

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CSIO, EBI/EMI, I ² C, LINbus, SD, SPI, UART/USART, USB
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	152
Program Memory Size	1.5MB (1.5M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192К х 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 32x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	192-LFBGA
Supplier Device Package	192-FBGA (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/s6e2c39j0agb1000a

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4. Pin Descriptions

List of Pin Functions

The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel.

Use the extended port function register (EPFR) to select the pin.

	Pin N	umber		Pin Name I/O Pin S			
LQQ216	LQP176	LQS144	LBE192	Pin Name	Type	Туре	
1	1	1	C1	VCC	-	-	
				PA0			
				RTO20_0			
				(PPG20_0)			
2	2	2	B2	TIOA8_0	G	K	
				AIN2_0			
				INT00_0			
				MADATA00_0			
				PA1			
				RTO21_0			
3	3	3	C2	(PPG20_0)	G	1	
Ū	Ū	Ū.	-	IIOA9_0			
				BIN2_0			
				MADATA01_0			
				PA2			
				RIO22_0			
4	4	4	4	C3	(PPG22_0)	G	1
				IIOA10_0	-		
				ZIN2_0			
				MADATA02_0			
				PA3			
-	-	-	Dr	RT023_0	G		
5	5	5	D5			I	
6	6	6	D2	(PPG24_0)	G	1	
0	0	0	D2	$\frac{(11024_0)}{110012}$	9	1	
				PA5			
				SIN1_0			
				BTO25_0	•		
7	7	7	D1	(PPG24_0)	G	к	
•	•		51	TIOA13_0	Ŭ		
				INT01 0			
				MADATA05 0			
				PA6			
				SOT1 0			
8	8	8	D3	(SDA1_0))	Е	I	
-	5	_	_	DTTI2X_0	1		
				MADATA06_0	1		
				PA7			
				SCK1_0	1		
9	9	9 9	D4	(SCL1_0)	E	I	
				IC20_0	J		
				MADATA07_0			

			Pin Number			
Module	Pin Name	Function	LQQ 216	LQP 176	LQS 144	LBE 192
	TRACED12		148	-	-	-
	TRACED13	Tropp data output pip of HTM	149	-	-	-
Debugger	TRACED14		150	-	-	-
	TRACED15		151	-	-	-
	TRSTX	JTAG test reset Input pin	164	134	110	B13
	MAD00_0		81	66	56	J6
	MAD01_0		82	67	57	L8
	MAD02_0		83	68	58	K8
	MAD03_0		84	69	59	J8
	MAD04_0		91	76	60	K9
	MAD05_0		92	77	61	P10
	MAD06_0		93	78	62	N10
	MAD07_0		96	79	63	L10
	MAD08_0		97	80	64	K10
	MAD09_0		98	81	65	M10
	MAD10_0		142	116	92	G10
	MAD11_0		143	117	93	G9
	MAD12_0	External bus interface address bus	144	118	94	F10
	MAD13_0		145	119	95	F11
	MAD14_0		146	120	96	F12
	MAD15_0		147	121	97	F13
External	MAD16_0		152	122	98	E10
bus	MAD17_0		153	123	99	E11
	MAD18_0		154	124	100	E12
	MAD19_0		50	40	35	L1
	MAD20_0		49	39	34	K4
	MAD21_0		48	38	33	K3
	MAD22_0		47	37	32	K2
	MAD23_0		46	36	31	K1
	MAD24_0		45	35	30	J2
	MCSX0_0		71	56	48	M5
	MCSX1_0		70	55	47	L5
	MCSX2_0		61	51	43	N4
	MCSX3_0		60	50	42	M4
	MCSX4_0	External bus interface chip select output pin	59	49	41	L4
	MCSX5_0		58	48	40	M3
-	MCSX6_0		57	47	39	N3
	MCSX7_0		56	46	38	N2
	MCSX8_0		88	73	-	P9

