

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	F ² MC-16FX
Core Size	16-Bit
Speed	32MHz
Connectivity	CANbus, I ² C, LINbus, SCI, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	99
Program Memory Size	160KB (160K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 32x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	120-LQFP
Supplier Device Package	120-LQFP (16x16)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb96f6c5rbpmc-gse2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Product Lineup

Features		MB966C0	Remark	
Product Type	9		Flash Memory Product	
Subclock			Subclock can be set by software	
Dual Operat	ion Flash Memory	RAM	-	
128.5KB + 3	2KB	8KB	MB96F6C5R, MB96F6C5A	Product Options R: MCU with CAN
256.5KB + 3	2KB	16KB	MB96F6C6R	A: MCU without CAN
Package			LQFP-120 FPT-120P-M21	
DMA			4ch	
USART			5ch	LIN-USART 0 to 2/4/5
	with automatic LIN-Header transmission/reception with 16 byte RX- and TX-FIFO		— 2ch	LIN-USART 0/1
I ² C			1ch	I ² C 0
8/10-bit A/D	Converter		32ch	AN 0 to 31
	with Data Buffer		No	
	with Range Comparator		Yes	
	with Scan Disable		Yes	
	with ADC Pulse Detection		Yes	
16-bit Reloa	d Timer (RLT)		5ch	RLT 0 to 3/6
16-bit Free-Running Timer (FRT)		2ch	FRT 0/1	
16-bit Input Capture Unit (ICU)		8ch (5 channels for LIN-USART)	ICU 0 to 7 (ICU 0/1/4 to 6 for LIN-USART)	
16-bit Output Compare Unit (OCU)		4ch	OCU 0 to 3	
8/16-bit Prog	rammable Pulse Generator (F	PPG)	12ch (16-bit) / 24ch (8-bit)	PPG 0 to 7/12 to 15
	with Timing point capture		Yes	
	with Start delay		Yes	
	with Ramp		No	
Quadrature (QPRC)	Position/Revolution Counter		2ch	QPRC 0/1
CAN Interfac	ce		1ch	CAN 0 32 Message Buffers
External Inte	errupts (INT)		16ch	INT 0 to 15
Non-Maskat	ble Interrupt (NMI)		1ch	
Sound Gene	erator (SG)		2ch	SG 0/1
LCD Control	ler		4COM × 44SEG	COM 0 to 3 SEG 0 to 4/7 to 45
Real Time C	lock (RTC)		1ch	
I/O Ports		97 (Dual clock mode) 99 (Single clock mode)		
Clock Calibration Unit (CAL)		1ch		
Clock Output	t Function		2ch	
Low Voltage	Detection Function		Yes	Low voltage detection function can be disabled by software
Hardware W	atchdog Timer		Yes	
On-chip RC	oscillator		Yes	
On-chip Debugger			Yes	

Note: All signals of the peripheral function in each product cannot be allocated by limiting the pins of package.

It is necessary to use the port relocate function of the general I/O port according to your function use.

2. Block Diagram

Pin name	Feature	Description
SINn	USART	USART n serial data input pin
SINn_R	USART	Relocated USART n serial data input pin
SOTn	USART	USART n serial data output pin
SOTn_R	USART	Relocated USART n serial data output pin
TINn	Reload Timer	Reload Timer n event input pin
TINn_R	Reload Timer	Relocated Reload Timer n event input pin
TOTn	Reload Timer	Reload Timer n output pin
TOTn_R	Reload Timer	Relocated Reload Timer n output pin
TTGn	PPG	Programmable Pulse Generator n trigger input pin
TXn	CAN	CAN interface n TX output pin
Vn	LCD	LCD voltage reference pin
Vcc	Supply	Power supply pin
Vss	Supply	Power supply pin
WOT	RTC	Real Time clock output pin
WOT_R	RTC	Relocated Real Time clock output pin
X0	Clock	Oscillator input pin
X0A	Clock	Subclock Oscillator input pin
X1	Clock	Oscillator output pin
X1A	Clock	Subclock Oscillator output pin
ZINn	QPRC	Quadrature Position/Revolution Counter Unit n input pin

