

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	F ² MC-16FX
Core Size	16-Bit
Speed	32MHz
Connectivity	CANbus, I ² C, LINbus, SCI, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	99
Program Memory Size	288KB (288K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 32x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	120-LQFP
Supplier Device Package	120-LQFP (16x16)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb96f6c6rbpmc-gse1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MB966C0 Series

Programmable loop-back mode for self-test operation

USART

- ■Full duplex USARTs (SCI/LIN)
- Wide range of baud rate settings using a dedicated reload timer
- Special synchronous options for adapting to different synchronous serial protocols
- LIN functionality working either as master or slave LIN device
- Extended support for LIN-Protocol to reduce interrupt load

I²C

- ■Up to 400kbps
- ■Master and Slave functionality, 7-bit and 10-bit addressing

A/D converter

- ■SAR-type
- ■8/10-bit resolution
- Signals interrupt on conversion end, single conversion mode, continuous conversion mode, stop conversion mode, activation by software, external trigger, reload timers and PPGs
- Range Comparator Function
- ■Scan Disable Function
- ■ADC Pulse Detection Function

Source Clock Timers

Three independent clock timers (23-bit RC clock timer, 23-bit Main clock timer, 17-bit Sub clock timer)

Hardware Watchdog Timer

- ■Hardware watchdog timer is active after reset
- Window function of Watchdog Timer is used to select the lower window limit of the watchdog interval

Reload Timers

- ■16-bit wide
- Prescaler with 1/2¹, 1/2², 1/2³, 1/2⁴, 1/2⁵, 1/2⁶ of peripheral clock frequency
- Event count function

Free-Running Timers

- Signals an interrupt on overflow, supports timer clear upon match with Output Compare (0, 4)
- Prescaler with 1, 1/2¹, 1/2², 1/2³, 1/2⁴, 1/2⁵, 1/2⁶, 1/2⁷, 1/2⁸ of peripheral clock frequency

Input Capture Units

16-bit wide

- Signals an interrupt upon external event
- Rising edge, Falling edge or Both (rising & falling) edges sensitive

Output Compare Units

- ■16-bit wide
- Signals an interrupt when a match with Free-running Timer occurs
- A pair of compare registers can be used to generate an output signal

Programmable Pulse Generator

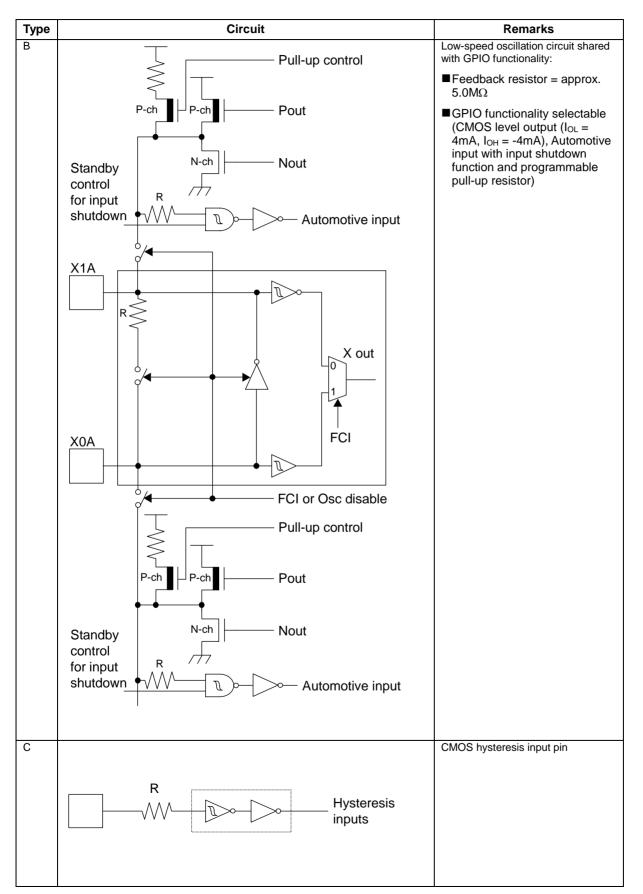
- ■16-bit down counter, cycle and duty setting registers
- ■Can be used as 2 × 8-bit PPG
- Interrupt at trigger, counter borrow and/or duty match
- PWM operation and one-shot operation
- Internal prescaler allows 1, 1/4, 1/16, 1/64 of peripheral clock as counter clock or of selected Reload timer underflow as clock input
- Can be triggered by software or reload timer
- Can trigger ADC conversion
- Timing point capture
- Start delay

Quadrature Position/Revolution Counter (QPRC)

- Up/down count mode, Phase difference count mode, Count mode with direction
- ■16-bit position counter
- ■16-bit revolution counter
- Two 16-bit compare registers with interrupt
- Detection edge of the three external event input pins AIN, BIN and ZIN is configurable

LCD Controller

- ■LCD controller with up to 4COM × 44SEG
- Internal or external voltage generation
- Duty cycle: Selectable from options: 1/2, 1/3 and 1/4
- Fixed 1/3 bias
- Programmable frame period
- Clock source selectable from four options (main clock, peripheral clock, subclock or RC oscillator clock)
- Internal divider resistors or external divider resistors
- On-chip data memory for display
- LCD display can be operated in Timer Mode
- Blank display: selectable