				Pin N	umber	
Module	Pin Name	Function	LQQ 216	LQP 176	LQS 144	LBE 192
	MCLKOUT_0	External bus interface external clock output pin	32	23	20	G5
	MNALE_0	External bus interface ALE signal to control NAND flash output pin	47	37	32	K2
	MNCLE_0	External bus interface CLE signal to control NAND flash output pin	48	38	33	K3
	MNREX_0	External bus interface read enable signal to control NAND flash	50	40	35	L1
	MNWEX_0	External bus interface write enable signal to control NAND flash	49	39	34	K4
External	MOEX_0	External bus interface read enable signal for SRAM	209	169	137	C5
bus	MWEX_0	External bus interface write enable signal for SRAM	210	170	138	B4
	MSDCLK_0	SDRAM interface SDRAM clock output pin	90	75	-	L9
	MSDCKE_0	SDRAM interface SDRAM clock enable pin	89	74	-	M9
	MRASX_0	SDRAM interface SDRAM column active strobe pin	85	70	-	N8
	MCASX_0	SDRAM interface SDRAM row active strobe pin	86	71	-	M8
	MSDWEX_0	SDRAM interface SDRAM write enable pin	87	72	-	N9
	INT00_0		2	2	2	B2
	INT00_1	External interrupt request 00 input pin	38	28	23	H3
	INT00_2		19	-	-	-
	INT01_0		7	7	7	D1
	INT01_1	External interrupt request 01 input pin	41	31	26	H6
	INT01_2		51	41	-	L2
	INT02_0		14	13	10	E5
	INT02_1	External interrupt request 02 input pin	42	32	27	J5
External	INT02_2		26	-	-	-
interrupt	INT03_0		17	16	13	F3
	INT03_1	External interrupt request 03 input pin	43	33	28	J4
	INT03_2		34	24	-	G6
	INT04_0		59	49	41	L4
	INT04_1	External interrupt request 04 input pin	100	83	67	M11
	INT04_2		65	-	-	-
	INT05_0		70	55	47	L5
	INT05_1	External interrupt request 05 input pin	86	71	-	M8
	INT05_2		68	-	-	-
			-			

			Pin Number	r		
Module	Pin Name	Function	LQQ 216	LQP 176	LQS 144	LBE 192
	PC0		177	145	115	C9
	PC1		178	146	116	B8
	PC2		179	147	117	D9
	PC3		180	148	118	E9
	PC4		181	149	119	F9
	PC5		182	150	120	C8
	PC6		183	151	121	D8
	PC7	Conorol numbers I/O nort C	184	152	122	E8
	PC8	General-purpose i/O port C	185	153	123	A10
	PC9		186	154	124	F8
	PCA		187	155	125	B7
	PCB		190	158	128	A7
	PCC		191	159	129	C7
	PCD		192	160	130	A6
	PCE		193	161	131	D7
	PCF		194	162	132	E7
	PD0		195	163	133	F7
GPIO	PD1	General-purpose I/O port D	196	164	134	B6
	PD2		197	165	135	C6
	PE0		104	84	68	N13
	PE2	General-purpose I/O port E	106	86	70	P12
	PE3		107	87	71	P13
	PF0		78	63	-	K5
	PF1		79	64	-	K6
	PF2		85	70	-	N8
	PF3		86	71	-	M8
	PF4		87	72	-	N9
	PF5		88	73	-	P9
	PF6	General-purpose I/O port F	89	74	-	M9
	PF7		90	75	-	L9
	PF8]	94	-	-	-
	PF9		95	-	-	-
	PFA		101	-	-	-
	PFB		102	-	-	-
	PFC		103	-	-	-

