

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	26MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	36
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	96K x 8
Voltage - Supply (Vcc/Vdd)	1.74V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	54-UFBGA, WLCSP
Supplier Device Package	54-WLCSP (2.76x2.76)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/aducm3027bcbz-r7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- · Configurable for ultralow power operation
 - Deep sleep mode, dynamic power management
 - Programmable clock generator unit

ARM Cortex-M3 Memory Subsystem

The memory map of the ADuCM3027/ADuCM3029 is based on the Cortex-M3 model from ARM. By retaining the standardized memory mapping, it is easier to port applications across M3 platforms.

The ADuCM3027/ADuCM3029 application development is based on memory blocks across code/SRAM regions. Internal memory is available via internal SRAM and internal flash.

Code Region

Accesses in this region (0x0000 0000 to 0x0001 FC00 for the ADuCM3027 and 0x0000 0000 to 0x0003 FFFF for the ADuCM3029) are performed by the core and target the memory and cache resources.

SRAM Region

Accesses in this region (0x2000 0000 to 0x2004 7FFF) are performed by the ARM Cortex-M3 core. The SRAM region of the core can otherwise act as a data region for an application.

• Internal SRAM Data Region. This space can contain read/write data. Internal SRAM can be partitioned between code and data (SRAM region in M3 space) in 32 KB blocks. Access to this region occurs at core clock speed with no wait states.

It also supports read/write access by the Cortex-M3 core and read/write DMA access by system devices. It supports exclusive memory accesses via the global exclusive access monitor within the Cortex-M3 platform.

• **System MMRs**. Various system memory mapped registers (MMRs) reside in this region.

System Region

Accesses in this region (0xE000 0000 to 0xF7FF FFFF) are performed by the ARM Cortex-M3 core and are handled within the Cortex-M3 platform.

- **CoreSight™ ROM.** The read only memory (ROM) table entries point to the debug components of the processor.
- ARM APB Peripheral. This space is defined by ARM and occupies the bottom 256 KB/128 KB of the system (SYS) region (0xE000 0000 to 0xE004 0000) depending on the device used. The space supports read/write access by the M3 core to the internal peripherals of the ARM core (NVIC, system control space (SCS), wake-up interrupt controller (WIC)) and CoreSight ROM. It is not accessible by system DMA.

MEMORY ARCHITECTURE

The internal memory of the ADuCM3027/ADuCM3029 is shown in Figure 2. It incorporates up to 256 KB of embedded flash memory for program code and nonvolatile data storage, 32 KB of data SRAM, and 32 KB of SRAM (configured as instruction space or data space).

SRAM Region

This memory space contains the application instructions and literal (constant) data that must be accessed in real-time. It supports read/write access by the ARM Cortex-M3 core and read/write DMA access by system peripherals. Byte, half-word, and word accesses are supported.

SRAM is divided into 32 KB data SRAM and 32 KB instruction SRAM. If instruction SRAM is not enabled, then the associated 32 KB can be mapped as data SRAM, resulting in 64 KB of data SRAM.

Parity bit error detection (optional) is available on all SRAM memories. Two parity bits are associated with each 32-bit word.

When the cache controller is enabled, 4 KB of the instruction SRAM is reserved as cache memory.

Users can select the SRAM configuration modes depending on the instruction SRAM and cache needed.

In hibernate mode, 8 KB to 32 KB of the SRAM can be retained in increments of 8 KB. 8 KB of data SRAM is always retained. Users can additionally retain

- 16 KB out of 32 KB of instruction SRAM
- 8 KB out of 32 KB of data SRAM

MMRs (Peripheral Control and Status)

For the address space containing MMRs, refer to Figure 2. These registers provide control and status for on-chip peripherals of the ADuCM3027/ADuCM3029. For more information about the MMRs, refer to the ADuCM302x Ultra Low Power ARM Cortex-M3 MCU with Integrated Power Management Hardware Reference.

Flash Memory

The ADuCM3027/ADuCM3029 MCUs include 128 KB to 256 KB of embedded flash memory, which is accessed using a flash controller. For memory available on each product, see Table 1. The flash controller is coupled with a cache controller. A prefetch mechanism is implemented in the flash controller to optimize code performance.

Flash writes are supported by a key hole mechanism via advanced peripheral bus (APB) writes to MMRs. The flash controller provides support for DMA-based key hole writes.

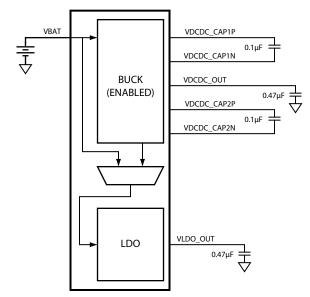
With respect to flash integrity, the devices support the following:

- A fixed user key required for running protected commands, including mass erase and page erase.
- An optional and user definable user failure analysis key (FAA key). Analog Devices personnel need this key while performing failure analysis.
- An optional and user definable write protection for user accessible memory.
- An optional 8-bit ECC. It is enabled by default. It is recommended not to disable ECC.