1. Product Lineup

Features Product Type Subclock Dual Operation Flash Memory RAM 128.5KB + 32KB 8KB 256.5KB + 32KB 16KB Package 16KB Package 0MA USART with automatic LIN-Header transmission/reception with 16 byte RX- and TX-FIFO I ² C 8/10-bit A/D Converter with Data Buffer with Range Comparator with Scan Disable with ADC Pulse Detection 16-bit Reload Timer (RLT) 16-bit Neut Compare Unit (ICU) 8/16-bit Programmable Pulse Generator (PPG) with Start delay with Ramp Quadrature Position/Revolution Counter (QPRC) CAN Interface External Interrupts (INT) Non-Maskable Interrupt (NMI) Sound Generator (SG)	MB966C0 Flash Memory Product Subclock can be set by software - MB96F6C5R, MB96F6C5A MB96F6C6R	Product Options
Subclock RAM Dual Operation Flash Memory RAM 128.5KB + 32KB 8KB 256.5KB + 32KB 16KB Package 16KB DMA USART With automatic LIN-Header transmission/reception with 16 byte RX- and TX-FIFO I'C 8/10-bit A/D Converter With Data Buffer with Range Comparator with Scan Disable with ADC Pulse Detection 16-bit Reload Timer (RLT) 16-bit Free-Running Timer (FRT) 16-bit Input Capture Unit (ICU) 16-bit Programmable Pulse Generator (PPG) with Start delay with Start delay with Start delay Quadrature Position/Revolution Counter (QPRC) CAN Interface External Interrupts (INT) Non-Maskable Interrupt (NMI) Sound Generator (SG) LCD Controller Real Time Clock (RTC)	Subclock can be set by software - MB96F6C5R, MB96F6C5A MB96F6C6R	Product Ontions
128.5KB + 32KB 8KB 256.5KB + 32KB 16KB Package 16KB DMA USART With automatic LIN-Header transmission/reception with 16 byte RX- and TX-FIFO 17 8/10-bit A/D Converter with Data Buffer with Range Comparator with Scan Disable with ADC Pulse Detection 16-bit Reload Timer (RLT) 16-bit Reload Timer (RLT) 16-bit Input Capture Unit (ICU) 16-bit Input Compare Unit (OCU) 8/16-bit Programmable Pulse Generator (PPG) with Start delay with Ramp with Ramp Quadrature Position/Revolution Counter (QPRC) CAN Interface External Interrupts (INT) Non-Maskable Interrupt (NMI) Sound Generator (SG) LCD Controller Real Time Clock (RTC) External Inter Clock (RTC)		Product Options
256.5KB + 32KB 16KB Package DMA USART USART With automatic LIN-Header transmission/reception With 16 byte RX- and TX-FIFO I'C 8/10-bit A/D Converter With Data Buffer With Range Comparator With Scan Disable With ADC Pulse Detection 16-bit Reload Timer (RLT) 16-bit Free-Running Timer (FRT) 16-bit Input Capture Unit (ICU) 16-bit Input Compare Unit (OCU) 8/16-bit Programmable Pulse Generator (PPG) With Start delay With Start delay With Ramp Quadrature Position/Revolution Counter (QPRC) CAN Interface External Interrupts (INT) Non-Maskable Interrupt (NMI) Sound Generator (SG) LCD Controller Real Time Clock (RTC)	MB96F6C6R	Product Options
Package DMA USART USART With automatic LIN-Header transmission/reception with 16 byte RX- and TX-FIFO I ² C 8/10-bit A/D Converter with Data Buffer with Range Comparator with Scan Disable with ADC Pulse Detection 16-bit Reload Timer (RLT) 16-bit Free-Running Timer (FRT) 16-bit Input Capture Unit (ICU) 16-bit Output Compare Unit (OCU) 8/16-bit Programmable Pulse Generator (PPG) with Start delay with Ramp Quadrature Position/Revolution Counter (QPRC) CAN Interface External Interrupts (INT) Non-Maskable Interrupt (NMI) Sound Generator (SG) LCD Controller Real Time Clock (RTC)		R: MCU with CAN
DMA USART with automatic LIN-Header transmission/reception with 16 byte RX- and TX-FIFO I ² C 8/10-bit A/D Converter with Data Buffer with Range Comparator with Scan Disable with ADC Pulse Detection 16-bit Reload Timer (RLT) 16-bit Free-Running Timer (FRT) 16-bit Input Capture Unit (ICU) 16-bit Output Compare Unit (OCU) 8/16-bit Programmable Pulse Generator (PPG) with Start delay with Start delay with Ramp Quadrature Position/Revolution Counter (QPRC) CAN Interface External Interrupts (INT) Non-Maskable Interrupt (NMI) Sound Generator (SG) LCD Controller Real Time Clock (RTC)		A: MCU without CAN
USART with automatic LIN-Header transmission/reception with 16 byte RX- and TX-FIFO I ² C 8/10-bit A/D Converter with Data Buffer with Range Comparator with Scan Disable with ADC Pulse Detection 16-bit Reload Timer (RLT) 16-bit Free-Running Timer (FRT) 16-bit Input Capture Unit (ICU) 16-bit Output Compare Unit (OCU) 8/16-bit Programmable Pulse Generator (PPG) with Timing point capture with Start delay with Ramp Quadrature Position/Revolution Counter (QPRC) CAN Interface External Interrupts (INT) Non-Maskable Interrupt (NMI) Sound Generator (SG) LCD Controller Real Time Clock (RTC)	LQFP-120 FPT-120P-M21	
with automatic LIN-Header transmission/reception with 16 byte RX- and TX-FIFO I ² C 8/10-bit A/D Converter with Data Buffer with Range Comparator with Scan Disable with ADC Pulse Detection 16-bit Reload Timer (RLT) 16-bit Free-Running Timer (FRT) 16-bit Output Compare Unit (ICU) 16-bit Output Compare Unit (OCU) 8/16-bit Programmable Pulse Generator (PPG) with Start delay with Ramp Quadrature Position/Revolution Counter (QPRC) CAN Interface External Interrupts (INT) Non-Maskable Interrupt (NMI) Sound Generator (SG) LCD Controller Real Time Clock (RTC)	4ch	
transmission/reception with 16 byte RX- and TX-FIFO I ² C 8/10-bit A/D Converter with Data Buffer with Can Disable with ADC Pulse Detection 16-bit Reload Timer (RLT) 16-bit Free-Running Timer (FRT) 16-bit Output Compare Unit (ICU) 16-bit Programmable Pulse Generator (PPG) with Start delay with Ramp Quadrature Position/Revolution Counter (QPRC) CAN Interface External Interrupts (INT) Non-Maskable Interrupt (NMI) Sound Generator (SG) LCD Controller	5ch	LIN-USART 0 to 2/4/5