				Pin N	umber	-
Module	Pin Name	Function	LQQ 216	LQP 176	LQS 144	LBE 192
	SIN9_0	Multi-function serial interface ch 9 input	82	67	57	L8
	SIN9_1	pin	120	-	-	-
	SOT9_0 (SDA9_0)	Multi-function serial interface ch 9 output pin.	83	68	58	K8
Multi- Function Serial	SOT9_1 (SDA9_1)	This pin operates as SOT9 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA9 when it is used in an I ² C (operation mode 4).	121	-	-	-
9	SCK9_0 (SCL9_0)	Multi-function serial interface ch 9 clock I/O pin.	84	69	59	J8
9 SCK9 (SCL9 (SCL9 (SCL9 (SCL9 (SCL9) SIN10 SIN10 SOT10 (SDA10 SOT10 (SDA10 Serial 10 SCK10 (SCL10)	SCK9_1 (SCL9_1)	This pin operates as SCK9 when it is used in a CSIO (operation mode 2) and as SCL9 when it is used in an I ² C (operation mode 4).	122	-	-	-
	SIN10_0	Multi-function serial interface ch 10	114	94	78	L11
	SIN10_1	input pin	51	41	-	L2
Multi- Function Serial	SOT10_0 (SDA10_0)	Multi-function serial interface ch 10 output pin.	115	95	79	K13
	SOT10_1 (SDA10_1)	This pin operates as SOT10 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA10 when it is used in an I ² C (operation mode 4).	52	42	-	L3
10	SCK10_0 (SCL10_0)	Multi-function serial interface ch 10 clock I/O pin.	116	96	80	K12
Function Serial 10 (SDA10_1) (SDA10_1) modes used in sck10_0 10 SCK10_0 (SCL10_0) Multi-fr clock I SCK10_1 clock I SCK10_1 used in used in (SCL10_1)	This pin operates as SCK10 when it is used in a CSIO (operation mode 2) and as SCL10 when it is used in an I ² C (operation mode 4).	53	43	-	M2	
	SIN11_0	Multi-function serial interface ch 11	123	99	83	J13
Function Serial 10	SIN11_1	input pin	26	-	-	-
	SOT11_0 (SDA11_0)	Multi-function serial interface ch 11 output pin.	124	100	84	J12
Multi- Function Serial	SOT11_1 (SDA11_1)	This pin operates as SOT11 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA11 when it is used in an I ² C (operation mode 4).	27	-	-	-
11	SCK11_0 (SCL11_0)	Multi-function serial interface ch 11 clock I/O pin.	125	101	85	J11
	SCK11_1 (SCL11_1)	This pin operates as SCK11 when it is used in a CSIO (operation mode 2) and as SCL11 when it is used in an I ² C (operation mode 4).	28	-	-	-

Latch-Up

Semiconductor devices are constructed by the formation of p-type and n-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic pnpn junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred milliamps to flow continuously at the power supply pin. This condition is called latch-up.

CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

- 1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.
- 2. Be sure that abnormal current flows do not occur during the power-on sequence.

Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

Fail-Safe Design

As previously mentioned, all semiconductor devices have inherent rates of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Precautions Related to Usage of Devices

Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

6.2 Precautions for Package Mounting

Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Cypress's recommended conditions. For detailed information about mount conditions, contact your sales representative.

Lead Insertion Type

Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket.

Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions.

If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting.

Memory Map (2)

*: See S6E2CC/S6E2C5/S6E2C4/S6E2C3/S6E2C2/S6E2C1 Series Flash Programming Manual to confirm the detail of flash Memory.

Package thermal resistance and maximum permissible power for each package are shown below. The operation is guaranteed maximum permissible power or less for semiconductor devices.

Package	Printed Circuit	Thermal Resistance	Maximum Permissible Power (mW)			
i ackage	Board	θյ _Α (°C/W)	T _A = +85°C	T _A = +105°C		
LQS144	Single-layered both sides	48	833	417		
(0.5-mm pitch)	4 layers	33	1212	606		
LQP176	Single-layered both sides	45	889	444		
(0.5-mm pitch)	4 layers	31	1290	645		
LQQ216	Single-layered both sides	46	870	435		
(0.4-mm pitch)	4 layers	32	1250	625		
LBE192	Single-layered both sides	-	-	-		
(U.8-mm pitch)	4 layers	35	1143	571		

Table for Package Thermal Resistance and Maximum Permissible Power

WARNING:

- 1. The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
- 2. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
- 3. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet.
- 4. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

