADLSMP=0
			12-bit mode f _{ADCK} > 4 MHz	_	-	2	kΩ	С	
			f _{ADCK} < 4 MHz	_	—	5	kΩ	С	
			11/10-bit mode f _{ADCK} > 8 MHz	_	-	2	kΩ	С	
			4 MHz < f _{ADCK} < 8 MHz	—	—	5	kΩ	С	
			f _{ADCK} < 4 MHz	—	—	10	kΩ	С	
			9/8-bit mode f _{ADCK} > 4 MHz	_	-	5	kΩ	С	
			f _{ADCK} < 4 MHz		_	10	kΩ	С	
10	f _{ADCK}	ADC Conversion Clock Freq.	High Speed (ADLPC=0, ADHSC=1)	1.0	—	8.0	MHz	D	
			High Speed (ADLPC=0, ADHSC=0)	1.0	_	5.0	MHz	D	
			Low Power (ADLPC=1, ADHSC=1)	1.0	—	2.5	MHz	D	

Table 15.	12-bit	ADC (Operating	Conditions
		ADO 1	operating	oonantions

¹ Typical values assume V_{DDAD} = 3.0 V, Temp = 25 °C, f_{ADCK} =1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² DC potential difference.

2.11 AC Characteristics

This section describes ac timing characteristics for each peripheral system.

2.11.1 Control Timing

Table 19. Control Timing

#	Symbol	Parameter		Min	Typical ¹	Max	С	Unit
1	f _{Bus}	Bus frequency $(t_{cyc} = 1/f_{Bus})$						MHz
			$V_{DD} \ge 1.8 \text{ V}$	dc	_	10	D	
			V _{DD} > 2.1 V	dc	—	20	D	
			V _{DD} > 2.4 V	dc	_	24	D	
2	t _{LPO}	Internal low-power oscillator period		800	990 (TBD)	1500	D	μS
3	t _{extrst}	External reset pulse width ² ($t_{cyc} = 1/f_{Self_reset}$)		100	—	—	D	ns
4	t _{rstdrv}	Reset low drive		66 x t _{cyc}	—	—	D	ns
5	t _{MSSU}	Active background debug mode latch setup time		500	—	—	D	ns
6	t _{MSH}	Active background debug mode latch hold time		100	—	_	D	ns
7	t _{ILIH,} t _{IHIL}	 IRQ pulse width Asynchronous path² Synchronous path³ 		100 1.5 x t _{cyc}	_	_	D	ns
8	t _{ILIH,} t _{IHIL}	 KBIPx pulse width Asynchronous path² Synchronous path³ 		100 1.5 x t _{cyc}	_	_	D	ns

#	Symbol	Parameter		Min	Typical ¹	Max	С	Unit
9	t _{Rise} , t _{Fall}	Port rise and fall time (load = 50	0 pF) ⁴ , Low Drive)	ns			
			Slew rate control disabled (PTxSE = 0)	_	11	_	D	
			Slew rate control enabled (PTxSE = 1)	_	35		D	
			Slew rate control disabled (PTxSE = 0)	_	40	_	D	
			Slew rate control enabled (PTxSE = 1)	_	75		D	

Table 19. Control Timing

¹ Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.

² This is the shortest pulse that is guaranteed to be recognized as a reset pin request. Shorter pulses are not guaranteed to override reset requests from internal sources.

³ This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.

 4 Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range –40 °C to 105 °C.

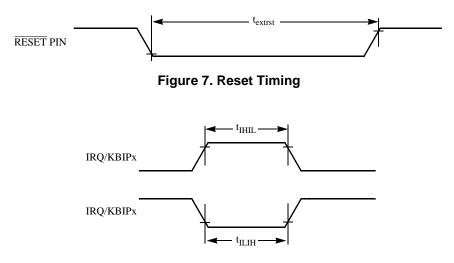
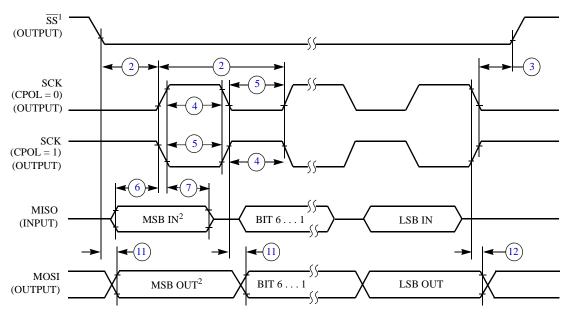


Figure 8. IRQ/KBIPx Timing

2.12 SPI Characteristics

Table 21 and Figure 11 through Figure 14 describe the timing requirements for the SPI system.