I ² C 8/10-bit A/D Converter with Data Buffer with Range Comparator with Scan Disable with ADC Pulse Detection 16-bit Reload Timer (RLT) 16-bit Free-Running Timer (FRT) 16-bit Output Compare Unit (ICU) 8/16-bit Programmable Pulse Generator (PPG) with Timing point capture with Start delay with Ramp Quadrature Position/Revolution Counter (QPRC) CAN Interface External Interrupts (INT) Non-Maskable Interrupt (NMI) Sound Generator (SG) LCD Controller Real Time Clock (RTC)	2ch	LIN-USART 0/1
with Data Buffer with Range Comparator with Scan Disable with ADC Pulse Detection 16-bit Reload Timer (RLT) 16-bit Free-Running Timer (FRT) 16-bit Input Capture Unit (ICU) 16-bit Output Compare Unit (OCU) 8/16-bit Programmable Pulse Generator (PPG) with Timing point capture with Start delay with Ramp Quadrature Position/Revolution Counter (QPRC) CAN Interface External Interrupts (INT) Non-Maskable Interrupt (NMI) Sound Generator (SG) LCD Controller Real Time Clock (RTC)	1ch	I ² C 0
with Data Buffer with Range Comparator with Scan Disable with ADC Pulse Detection 16-bit Reload Timer (RLT) 16-bit Free-Running Timer (FRT) 16-bit Input Capture Unit (ICU) 16-bit Output Compare Unit (OCU) 8/16-bit Programmable Pulse Generator (PPG) with Start delay with Ramp Quadrature Position/Revolution Counter (QPRC) CAN Interface External Interrupts (INT) Non-Maskable Interrupt (NMI) Sound Generator (SG) LCD Controller Real Time Clock (RTC)	32ch	AN 0 to 31
with Scan Disable with ADC Pulse Detection 16-bit Reload Timer (RLT) 16-bit Free-Running Timer (FRT) 16-bit Input Capture Unit (ICU) 16-bit Output Compare Unit (OCU) 8/16-bit Programmable Pulse Generator (PPG) with Timing point capture with Start delay with Ramp Quadrature Position/Revolution Counter (QPRC) CAN Interface External Interrupts (INT) Non-Maskable Interrupt (NMI) Sound Generator (SG) LCD Controller Real Time Clock (RTC)	No	
with Scan Disable with ADC Pulse Detection 16-bit Reload Timer (RLT) 16-bit Free-Running Timer (FRT) 16-bit Input Capture Unit (ICU) 16-bit Output Compare Unit (OCU) 8/16-bit Programmable Pulse Generator (PPG) with Timing point capture with Start delay with Ramp Quadrature Position/Revolution Counter (QPRC) CAN Interface External Interrupts (INT) Non-Maskable Interrupt (NMI) Sound Generator (SG) LCD Controller Real Time Clock (RTC)	Yes	
16-bit Reload Timer (RLT) 16-bit Free-Running Timer (FRT) 16-bit Input Capture Unit (ICU) 16-bit Output Compare Unit (OCU) 8/16-bit Programmable Pulse Generator (PPG) with Timing point capture with Start delay with Ramp Quadrature Position/Revolution Counter (QPRC) CAN Interface External Interrupts (INT) Non-Maskable Interrupt (NMI) Sound Generator (SG) LCD Controller Real Time Clock (RTC)	Yes	
16-bit Free-Running Timer (FRT) 16-bit Input Capture Unit (ICU) 16-bit Output Compare Unit (OCU) 8/16-bit Programmable Pulse Generator (PPG) with Timing point capture with Start delay with Ramp Quadrature Position/Revolution Counter (QPRC) CAN Interface External Interrupts (INT) Non-Maskable Interrupt (NMI) Sound Generator (SG) LCD Controller Real Time Clock (RTC)	Yes	
16-bit Input Capture Unit (ICU) 16-bit Output Compare Unit (OCU) 8/16-bit Programmable Pulse Generator (PPG) with Timing point capture with Start delay with Ramp Quadrature Position/Revolution Counter (QPRC) CAN Interface External Interrupts (INT) Non-Maskable Interrupt (NMI) Sound Generator (SG) LCD Controller Real Time Clock (RTC)	5ch	RLT 0 to 3/6
16-bit Output Compare Unit (OCU) 8/16-bit Programmable Pulse Generator (PPG) with Timing point capture with Start delay with Ramp Quadrature Position/Revolution Counter (QPRC) CAN Interface External Interrupts (INT) Non-Maskable Interrupt (NMI) Sound Generator (SG) LCD Controller Real Time Clock (RTC)	2ch	FRT 0/1
8/16-bit Programmable Pulse Generator (PPG) with Timing point capture with Start delay with Ramp Quadrature Position/Revolution Counter (QPRC) CAN Interface External Interrupts (INT) Non-Maskable Interrupt (NMI) Sound Generator (SG) LCD Controller Real Time Clock (RTC)	8ch (5 channels for LIN-USART)	ICU 0 to 7 (ICU 0/1/4 to 6 for LIN-USART)
with Timing point capture with Start delay with Ramp Quadrature Position/Revolution Counter (QPRC) CAN Interface External Interrupts (INT) Non-Maskable Interrupt (NMI) Sound Generator (SG) LCD Controller Real Time Clock (RTC)	4ch	OCU 0 to 3
with Start delay with Ramp Quadrature Position/Revolution Counter (QPRC) CAN Interface External Interrupts (INT) Non-Maskable Interrupt (NMI) Sound Generator (SG) LCD Controller Real Time Clock (RTC)	12ch (16-bit) / 24ch (8-bit)	PPG 0 to 7/12 to 15
with Ramp Quadrature Position/Revolution Counter (QPRC) CAN Interface External Interrupts (INT) Non-Maskable Interrupt (NMI) Sound Generator (SG) LCD Controller Real Time Clock (RTC)	Yes	
Quadrature Position/Revolution Counter (QPRC) CAN Interface External Interrupts (INT) Non-Maskable Interrupt (NMI) Sound Generator (SG) LCD Controller Real Time Clock (RTC)	Yes	
(QPRC) CAN Interface External Interrupts (INT) Non-Maskable Interrupt (NMI) Sound Generator (SG) LCD Controller Real Time Clock (RTC)	No	
External Interrupts (INT) Non-Maskable Interrupt (NMI) Sound Generator (SG) LCD Controller Real Time Clock (RTC)	2ch	QPRC 0/1
Non-Maskable Interrupt (NMI) Sound Generator (SG) LCD Controller Real Time Clock (RTC)	1ch	CAN 0 32 Message Buffers
Non-Maskable Interrupt (NMI) Sound Generator (SG) LCD Controller Real Time Clock (RTC)	16ch	INT 0 to 15
Sound Generator (SG) LCD Controller Real Time Clock (RTC)	1ch	
LCD Controller Real Time Clock (RTC)	2ch	SG 0/1
	4COM × 44SEG	COM 0 to 3 SEG 0 to 4/7 to 45
	1ch	
	97 (Dual clock mode) 99 (Single clock mode)	
Clock Calibration Unit (CAL)	1ch	
Clock Output Function	2ch	
Low Voltage Detection Function	Yes	Low voltage detection function can be disabled by software
Hardware Watchdog Timer	Yes	
On-chip RC-oscillator	Yes	
On-chip Debugger	Yes	