Pin no.	I/O circuit type*	Pin name			
77	J	P11_6 / SEG2 / FRCK0_R / ZIN1			
78	J	P11_7 / SEG3 / IN0_R / AIN1			
79	J	P12_0 / SEG4 / IN1_R / BIN1			
80	Н	P12_1 / TIN1_R / PPG0_B			
81	Н	P12_2/TOT1_R/PPG1_B			
82	J	P12_3 / SEG7 / OUT2_R			
83	J	P12_4 / SEG8 / OUT3_R			
84	J	P12_5 / SEG9 / TIN2_R / PPG2_B			
85	J	P12_6 / SEG10 / TOT2_R / PPG3_B			
86	J	P12_7 / SEG11 / INT1_R			
87	J	P00_0 / SEG12 / INT3_R			
88	J	P00_1 / SEG13 / INT4_R			
89	J	P00_2 / SEG14 / INT5_R			
90	Supply	Vcc			
91	Supply	Vss			
92	J	P00_3 / SEG15 / INT6_R			
93	J	P00_4 / SEG16 / INT7_R			
94	J	P00_5 / SEG17 / IN6 / TTG2 / TTG6			
95	J	P00_6 / SEG18 / IN7 / TTG3 / TTG7			
96	J	P00_7 / SEG19 / SGO0 / INT14			
97	J	P01_0 / SEG20 / SGA0			
98	J	P01_1 / SEG21 / CKOT1 / OUT0			
99	J	P01_2 / SEG22 / CKOTX1 / OUT1 / INT15			
100	J	P01_3 / SEG23 / PPG5			
101	Р	P01_4 / SEG24 / SIN4 / INT8			
102	J	P01_5 / SEG25 / SOT4			
103	Р	P01_6 / SEG26 / SCK4 / TTG12			
104	J	P01_7 / SEG27 / CKOTX1_R / INT9 / TTG13 / ZIN0			
105	J	P02_0 / SEG28 / CKOT1_R / INT10 / TTG14 / AIN0			
106	J	P02_1 / SEG29 / IN6_R / TTG15			
107	J	P02_2 / SEG30 / IN7_R / CKOT0_R / INT12 / BIN0			
108	J	P02_3 / SEG31 / SGO0_R / PPG12_B			
109	J	P02_4 / SEG32 / SGA0_R / PPG13_B			
110	Р	P02_5 / SEG33 / OUT0_R / INT13 / SIN5_R			
111	J	P02_6 / SEG34 / OUT1_R			
112	J	P02_7 / SEG35 / PPG5_R			
113	L	P03_0 / V0 / SEG36 / PPG4_B			
114	L	P03_1 / V1 / SEG37 / PPG5_B			
115	L	P03_2 / V2 / SEG38 / PPG14_B / SOT5_R			

9. User ROM Memory Map for Flash Devices

		MB96F6C5	MB96F6C6	
CPU mode address	Flash memory mode address	Flash size 128.5KB + 32KB	Flash size 256.5KB + 32KB	
FF:FFFF _H FF:0000 _H	3F:FFFF _H 3F:0000 _H	SA39 - 64KB	SA39 - 64KB	
FE:FFFF _H FE:0000 _H	3E:FFFF _H 3E:0000 _H	SA38 - 64KB	SA38 - 64KB	
FD:FFFF _H FD:0000 _H	3D:FFFF _H 3D:0000 _H		SA37 - 64KB	Bank A of Flash A
FC:FFFF _H FC:0000 _H	3C:FFFF _H 3C:0000 _H	_	SA36 - 64KB	
DF:A000 _H		Reserved	Reserved	
DF:9FFF _H DF:8000 _H	1F:9FFF _H 1F:8000 _H	SA4 - 8KB	SA4 - 8KB	
DF:7FFF _H DF:6000 _H	1F:7FFF _H 1F:6000 _H	SA3 - 8KB	SA3 - 8KB	Book B of Eloch A
DF:5FFF _H DF:4000 _H	1F:5FFF _H 1F:4000 _H	SA2 - 8KB	SA2 - 8KB	
DF:3FFF _H DF:2000 _H	1F:3FFF _H 1F:2000 _H	SA1 - 8KB	SA1 - 8KB	
	1F:1FFF _H	SAS - 512B*	SAS - 512B*	Bank A of Flash A
DF:1FFF _H DF:0000	1E.0000			

*: Physical address area of SAS-512B is from DF:0000_H to DF:01FF_H. Others (from DF:0200_H to DF:1FFF_H) is mirror area of SAS-512B. Sector SAS contains the ROM configuration block RCBA at CPU address DF:0000_H -DF:01FF_H. SAS cannot be used for E²PROM emulation.