12.3 DC Characteristics

12.3.1 Current Rating

Parameter	Symbol	Pin Name	Pin Name Conditions		s Frequency*4		Value		Pomarks							
Falameter	Symbol		Condition	5	riequency	Typ*1	Max* ²	Onit	Remarks							
					200 MHz	117	224	mA								
				*5	192 MHz	113	219	mA								
												180 MHz	106	211	mA	
					160 MHz	95	197	mA								
					144 MHz	86	186	mA	*0							
					120 MHz	73	169	mA	3 When ell							
					100 MHz	61	155	mA	vinen all peripheral							
				*6	80 MHz	50	140	mA	clocks are on							
				60 MHz 39 126	mA											
					40 MHz	27	112	mA								
					20 MHz	16	97	mA								
Dowor			Normal operation *7,*8		8 MHz	8.7	88.9	mA								
Fuwer	laa	VCC			4 MHz	6.4	86.1	mA								
supply	ICC	VCC			200 MHz	71	168	mA								
current			(PLL)	*5	192 MHz	68	165	mA								
					180 MHz	64	159	mA								
					160 MHz	58	151	mA								
					144 MHz	52	144	mA	*0							
					120 MHz	44	134	mA	"3 When all							
					100 MHz	38	126	mA	nerinheral							
				*6	80 MHz	31	117	mA	clocks are off							
				0	60 MHz	24	109	mA								
					40 MHz	17	100	mA								
					20 MHz	10	91	mA								
					8 MHz	6.3	86.1	mA								
					4 MHz	5.0	84.5	mA]							

Table 12-1 Typical and Maximum Current Consumption in Normal Operation (PLL), Code Running from Flash Memory (Flash Accelerator Mode and Trace Buffer Function Enabled)

*1: $T_A = +25^{\circ}C$, $V_{CC} = 3.3 V$

*2: T_J = +125°C, V_{CC} = 5.5 V

*3: When all ports are fixed

*4: Frequency is a value of HCLK when PCLK0 = PCLK1 = PCLK2 = HCLK

*5: When stopping flash accelerator mode and trace buffer function (FRWTR.RWT = 11, FBFCR.BE = 1)

*6: When stopping flash accelerator mode and trace buffer function (FRWTR.RWT = 10, FBFCR.BE = 1)

*7: Firmware being executed during data collection for this table is not being accessed from the MainFlash memory."

*8: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit)

12.4.2 Sub Clock Input Characteristics

 $(V_{BAT} = 1.65V \text{ to } 5.5V, V_{SS} = 0V)$

Paramotor	Symbol	Pin	Conditions		Value		Unit	Remarks	
Falameter	Symbol	Name	Conditions	Min	Тур	Max	Onit		
Input frequency	1/t _{CYLL}		-	-	32.768	-	kHz	When crystal oscillator is connected *	
		X0A,	-	32	-	100	kHz	When using external clock	
Input clock cycle	t _{CYLL}	AIA	-	10	-	31.25	μs	When using external clock	
Input clock pulse width	-		Pwн/tcyll, Pwl/tcyll	45	-	55	%	When using external clock	

*: For more information about crystal oscillator, see Sub crystal oscillator in 7. Handling Devices.

12.4.3 Built-In CR Oscillation Characteristics

Built-In High-speed CR

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$

Baramotor	Symbol	Conditions		Value		Unit	Remarks	
Farameter	Symbol	Conditions	Min	Тур	Max	Unit	Remarks	
Clock frequency	fcrн	T _J = - 20°C to + 105°C	3.92	4	4.08		When trimming *1	
		T _J = - 40°C to + 125°C	3.88	4	4.12	MHz		
		T _J = - 40°C to + 125°C	3	4	5		When not trimming	
Frequency stabilization time	tcrwt	-	-	-	30	μs	*2	

*1: In the case of using the values in CR trimming area of flash memory at shipment for frequency/temperature trimming

*2: This is the time to stabilize the frequency of the High-speed CR clock after setting trimming value. During this period, it is able to use the High-speed CR clock as a source clock.