Note: All signals of the peripheral function in each product cannot be allocated by limiting the pins of package.

It is necessary to use the port relocate function of the general I/O port according to your function use.

8. RAMSTART Addresses

Devices	Bank 0 RAM size	RAMSTART0
MB96F6C5	8KB	00:6200 _H
MB96F6C6	16KB	00:4200 _H

10. Serial Programming Communication Interface

USART pins for Flash serial programming (MD = 0, DEBUG I/F = 0, Serial Communication mode)

MB966C0									
Pin Number	USART Number	Normal Function							
8		SINO							
9	USART0	SOT0							
10		SCK0							
3		SIN1							
4	USART1	SOT1							
5		SCK1							
56		SIN2							
57	USART2	SOT2							
58		SCK2							
101		SIN4							
102	USART4	SOT4							
103		SCK4							

Vector number	Offset in vector table	Vector name	Cleared by DMA	Index in ICR to program	Description
40	35C _H	PPG2	Yes	40	Programmable Pulse Generator 2
41	358 _H	PPG3	Yes	41	Programmable Pulse Generator 3
42	354 _н	PPG4	Yes	42	Programmable Pulse Generator 4
43	350 _н	PPG5	Yes	43	Programmable Pulse Generator 5
44	34C _H	PPG6	Yes	44	Programmable Pulse Generator 6
45	348 _H	PPG7	Yes	45	Programmable Pulse Generator 7
46	344 _H	-	-	46	Reserved
47	340 _H	-	-	47	Reserved
48	33C _H	-	-	48	Reserved
49	338 _н	-	-	49	Reserved
50	334 _H	PPG12	Yes	50	Programmable Pulse Generator 12
51	330 _H	PPG13	Yes	51	Programmable Pulse Generator 13
52	32C _H	PPG14	Yes	52	Programmable Pulse Generator 14
53	328 _H	PPG15	Yes	53	Programmable Pulse Generator 15
54	324 _H	-	-	54	Reserved
55	320 _H	-	-	55	Reserved
56	31C _H	-	-	56	Reserved
57	318 _H	-	-	57	Reserved
58	314 _H	RLT0	Yes	58	Reload Timer 0
59	310 _H	RLT1	Yes	59	Reload Timer 1
60	30C _H	RLT2	Yes	60	Reload Timer 2
61	308 _H	RLT3	Yes	61	Reload Timer 3
62	304 _H	-	-	62	Reserved
63	300 _H	-	-	63	Reserved
64	2FC _H	RLT6	Yes	64	Reload Timer 6
65	2F8 _H	ICU0	Yes	65	Input Capture Unit 0
66	2F4 _H	ICU1	Yes	66	Input Capture Unit 1
67	2F0 _H	ICU2	Yes	67	Input Capture Unit 2
68	2EC _H	ICU3	Yes	68	Input Capture Unit 3
69	2E8 _H	ICU4	Yes	69	Input Capture Unit 4
70	2E4 _H	ICU5	Yes	70	Input Capture Unit 5
71	2E0 _H	ICU6	Yes	71	Input Capture Unit 6
72	2DC _H	ICU7	Yes	72	Input Capture Unit 7
73	2D8 _H	-	-	73	Reserved
74	2D4 _H	-	-	74	Reserved
75	2D0 _H	-	-	75	Reserved
76	2CC _H	-	-	76	Reserved
77	2C8 _н	OCU0	Yes	77	Output Compare Unit 0
78	2C4 _H	OCU1	Yes	78	Output Compare Unit 1
79	2C0 _H	OCU2	Yes	79	Output Compare Unit 2
80	2BC _H	OCU3	Yes	80	Output Compare Unit 3

■Static Electricity

Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:

- (1) Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity.
- (2) Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
- (3) Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 M Ω).

Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended.

- (4) Ground all fixtures and instruments, or protect with anti-static measures.
- (5) Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies.

12.3 Precautions for Use Environment

Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.

For reliable performance, do the following:

(1) Humidity

Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing.