11. Interrupt Vector Table

Vector number	Offset in vector table	Vector name	Cleared by DMA	Index in ICR to program	Description
0	3FC _H	CALLV0	No	-	CALLV instruction
1	3F8 _H	CALLV1	No	-	CALLV instruction
2	3F4 _H	CALLV2	No	-	CALLV instruction
3	3F0 _H	CALLV3	No	-	CALLV instruction
4	3EC _H	CALLV4	No	-	CALLV instruction
5	3E8 _н	CALLV5	No	-	CALLV instruction
6	3E4 _H	CALLV6	No	-	CALLV instruction
7	3E0 _H	CALLV7	No	-	CALLV instruction
8	3DC _H	RESET	No	-	Reset vector
9	3D8 _H	INT9	No	-	INT9 instruction
10	3D4 _H	EXCEPTION	No	-	Undefined instruction execution
11	3D0 _H	NMI	No	-	Non-Maskable Interrupt
12	3CC _H	DLY	No	12	Delayed Interrupt
13	3C8 _H	RC_TIMER	No	13	RC Clock Timer
14	3C4 _H	MC_TIMER	No	14	Main Clock Timer
15	3C0 _H	SC_TIMER	No	15	Sub Clock Timer
16	3BC _H	LVDI	No	16	Low Voltage Detector
17	3B8 _H	EXTINT0	Yes	17	External Interrupt 0
18	3B4 _H	EXTINT1	Yes	18	External Interrupt 1
19	3B0 _Н	EXTINT2	Yes	19	External Interrupt 2
20	3AC _H	EXTINT3	Yes	20	External Interrupt 3
21	3A8 _H	EXTINT4	Yes	21	External Interrupt 4
22	3А4 _н	EXTINT5	Yes	22	External Interrupt 5
23	3А0 _Н	EXTINT6	Yes	23	External Interrupt 6
24	39C _н	EXTINT7	Yes	24	External Interrupt 7
25	398 _н	EXTINT8	Yes	25	External Interrupt 8
26	394 _н	EXTINT9	Yes	26	External Interrupt 9
27	390 _н	EXTINT10	Yes	27	External Interrupt 10
28	38C _н	EXTINT11	Yes	28	External Interrupt 11
29	388 _H	EXTINT12	Yes	29	External Interrupt 12
30	384 _H	EXTINT13	Yes	30	External Interrupt 13
31	380 _н	EXTINT14	Yes	31	External Interrupt 14
32	37C _H	EXTINT15	Yes	32	External Interrupt 15
33	378 _Н	CAN0	No	33	CAN Controller 0
34	374 _H	-	-	34	Reserved
35	370 _H	-	-	35	Reserved
36	36C _H	-	-	36	Reserved
37	368 _H	-	-	37	Reserved
38	364 _H	PPG0	Yes	38	Programmable Pulse Generator 0
39	360 _H	PPG1	Yes	39	Programmable Pulse Generator 1

12. Handling Precautions

Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices.

12.1 Precautions for Product Design

This section describes precautions when designing electronic equipment using semiconductor devices.

■Absolute Maximum Ratings

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.

Recommended Operating Conditions

Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand.

Processing and Protection of Pins

These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions.

(1) Preventing Over-Voltage and Over-Current Conditions

Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage.

(2) Protection of Output Pins

Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device. Therefore, avoid this type of connection.

(3) Handling of Unused Input Pins

Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.

■Latch-up

Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.

CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

- (1) Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.
- (2) Be sure that abnormal current flows do not occur during the power-on sequence.

Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

■ Fail-Safe Design

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

■Static Electricity

Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:

- (1) Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity.
- (2) Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
- (3) Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 M Ω).

Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended.

- (4) Ground all fixtures and instruments, or protect with anti-static measures.
- (5) Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies.

12.3 Precautions for Use Environment

Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.

For reliable performance, do the following:

(1) Humidity

Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing.