No. ¹	Characteristic ²		Symbol	Min	Мах	Unit	С
1	Operating frequency	Master Slave	f _{op}	f _{Bus} /2048 0	f _{Bus} /2 f _{Bus} /4	Hz Hz	D
2	SPSCK period	Master Slave	t _{SPSCK}	2 4	2048	t _{cyc} t _{cyc}	D
3	Enable lead time	Master Slave	t _{Lead}	1/2 1		^t spscк t _{cyc}	D
4	Enable lag time	Master Slave	t _{Lag}	1/2 1		^t spscк t _{cyc}	D
5	Clock (SPSCK) high or low time	Master Slave	t _{WSPSCK}	$t_{cyc} - 30$ $t_{cyc} - 30$	1024 t _{cyc}	ns ns	D
6	Data setup time (inputs)	Master Slave	t _{SU} t _{SU}	15 15		ns ns	D
7	Data hold time (inputs)	Master Slave	t _{HI} t _{HI}	0 25		ns ns	D
8	Slave access time ³		t _a	—	1	t _{cyc}	D
9	Slave MISO disable time ⁴		t _{dis}	—	1	t _{cyc}	D
10	Data valid (after SPSCK edge)	Master Slave	t _v		25 25	ns ns	D
11	Data hold time (outputs)	Master Slave	t _{HO}	0 0		ns ns	D
12	Rise time	Input Output	t _{RI} t _{RO}		t _{cyc} – 25 25	ns ns	D
13	Fall time	Input Output	t _{FI} t _{FO}		t _{cyc} – 25 25	ns ns	D

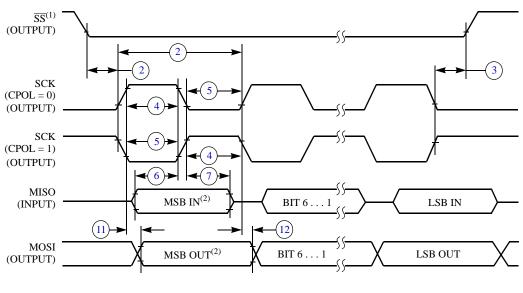

Table 21. SPI Timing

¹ Numbers in this column identify elements in Figure 11 through Figure 14.

² All timing is shown with respect to 20% V_{DD} and 70% V_{DD}, unless noted; 100 pF load on all SPI pins. All timing assumes slew rate control disabled and high drive strength enabled for SPI output pins.

³ Time to data active from high-impedance state.

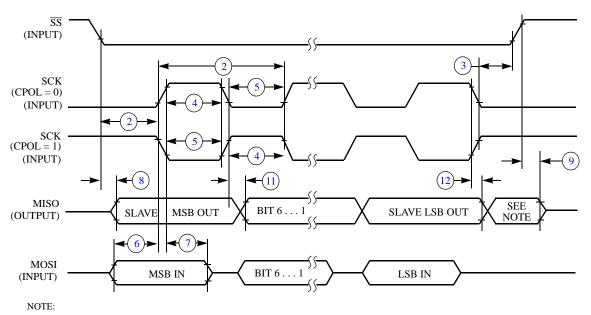
⁴ Hold time to high-impedance state.



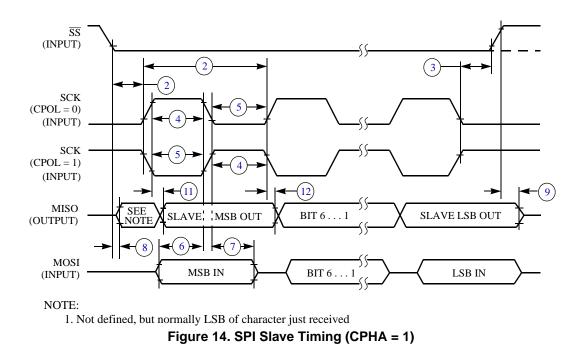
NOTES:

1. \overline{SS} output mode (MODFEN = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.



NOTES:


1. \overline{SS} output mode (MODFEN = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 12. SPI Master Timing (CPHA = 1)

1. Not defined, but normally MSB of character just received **Figure 13. SPI Slave Timing (CPHA = 0)**

2.15 VREF Electrical Specifications

Table 24. VREF Electrical Specifications

Num	Characteristic	Symbol	Min	Мах	Unit	С
1	Supply voltage	V _{DDA}	1.80	3.6	V	С
2	Temperature	T _A	-40	105	°C	С
3	Output Load Capacitance	CL	_	100	nf	D
4	Maximum Load	_	_	10	mA	—
5	Voltage Reference Output with Factory Trim. $V_{DD} = 3 V$.	Vout	1.140	1.160	V	Р
6	Temperature Drift (Vmin - Vmax across the full temperature range)	Tdrift	-	10 (TBD)	mV ¹	Т
7	Aging Coefficient	Ac	_	TBD	ppm/year	С
8	Powered down Current (Off Mode, VREFEN=0, VRSTEN=0)	I	-	0.10	μA	С
9	Bandgap only (MODE_LV[1:0] = 00)	I	—	75	μA	Т
10	Low-Power buffer (MODE_LV[1:0] = 01)	I	—	125	μA	Т
11	Tight-Regulation buffer (MODE_LV[1:0] = 10)	I	_	1.1	mA	Т
12	Load Regulation MODE_LV = 10	_	_	100	µV/mA	С
13	Line Regulation (Power Supply	DC	—	TBD	mV	С
14	Rejection)	AC	TBD	_	dB	

¹ See typical chart below.

Table 25. VREF Limited Range Operating Requirements

#	Characteristic	Symbol	Min	Мах	Unit	С	Notes
1	Temperature	T _A	0	50	°C	С	

Table 26. VREF Limited Range Operating Behaviors

#	Characteristic	Symbol	Min	Мах	Unit	С	Notes
1	Voltage Reference Output with Factory Trim	Vout	TBD	TBD	μA	С	

How to Reach Us:

Home Page: www.freescale.com

E-mail:

support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center http://compass.freescale.net/go/168063291 1-800-441-2447 or 1-303-675-2140 Fax: 1-303-675-2150

LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MC9S08JE128 Rev. 3 04/2010 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2009-2010. All rights reserved.