(2) Discharge of Static Electricity

When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges.

(3) Corrosive Gases, Dust, or Oil

Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.

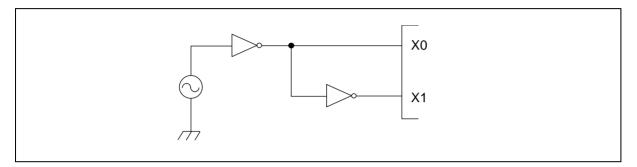
(4) Radiation, Including Cosmic Radiation

Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate.

(5) Smoke, Flame

CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases.

Customers considering the use of Cypress products in other special environmental conditions should consult with sales representatives.



(2) Single phase external clock for Sub oscillator

When using a single phase external clock for the Sub oscillator, "External clock mode" must be selected and X0A/P04_0 pin must be driven. X1A/P04_1 pin can be configured as GPIO.

(3) Opposite phase external clock

When using an opposite phase external clock, X1 (X1A) pins must be supplied with a clock signal which has the opposite phase to the X0 (X0A) pins. Supply level on X0 and X1 pins must be 1.8V.

4. Notes on PLL clock mode operation

If the microcontroller is operated with PLL clock mode and no external oscillator is operating or no external clock is supplied, the microcontroller attempts to work with the free oscillating PLL. Performance of this operation, however, cannot be guaranteed.

5. Power supply pins (Vcc/Vss)

It is required that all V_{CC} -level as well as all V_{SS} -level power supply pins are at the same potential. If there is more than one V_{CC} or V_{SS} level, the device may operate incorrectly or be damaged even within the guaranteed operating range.

Vcc and Vss pins must be connected to the device from the power supply with lowest possible impedance.

The smoothing capacitor at Vcc pin must use the one of a capacity value that is larger than Cs.

Besides this, as a measure against power supply noise, it is required to connect a bypass capacitor of about 0.1µF between Vcc and Vss pins as close as possible to Vcc and Vss pins.

6. Crystal oscillator and ceramic resonator circuit

Noise at X0, X1 pins or X0A, X1A pins might cause abnormal operation. It is required to provide bypass capacitors with shortest possible distance to X0, X1 pins and X0A, X1A pins, crystal oscillator (or ceramic resonator) and ground lines, and, to the utmost effort, that the lines of oscillation circuit do not cross the lines of other circuits.

It is highly recommended to provide a printed circuit board art work surrounding X0, X1 pins and X0A, X1A pins with a ground area for stabilizing the operation.

It is highly recommended to evaluate the quartz/MCU or resonator/MCU system at the quartz or resonator manufacturer, especially when using low-Q resonators at higher frequencies.

7. Turn on sequence of power supply to A/D converter and analog inputs

It is required to turn the A/D converter power supply (AV_{CC}, AVRH, AVRL) and analog inputs (ANn) on after turning the digital power supply (V_{CC}) on.

It is also required to turn the digital power off after turning the A/D converter supply and analog inputs off. In this case, AVRH must not exceed AV_{CC} . Input voltage for ports shared with analog input ports also must not exceed AV_{CC} (turning the analog and digital power supplies simultaneously on or off is acceptable).

8. Pin handling when not using the A/D converter

If the A/D converter is not used, the power supply pins for A/D converter should be connected such as $AV_{CC} = V_{CC}$, $AV_{SS} = AVRH = AVRL = V_{SS}$.

14. Electrical Characteristics

14.1 Absolute Maximum Ratings

Doromotor	Symphol	Condition	R	ating	Unit	Remarks	
Parameter	Symbol	Condition	Min	Max		Remarks	
Power supply voltage*1	V _{cc}	-	V _{SS} - 0.3	V _{SS} + 6.0	V		
Analog power supply voltage*1	AV _{CC}	-	V _{SS} - 0.3	V _{SS} + 6.0	V	$V_{CC} = AV_{CC}^{*2}$	
Analog reference voltage* ¹	AVRH, AVRL	-	V _{SS} - 0.3	V _{SS} + 6.0	V	AV _{cc} ≥ AVRH, AV _{cc} ≥ AVRL, AVRH > AVRL, AVRL ≥ AV _{SS}	
LCD power supply voltage*1	V0 to V3	-	V _{SS} - 0.3	V _{SS} + 6.0	V	V0 to V3 must not exceed V_{CC}	
Input voltage*1	Vi	-	V _{SS} - 0.3	V _{SS} + 6.0	V	$V_{I} \le V_{CC} + 0.3 V^{*3}$	
Output voltage*1	Vo	-	V _{SS} - 0.3	V _{SS} + 6.0	V	$V_{\rm O} \leq V_{\rm CC} + 0.3 {\rm V}^{\star 3}$	
Maximum Clamp Current		-	-4.0	+4.0	mA	Applicable to general purpose I/O pins *4	
Total Maximum Clamp Current	Σ I _{CLAMP}	-	-	32	mA	Applicable to general purpose I/O pins *4	
"L" level maximum	IOL	-	-	15	mA	Normal port	
output current	I _{OLHCO}	-	-	20	mA	High current port	
"L" level average output current	I _{OLAV}	-	-	4	mA	Normal port	
current	IOLAVHCO	-	-	15	mA	High current port	
"L" level maximum	Σl _{ol}	-	-	80	mA	Normal port	
overall output current	ΣI _{OLHCO}	-	-	150	mA	High current port	
"L" level average overall	ΣΙ _{ΟLAV}	-	-	40	mA	Normal port	
output current	ΣI _{OLAVHCO}	-	-	100	mA	High current port	
"H" level maximum output current	I _{OH}	-	-	-15	mA	Normal port	
	I _{оннсо}	-	-	-20	mA	High current port	
"H" level average output	I _{OHAV}	-	-	-4	mA	Normal port	
current	IOHAVHCO	-	-	-15	mA	High current port	
"H" level maximum	Σι _{он}	-	-	-80	mA	Normal port	
overall output current	ΣI _{OHHCO}	-	-	-150	mA	High current port	
"H" level average	Σι _{ομαν}	-	-	-40	mA	Normal port	
overall output current	Σι _{ομανήςο}	-	-	-100	mA	High current port	
Power consumption*5	PD	T _A = +125°C	-	446 ^{*6}	mW		
Operating ambient temperature	T _A	-	-40	+125 ^{*7}	°C		
Storage temperature	T _{STG}	-	-55	+150	°C		

*1: This parameter is based on $V_{SS} = AV_{SS} = 0V$.