(2) Discharge of Static Electricity

When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges.

(3) Corrosive Gases, Dust, or Oil

Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.

(4) Radiation, Including Cosmic Radiation

Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate.

(5) Smoke, Flame

CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases.

Customers considering the use of Cypress products in other special environmental conditions should consult with sales representatives.

(1) Single phase external clock for Main oscillator

When using a single phase external clock for the Main oscillator, X0 pin must be driven and X1 pin left open. And supply 1.8V power to the external clock.

- Use at DC voltage (current).
- The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
- The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the V_{CC} pin, and this may affect other devices.
- Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the Power reset.
- The DEBUG I/F pin has only a protective diode against V_{SS}. Hence it is only permitted to input a negative clamping current (4mA). For protection against positive input voltages, use an external clamping diode which limits the input voltage to maximum 6.0V.

Paramotor	Symbol	Pin	Conditions		Value		Unit	Pomarks	
Falailletei	Symbol	name	e		Тур	Max	Unit	Remains	
				-	9.5	-	mA	T _A = +25°C	
			PLL Sleep mode with CLKS1/2 = CLKP1/2 = 32MHz (CLKRC and CLKSC stopped)	-	-	15	mA	T _A = +105°C	
				-	-	16.5	mA	T _A = +125°C	
			Main Sleep mode with	-	1.1	-	mA	T _A = +25°C	
			CLKS1/2 = CLKP1/2 = 4MHZ, SMCR:LPMSS = 0 (CLKPLL, CLKRC and CLKSC	-	-	4.7	mA	T _A = +105°C	
		Vcc	stopped)	-	-	6.2	mA	T _A = +125°C	
Dower cupply	I _{COSRCH}		RC Sleep mode with CLKS1/2 = CLKP1/2 = CLKRC = 2MHz, SMCR:LPMSS = 0 (CLKMC, CLKPLL and CLKSC stopped)	-	0.6	-	mA	T _A = +25°C	
current in Sleep				-	-	4.1	mA	T _A = +105°C	
				-	-	5.6	mA	T _A = +125°C	
			RC Sleep mode with CLKS1/2 = CLKP1/2 = CLKRC = 100kHz (CLKMC, CLKPLL and CLKSC	-	0.07	-	mA	T _A = +25°C	
				-	-	2.9	mA	T _A = +105°C	
			stopped)	-	-	4.4	mA	T _A = +125°C	
			Sub Sleep mode with	-	0.04	-	mA	T _A = +25°C	
	I _{CCSSUB}		CLKS1/2 = CLKP1/2 = 32kHz, (CLKMC, CLKPLL and CLKRC	-	-	2.7	mA	T _A = +105°C	
			sioppea)	-	-	4.2	mA	T _A = +125°C	

14.4.3 Built-in RC Oscillation Characteristics

$(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C})$								
Paramotor	Symbol		Value			Bemerke		
Farameter	Symbol	Min	Тур	Max	Unit	Remarks		
Clock frequency	f _{RC}	50	100	200	kHz	When using slow frequency of RC oscillator		
		1	2	4	MHz	When using fast frequency of RC oscillator		
PC clock stabilization time	+	80	160	320	μS	When using slow frequency of RC oscillator (16 RC clock cycles)		
RC Clock stabilization time	T RCSTAB	64	128	256	μS	When using fast frequency of RC oscillator (256 RC clock cycles)		

14.4.4 Internal Clock Timing

$V_{CC} = AV_{CC} = 2.7V$ to 5.5V, $V_{SS} = AV_{SS} = 0V$, $T_A = -40^{\circ}C$ to $+125^{\circ}C$						
Parameter	Symbol	Va	Unit			
Falanelei	Symbol		Max	Unit		
Internal System clock frequency (CLKS1 and CLKS2)	f _{CLKS1} , f _{CLKS2}	-	54	MHz		
Internal CPU clock frequency (CLKB), Internal peripheral clock frequency (CLKP1)	f _{clkb} , f _{clkp1}	-	32	MHz		
Internal peripheral clock frequency (CLKP2)	f _{CLKP2}	-	32	MHz		