Built-In Low-speed CR

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$

G	Paramatar	Symbol Condition Value Min Typ I	Value		Unit	Bomorko		
	Farameter		Condition	Min	Тур	Мах	Unit	Reliaiks
	Clock frequency	f _{CRL}	-	50	100	150	kHz	

Synchronous Serial (SPI = 1, SCINV = 1)

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$

Parameter	Symbol	Pin	Conditions	V_{CC} < 4.5 V		$V_{CC} \ge 4.5 V$		Unit
raiameter	Symbol	Name	conditions	Min	Max	Min	Max	Unit
Baud rate	-	-	-	-	8	-	8	Mbps
Serial clock cycle time	tscyc	SCKx		4t _{CYCP}	-	4tcycp	-	ns
$SCK \downarrow \rightarrow SOT$ delay time	ts∟ovi	SCKx, SOTx	Internal shift clock operation	- 30	+ 30	- 20	+ 20	ns
SIN→SCK↑ setup time	tıvsнı	SCKx, SINx		50	-	30	-	ns
SCK↑→SIN hold time	tshixi	SCKx, SINx		0	-	0	-	ns
SOT→SCK↑ delay time	tsovhi	SCKx, SOTx		2t _{CYCP} - 30	-	2t _{CYCP} - 30	-	ns
Serial clock L pulse width	tslsh	SCKx		2tcycp - 10	-	2tcycp - 10	-	ns
Serial clock H pulse width	tshsl	SCKx		tcycp + 10	-	tcycp + 10	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	t SLOVE	SCKx, SOTx	External abift	-	50	-	30	ns
SIN→SCK↑ setup time	t _{IVSHE}	SCKx, SINx	clock	10	-	10	-	ns
SCK↑→SIN hold time	tshixe	SCKx, SINx		20	-	20	-	ns
SCK fall time	tF	SCKx		-	5	-	5	ns
SCK rise time	tR	SCKx		-	5	-	5	ns

Notes:

- The above characteristics apply to CLK synchronous mode.

- tcycp indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 8. Block Diagram in this data sheet.

- These characteristics only guarantee the same relocate port number; for example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
- When the external load capacitance $C_L = 30 \text{ pF}$.

When Using Synchronous Serial Chip Select (SCINV = 1, CSLVL = 1)

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$

Parameter	Symbol	Conditions	Vcc < 4.5 V		V _{cc} ≥ 4.5 V		Unit
			Min	Max	Min	Max	Unit
SCS↓→SCK↓ setup time	t _{CSSI}	Internal shift clock operation	(*1)-50	(*1)+0	(*1)-50	(*1)+0	ns
SCK↑→SCS↑ hold time	tcsнi		(*2)+0	(*2)+50	(*2)+0	(*2)+50	ns
SCS deselect time	tcsdi		(*3)-50 +5tсүср	(*3)+50 +5tсүср	(*3)-50 +5tсүср	(*3)+50 +5tсүср	ns
SCS↓→SCK↓ setup time	tcsse	External shift clock operation	3tcycp+30	-	3tcycp+30	-	ns
SCK↑→SCS↑ hold time	t _{CSHE}		0	-	0	-	ns
SCS deselect time	t _{CSDE}		3t _{CYCP} +30	-	3t _{CYCP} +30	-	ns
SCS↓→SOT delay time	tDSE		-	40	-	40	ns
SCS↑→SOT delay time	tDEE		0	-	0	-	ns

(*1): CSSU bit valuexserial chip select timing operating clock cycle [ns]

(*2): CSHD bit valuexserial chip select timing operating clock cycle [ns]

(*3): CSDS bit valuexserial chip select timing operating clock cycle [ns]

Notes:

 t_{CYCP} indicates the APB bus clock cycle time. For more information about the APB bus number to which the multifunction serial is connected, see 8. Block Diagram in this data sheet.

- For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating clock, see FM4 Family Peripheral Manual Main Part (002-04856).

- When the external load capacitance $C_L = 30 \text{ pF}$.