*2: AV_{CC} and V_{CC} must be set to the same voltage. It is required that AV_{CC} does not exceed V_{CC} and that the voltage at the analog inputs does not exceed AV_{CC} when the power is switched on.

*4: • Applicable to all general purpose I/O pins (Pnn_m).

• Use within recommended operating conditions.

^{*3:} V_I and V_O should not exceed V_{CC} + 0.3V. V_I should also not exceed the specified ratings. However if the maximum current to/from an input is limited by some means with external components, the I_{CLAMP} rating supersedes the V_I rating. Input/Output voltages of general I/O ports depend on V_{CC}.

- Use at DC voltage (current).
- The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
- The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the V_{CC} pin, and this may affect other devices.
- Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the Power reset.
- The DEBUG I/F pin has only a protective diode against V_{SS}. Hence it is only permitted to input a negative clamping current (4mA). For protection against positive input voltages, use an external clamping diode which limits the input voltage to maximum 6.0V.

Parameter S	Symphol	Pin name	Conditions		Value		Unit	Domorko
	Symbol	Pin name	Conditions	Min	Тур	Max	Unit	Remarks
"H" level output voltage V _{OH20} V _{OH3}	V _{OH4}	4mA type	$\begin{array}{l} 4.5V \leq V_{CC} \leq 5.5V \\ I_{OH} = -4mA \\ \hline 2.7V \leq V_{CC} < 4.5V \\ I_{OH} = -1.5mA \end{array}$	V _{cc} - 0.5	-	V _{cc}	V	
	V _{OH20}	High Drive	$\begin{array}{l} 4.5V \leq V_{CC} \leq 5.5V \\ I_{OH} = -20mA \\ \hline 2.7V \leq V_{CC} < 4.5V \\ I_{OH} = -13mA \end{array}$	V _{CC} - 0.6	-	V _{cc}	v	
	V _{OH3}	3mA type	$\begin{array}{l} 4.5V \leq V_{CC} \leq 5.5V \\ I_{OH} = -3mA \\ \hline 2.7V \leq V_{CC} < 4.5V \\ I_{OH} = -1.5mA \end{array}$	V _{CC} - 0.5	-	V _{cc}	V	
"L" level output voltage	V _{OL4}	4mA type	$\begin{array}{l} 4.5V \leq V_{CC} \leq 5.5V \\ I_{OL} = +4mA \\ \hline 2.7V \leq V_{CC} < 4.5V \\ I_{OL} = +1.7mA \end{array}$		-	0.4	v	
	V _{OL20}	High Drive	$\begin{array}{l} 4.5V \leq V_{CC} \leq 5.5V \\ I_{OL} = +20mA \\ \hline 2.7V \leq V_{CC} < 4.5V \\ I_{OL} = +13mA \end{array}$		-	0.6	V	
	V _{OL3}	3mA type	$2.7V \le V_{CC} < 5.5V$ $I_{OL} = +3mA$	-	-	0.4	V	
	V _{OLD}	DEBUG I/F	$V_{CC} = 2.7V$ $I_{OL} = +25mA$	0	-	0.25	V	

Parameter	Symbol	Pin name	Conditions		Value		Unit	Remarks	
Farameter			Min Typ Max		Unit	Remarks			
Input leak		Pnn_m	V _{SS} < V _I < V _{CC} AV _{SS} , AVRL < V _I < AV _{CC} , AVRH	- 1	-	+ 1	μΑ		
current	l _{IL}	P08_m, P09_m, P10_m	V _{SS} < V _I < V _{CC} AV _{SS,} AVRL < V _I < AV _{CC} , AVRH	- 3	-	+ 3	μΑ		
Total LCD leak current	Σ I _{ILCD}	All SEG/ COM pin	V _{CC} = 5.0V	-	0.5	10	μA	Maximum leakage current of all LCD pins	
Internal LCD divide resistance	R _{LCD}	Between V3 and V2, V2 and V1, V1 and V0	V _{CC} = 5.0V	6.25	12.5	25	kΩ		
Pull-up resistance value	R _{PU}	Pnn_m	$V_{CC} = 5.0V \pm 10\%$	25	50	100	kΩ		
Input capacitance	C _{IN}	Other than C, Vcc, Vss, AVcc, AVss, AVRH, AVRL, P08_m, P09_m, P10_m	-	-	5	15	pF		
		P08_m, P09_m, P10_m	-	-	15	30	pF		

*: In the case of high current outputs, set "1" to the bit in the Port High Drive Register.