14.4.8 USART Timing

	$(v_{CC} = Av_{CC} = 2.7v_{10} + 0.5.5v_{10} + 0.55 = 4.5V_{10} + 0.55 + 0.50 + 125 + 0.50 +$									
Parameter		name	Conditions		Max	$\frac{2.7 \times 2 \times 0}{\text{Min}}$	Max	t		
Serial clock cycle time	t _{scyc}	SCKn		4t _{CLKP1}	-	4t _{CLKP1}	-	ns		
$SCK \downarrow \to SOT$ delay time	t _{SLOVI}	SCKn, SOTn		- 20	+ 20	- 30	+ 30	ns		
$SOT \to SCK \uparrow delay time$	t _{ovsн}	SCKn, SOTn	Internal shift clock mode	N×t _{CLKP1} – 20	-	N×t _{CLKP1} - 30	-	ns		
SIN \rightarrow SCK \uparrow setup time	t _{IVSHI}	SCKn, SINn		t _{CLKP1} + 45	-	t _{CLKP1} + 55	-	ns		
$SCK \uparrow \to SIN$ hold time	t _{SHIXI}	SCKn, SINn		0	-	0	-	ns		
Serial clock "L" pulse width	t _{SLSH}	SCKn		t _{CLKP1} + 10	-	t _{CLKP1} + 10	-	ns		
Serial clock "H" pulse width	t _{SHSL}	SCKn		t _{CLKP1} + 10	-	t _{CLKP1} + 10	-	ns		
$SCK \downarrow \to SOT$ delay time	t _{SLOVE}	SCKn, SOTn		-	2t _{CLKP1} + 45	-	2t _{CLKP1} + 55	ns		
$SIN \to SCK \uparrow setup time$	t _{IVSHE}	SCKn, SINn	External shift	t _{CLKP1} /2 + 10	-	t _{CLKP1} /2 + 10	-	ns		
$SCK \uparrow \to SIN$ hold time	t _{SHIXE}	SCKn, SINn	clock mode	t _{CLKP1} + 10	-	t _{CLKP1} + 10	-	ns		
SCK fall time	t _F	SCKn		-	20	-	20	ns		
SCK rise time	t _R	SCKn		-	20	-	20	ns		

Notes: • AC characteristic in CLK synchronized mode.

• CL is the load capacity value of pins when testing.

• Depending on the used machine clock frequency, the maximum possible baud rate can be limited by parameters. These parameters are shown in "MB96600 series HARDWARE MANUAL".

• t_{CLKP1} indicates the peripheral clock 1 (CLKP1), Unit: ns

• These characteristics only guarantee the same relocate port number. For example, the combination of SCKn and SOTn_R is not guaranteed.

*: Parameter N depends on t_{SCYC} and can be calculated as follows:

• If $t_{SCYC} = 2 \times k \times t_{CLKP1}$, then N = k, where k is an integer > 2

• If $t_{SCYC} = (2 \times k + 1) \times t_{CLKP1}$, then N = k + 1, where k is an integer > 1

Examples:

t _{scyc}	Ν
$4 \times t_{\text{CLKP1}}$	2
$5 \times t_{CLKP1}, 6 \times t_{CLKP1}$	3
$7 \times t_{\text{CLKP1}}, 8 \times t_{\text{CLKP1}}$	4

14.4.9 External Input Timing

	$(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$								
Parameter	Symbol	Pin name	Value	Value		Remarks			
T drameter	Cymbol	T in name	Min	Max	Onic	Remarks			
		Pnn_m				General Purpose I/O			
		ADTG				A/D Converter trigger input			
Input pulse width	t _{INH} , t _{INL}	TINn, TINn_R		-	ns	Reload Timer			
		TTGn	2t _{CLKP1} +200 (t _{CLKP1} = 1/f _{CLKP1})*			PPG trigger input			
		FRCKn, FRCKn_R				Free-Running Timer input clock			
		INn, INn_R				Input Capture			
		AlNn, BINn, ZINn				Quadrature Position/Revolution Counter			
		INTn, INTn_R	200	-	ns	External Interrupt			
		NMI				Non-Maskable Interrupt			

*: t_{CLKP1} indicates the peripheral clock1 (CLKP1) cycle time except stop when in stop mode.