12.4.19 PS Timing

Master Mode Timing

$(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$

Parameter	Symbol	Pin Name	Conditions	Value			
				Min	Max	Unit	Remarks
Output frequency	f MCYC	I2SCK	-	-	12.288	MHz	
Output clock pulse width	tмнw	I2SCK	-	45	55	%	
	tMLW			45	55	%	
I2SCK→I2SWS delay time	tdfs	I2SCK, I2SWS	-	0	24.0	ns	
I2SCK→I2SDO delay time*	tddo	I2SCK, I2SDO	-	0	24.0	ns	
I2SDI→I2SCK setup time	t _{HSDI}	I2SCK,	-	25.0	-	ns	
I2SDI→I2SCK hold time	t _{HDI}	I2SDI	-	0	-	ns	
Input signal rise time	tri	I2SDI	-	-	5	ns	
Input signal fall time	tri		-	-	5	ns	

*: Except for the first bit of transmission frame

Notes:

- When the external load capacitance $C_L = 20 \, pF$

When I2SWS = 48 kHz, I2MCLK = 256 × I2SWS
Frame synchronization signal (I2SWS) is settable to 48 kHz, 32 kHz, 16 kHz.
See Chapter7-2: ^PS (Inter-IC Sound bus) Interface in FM4 Family Peripheral Manual Communication Macro Part (002-04862) for the details.

Definition of 12-bit A/D Converter Terms

- Resolution: Analog variation that is recognized by an A/D converter.
- Integral Nonlinearity: Deviation of the line between the zero-transition point (0b00000000000 ←→ 0b0000000001) and the full-scale transition point (0b11111111110 ←→ 0b1111111111) from the actual conversion characteristics.
- Differential Nonlinearity: Deviation from the ideal value of the input voltage that is required to change the output code by 1 LSB.

14. Package Dimensions

15. Major Changes

Spansion Publication Number: S6E2C3_DS709-00012

Page	Section	Change Results				
Revision 0.1						
		Initial release				
Revision 1.	0					
11 13 87 88	2. Features 3. Product Lineup 10. Block Diagram 12. Memory Map	Deleted HDM-CEC/Remote Control Receiver.				
16-18	5. Pin Assignments	Deleted the pins of HDM-CEC/Remote Control Receiver.(CEC0,CEC1) Revised the pin name of I2S. (MI2S*_0→MI2S*0_0) Deleted the pin of IGTRG0_0.				
20-71	6. Pin Descriptions	Deleted the pins of HDM-CEC/Remote Control Receiver.(CEC0,CEC1) Revised the pin name of I2S. (MI2S*_0 \rightarrow MI2S*0_0) Revised the pin number of PF7 in LQFP216.(91 \rightarrow 90) revised the pin number of X1. (73, 58, 50, P5 \rightarrow 107, 87, 71, P13) Revised the pin number of X0A. (107, 87, 71, P13 \rightarrow 73, 58, 50, P5)				
72-79	7. I/O Circuit Type	Revised IOH/IOL of Type S.(IOH=-12mA \rightarrow -10mA, IOL=12mA \rightarrow 10mA) Added the case of using I2C in Type E, F, G, L, N, S.				
94-101	13. Pin Status In Each CPU State	Deleted X and Y in Pin Status Type.				
102-103	14.1. Absolute Maximum Ratings	Added 10mA type.				
104-107	14.2. Recommended Operating Conditions	Added AVRL in Analog reference voltage. Revised the leakage current in Maximum leakage current at operating				
108-117	14.3.1. Current Rating	Revised the maximum current of each category.				
118-119	14.3.2. Pin Characteristics	Added the characteristic of external bus in H level input voltage (hysteresis input). Added the characteristic of 10 mA type.				
122	14.4.5. Operating Conditions of USB PLL I2S PLL (in the case of using main clock for input clock of PLL)	Revised the maximum of I2S PLL macro oscillation clock frequency. (307.2 MHz \rightarrow 384 MHz)				
186	14.5.12-bit A/D Converter	Revised the minimum of Sampling time. Revised the characteristic of State transition time to operation permission Added AVRL in Analog reference voltage.				
194	14.8.2. Interrupt of Low-Voltage Detection	Revised the SVHI values in Conditions				

NOTE: Please see "Document History" about later revised information.