14.4.3 Built-in RC Oscillation Characteristics

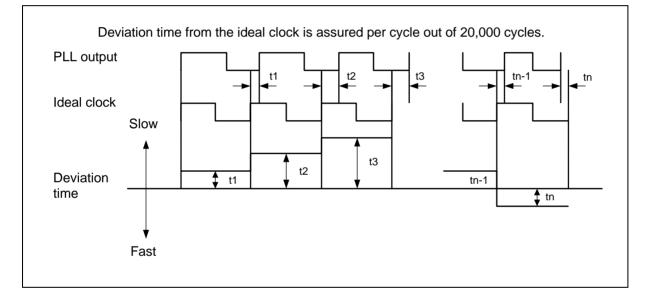
$(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$									
Parameter	Symbol		Value		Unit	Remarks			
Falameter	Symbol	Min	Тур	Max	Onit	Remarks			
Clock frequency	f _{RC}	50	100	200	kHz	When using slow frequency of RC oscillator			
		1	2	4	MHz	When using fast frequency of RC oscillator			
RC clock stabilization time	+	80	160	320	μS	When using slow frequency of RC oscillator (16 RC clock cycles)			
	t _{rcstab}	64	128	256	μS	When using fast frequency of RC oscillator (256 RC clock cycles)			

14.4.4 Internal Clock Timing

	$(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V$	$V_{SS} = AV_{SS} = 0V$	', $T_A = -40^{\circ}C$ to -	+ 125°C)	
Parameter	Symbol	Va	lue	11	
Farameter	Symbol	Min	Мах	— Unit	
Internal System clock frequency (CLKS1 and CLKS2)	f _{CLKS1} , f _{CLKS2}	-	54	MHz	
Internal CPU clock frequency (CLKB), Internal peripheral clock frequency (CLKP1)	f _{clkb} , f _{clkp1}	-	32	MHz	
Internal peripheral clock frequency (CLKP2)	f _{CLKP2}	-	32	MHz	

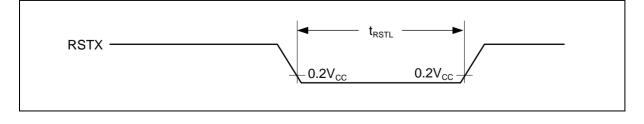
_

.....


14.4.5 Operating Conditions of PLL

Parameter	Symbol	Value			Unit	$s = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$ Remarks
	Symbol	Min	Тур	Max	Onit	Reillai KS
PLL oscillation stabilization wait time	t _{LOCK}	1	-	4	ms	For CLKMC = 4MHz
PLL input clock frequency	f _{PLLI}	4	-	8	MHz	
PLL oscillation clock frequency	f _{CLKVCO}	56	-	108	MHz	Permitted VCO output frequency of PLL (CLKVCO)
PLL phase jitter	t _{PSKEW}	-5	-	+5	ns	For CLKMC (PLL input clock) ≥ 4MHz

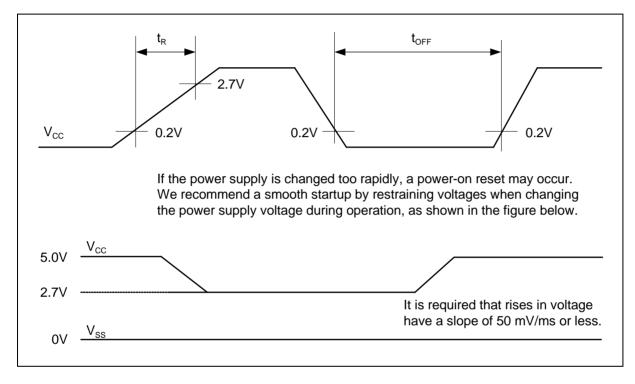
...


-....

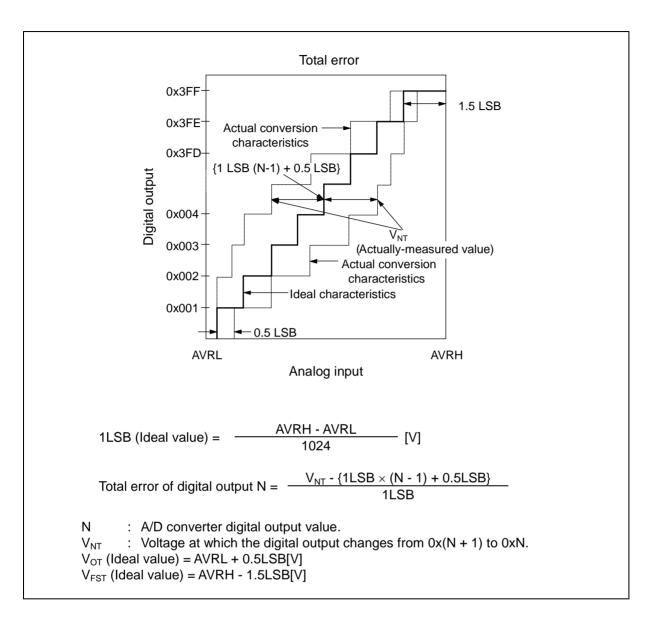
.....

14.4.6 Reset Input

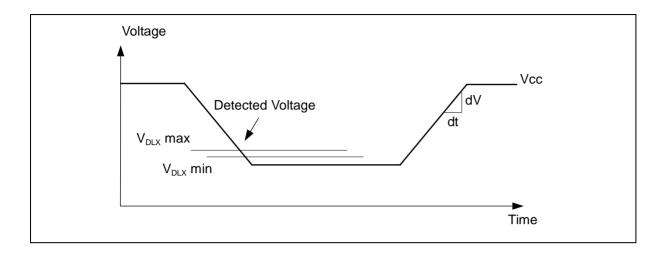
		$(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$					
Parameter	Symbol	Pin name	Va	Unit			
i arameter	Cymbol	i in name	Min	Max	Onit		
Reset input time	•	RSTX	10	-	μS		
Rejection of reset input time	t _{RSTL}	KSIX		-	μs		