14.4.10 ²C Timing

$(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$							
Parameter	Symbol	Conditions	Typical mode		High-speed mode* ⁴		Unit
Farameter			Min	Max	Min	Max	Unit
SCL clock frequency	f _{SCL}	$C_L = 50pF,$ $R = (Vp/I_{OL})^{*1}$	0	100	0	400	kHz
(Repeated) START condition hold time SDA $\downarrow \rightarrow$ SCL \downarrow	t _{HDSTA}		4.0	-	0.6	-	μs
SCL clock "L" width	t _{LOW}		4.7	-	1.3	-	μS
SCL clock "H" width	t _{HIGH}		4.0	-	0.6	-	μs
(Repeated) START condition setup time SCL $\uparrow \rightarrow$ SDA \downarrow	t _{susta}		4.7	-	0.6	-	μs
Data hold time $SCL \downarrow \rightarrow SDA \downarrow \uparrow$	t _{HDDAT}		0	3.45* ²	0	0.9* ³	μs
Data setup time $SDA \downarrow \uparrow \rightarrow SCL \uparrow$	t _{SUDAT}		250	-	100	-	ns
STOP condition setup time SCL $\uparrow \rightarrow$ SDA \uparrow	t _{SUSTO}		4.0	-	0.6	-	μs
Bus free time between "STOP condition" and "START condition"	t _{BUS}		4.7	-	1.3	-	μS
Pulse width of spikes which will be suppressed by input noise filter	t _{SP}	-	0	(1-1.5) × t _{CLKP1} * ⁵	0	(1-1.5) × t _{CLKP1} * ⁵	ns

*1: R and C_L represent the pull-up resistance and load capacitance of the SCL and SDA lines, respectively. Vp indicates the power supply voltage of the pull-up resistance and I_{OL} indicates V_{OL} guaranteed current.

*2: The maximum t_{HDDAT} only has to be met if the device does not extend the "L" width (t_{LOW}) of the SCL signal.

*3: A high-speed mode l²C bus device can be used on a standard mode l²C bus system as long as the device satisfies the requirement of "t_{SUDAT} ≥ 250ns".

*4: For use at over 100kHz, set the peripheral clock1 (CLKP1) to at least 6MHz.

*5: t_{CLKP1} indicates the peripheral clock1 (CLKP1) cycle time.

14.6 High Current Output Slew Rate

Parameter	Symbol	Pin name	Conditions	Value Min Typ Max			Unit	Remarks	
Output rise/fall time	t _{R20} , t _{F20}	P08_m, P09_m, P10_m	Outputs driving strength set to "20mA"	15	-	75	ns	C∟=85pF	

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C})$

14.7 Low Voltage Detection Function Characteristics

$(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$							
Parameter	Symbol	Conditions		Unit			
			Min	Тур	Мах		
Detected voltage ^{*1}	V _{DL0}	$CILCR:LVL = 0000_{B}$	2.70	2.90	3.10	V	
	V _{DL1}	CILCR:LVL = 0001 _B	2.79	3.00	3.21	V	
	V _{DL2}	$CILCR:LVL = 0010_B$	2.98	3.20	3.42	V	
	V _{DL3}	CILCR:LVL = 0011 _B	3.26	3.50	3.74	V	
	V _{DL4}	CILCR:LVL = 0100 _B	3.45	3.70	3.95	V	
	V _{DL5}	CILCR:LVL = 0111 _B	3.73	4.00	4.27	V	
	V _{DL6}	CILCR:LVL = 1001 _B	3.91	4.20	4.49	V	
Power supply voltage change rate ^{*2}	dV/dt	-	- 0.004	-	+ 0.004	V/µs	
Hysteresis width	V _{HYS}	CILCR:LVHYS=0	-	-	50	mV	
		CILCR:LVHYS=1	80	100	120	mV	
Stabilization time	TLVDSTAB	-	-	-	75	μS	
Detection delay time	t _d	-	-	-	30	μS	

*1: If the power supply voltage fluctuates within the time less than the detection delay time (t_d), there is a possibility that the low voltage detection will occur or stop after the power supply voltage passes the detection range.

*2: In order to perform the low voltage detection at the detection voltage (V_{DLX}), be sure to suppress fluctuation of the power supply voltage within the limits of the change ration of power supply voltage.