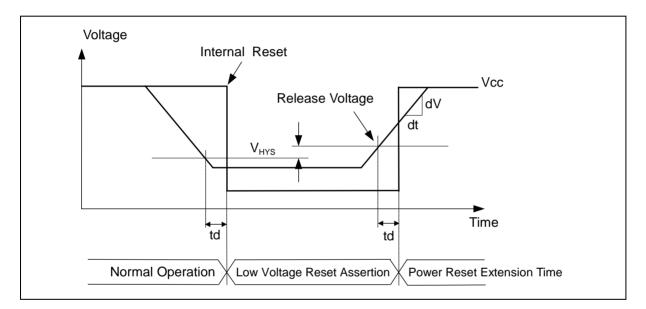


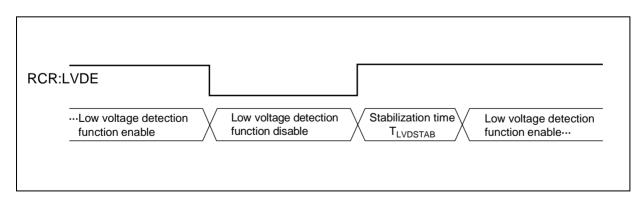
-


14.4.7 Power-on Reset Timing

$(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$						<u>= - 40°C to + 125°C)</u>	
Parameter	Symbol	Pin name	Value			Unit	
			Min	Тур	Max	Ont	
Power on rise time	t _R	Vcc	0.05	-	30	ms	
Power off time	t _{OFF}	Vcc	1	-	-	ms	


14.7 Low Voltage Detection Function Characteristics


		$(V_{CC} = AV_{CC} = 2.7V)$	to 5.5V, V_{SS} =	$AV_{SS} = 0V,$	$T_A = -40^{\circ}C$ to	+ 125°C)	
Parameter	Symbol	Conditions		Value			
			Min	Тур	Max	Unit	
Detected voltage ^{*1}	V _{DL0}	$CILCR:LVL = 0000_B$	2.70	2.90	3.10	V	
	V _{DL1}	CILCR:LVL = 0001 _B	2.79	3.00	3.21	V	
	V _{DL2}	CILCR:LVL = 0010 _B	2.98	3.20	3.42	V	
	V _{DL3}	CILCR:LVL = 0011 _B	3.26	3.50	3.74	V	
	V _{DL4}	CILCR:LVL = 0100 _B	3.45	3.70	3.95	V	
	V _{DL5}	CILCR:LVL = 0111 _B	3.73	4.00	4.27	V	
	V _{DL6}	CILCR:LVL = 1001 _B	3.91	4.20	4.49	V	
Power supply voltage change rate ^{*2}	dV/dt	-	- 0.004	-	+ 0.004	V/µs	
Hysteresis width	V _{HYS}	CILCR:LVHYS=0	-	-	50	mV	
		CILCR:LVHYS=1	80	100	120	mV	
Stabilization time	TLVDSTAB	-	-	-	75	μS	
Detection delay time	t _d	-	-	-	30	μs	


*1: If the power supply voltage fluctuates within the time less than the detection delay time (t_d), there is a possibility that the low voltage detection will occur or stop after the power supply voltage passes the detection range.

*2: In order to perform the low voltage detection at the detection voltage (V_{DLX}), be sure to suppress fluctuation of the power supply voltage within the limits of the change ration of power supply voltage.

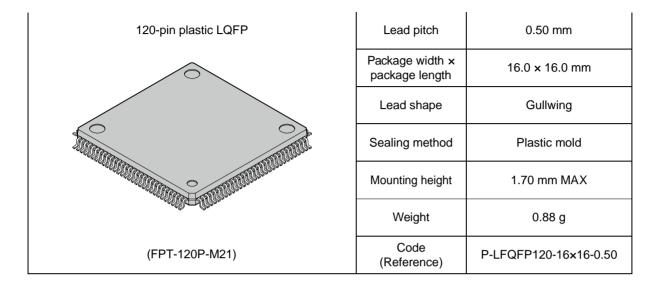
14.8 Flash Memory Write/Erase Characteristics

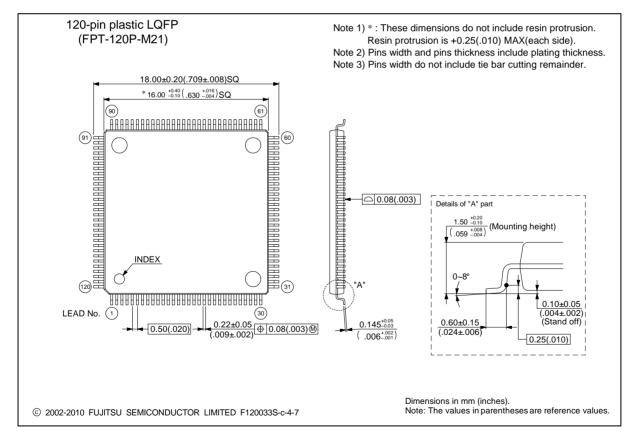
$(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$						0V, T _A = - 40°C to + 125°C)		
Parameter		Conditions	Conditions Value		Unit	Remarks		
			Min	Тур	Max			
Sector erase time	Large Sector	Ta ≤ + 105°C	-	1.6	7.5	s		
	Small Sector	-	-	0.4	2.1	s	Includes write time prior to internal erase.	
	Security Sector	-	-	0.31	1.65	s		
Word (16-bit) write time	Large Sector	Ta ≤ + 105°C	-	25	400	μs	Not including system-level overhead time.	
	Small Sector	-	-	25	400	μs		
Chip erase time		Ta≤+105°C	-	8.31	40.05	s	Includes write time prior to internal erase.	

Note: While the Flash memory is written or erased, shutdown of the external power (V_{CC}) is prohibited. In the application system where the external power (V_{CC}) might be shut down while writing or erasing, be sure to turn the power off by using a low voltage detection function.

To put it concrete, change the external power in the range of change ration of power supply voltage (-0.004V/µs to +0.004V/ μ s) after the external power falls below the detection voltage (V_{DLX})^{*1}.

Write/Erase cycles and data hold time


Write/Erase cycles (cycle)	Data hold time (year)
1,000	20 ⁻²
10,000	10 ^{*2}
100,000	5 ^{*2}


*1: See "14.7. Low Voltage Detection Function Characteristics".

*2: This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at + 85°C).

17. Package Dimension