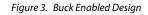
Additional power management features include the following:

- · Customized clock gating for active and Flexi modes
- Power gating to reduce leakage in hibernate and shutdown modes
- Flexible sleep modes
- Shutdown mode with no retention
- Optional high efficiency buck converter to reduce power
- Integrated low power oscillators

Power Modes


The PMU provides control of the ADuCM3027/ADuCM3029 power modes and allows the ARM Cortex-M3 to control the clocks and power gating to reduce the power consumption.

Several power modes are available. Each mode provides an additional low power benefit with a corresponding reduction in functionality.


- Active mode. All peripherals can be enabled. Active power is managed by optimized clock management. See Table 4 for details on active mode power.
- Flexi mode. The ARM Cortex-M3 core is clock gated, but the remainder of the system is active. No instructions can be executed in this mode, but DMA transfers can continue between peripherals and memory as well as memory to memory. See Table 5 for details on Flexi mode power.
- Hibernate mode. This mode provides state retention, configurable SRAM and port pin retention, a limited number of wake-up interrupts (XINT0_WAKEn and UART0_RX), and, optionally, two RTCs—RTC0 and RTC1 (FLEX_RTC).
- Shutdown mode. This mode is the deepest sleep mode, in which all the digital and analog circuits are powered down with an option to wake from four possible wake-up sources: three external interrupts and RTC0. The RTC0 can be optionally enabled in this mode and the device can be periodically woken up by the RTC0 interrupt. See Table 6 for deep sleep (hibernate and shutdown) mode specifications.

The following features are available for power management and control:

- A voltage range of 1.74 V to 3.6 V, using a single supply (such as the CR2032 coin cell battery).
- GPIOs are driven directly from the battery. The pin state is retained in hibernate and shutdown modes. The GPIO configuration is only retained in hibernate mode.
- Wake-up from external interrupt (via GPIOs), UART0_RX interrupt, and RTCs for hibernate mode.
- Wake-up from external interrupt (via GPIOs) and RTC0 for shutdown mode.
- Optional high power buck converter for 1.2 V full on support; for MCU usage only. See Figure 3 for the suggested external circuitry.

Note: For designs in which the optional buck is not used, the following pins must be left unconnected—VDCDC_CAP1P, VDCDC_CAP1N, VDCDC_OUT, VDCDC_CAP2P, and VDCDC_CAP2N.

Security Features

The ADuCM3027/ADuCM3029 MCUs provide a combination of hardware and software protection mechanisms that lock out access to the devices in secure mode, but grant access in open mode. These mechanisms include password protected slave boot mode (UART), as well as password protected serial wire debug (SWD) interfaces.

Mechanisms are provided to protect the device contents (flash, SRAM, CPU registers, and peripheral registers) from being read through an external interface by an unauthorized user. This is referred to as read protection.

It is possible to protect the device from being reprogrammed in circuit with unauthorized code. This is referred to as in circuit write protection.

CAUTION This produ

This product includes security features that can be used to protect embedded nonvolatile memory contents and prevent execution of unauthorized code. When security is enabled on this device (either by the ordering party or the subsequent receiving parties), the ability of Analog Devices to conduct failure analysis on returned devices is limited. Contact Analog Devices for details on the failure analysis limitations for this device.

The devices can be configured with no protection, read protection, or read and in circuit write protection. It is not necessary to provide in circuit write protection without read protection.

The main features of the ADC subsystem include the following:

- 12-bit resolution.
- Programmable ADC update rate from 10 KSPS to 1.8 MSPS.
- Integrated input multiplexer that supports up to eight channels.
- Temperature sensing support.
- · Battery monitoring support.
- Software selectable on-chip reference voltage generation—1.25 V and 2.5 V.
- Software selectable internal or external reference.
- Autocycle mode—ability to automatically select a sequence of input channels for conversion.
- Averaging function—converted data on single or multiple channels can be averaged up to 256 samples.
- Alert function—internal digital comparator for ADC0_VIN0, ADC0_VIN1, ADC0_VIN2, and ADC0_VIN3 channels. An interrupt is generated if the digital comparator detects an ADC result above or below a user defined threshold.
- Dedicated DMA channel support.
- Each channel, including temperature sensor and battery monitoring, has a data register for conversion result.

Clocking

The ADuCM3027/ADuCM3029 MCUs have the following clocking options:

- 26 MHz
 - Internal oscillator—HFOSC (26 MHz)
 - External crystal oscillator—HFXTAL (26 MHz or 16 MHz)
 - GPIO clock in—SYS_CLKIN
- 32 kHz
 - Internal oscillator—LFOSC
 - External crystal oscillator—LFXTAL

The clock options have software configurability with the following exceptions:

- HFOSC cannot be disabled when using an internal buck regulator.
- LFOSC cannot be disabled even if using LFXTAL.

Real-Time Clock (RTC)

The ADuCM3027/ADuCM3029 MCUs have two real-time clock blocks—RTC0 and RTC1 (FLEX_RTC). The clock blocks share a low power crystal oscillation circuit that operates in conjunction with a 32,768 Hz external crystal.

The RTC has an alarm that interrupts the core when the programmed alarm value matches the RTC count. The software enables and configures the RTC.

The RTC also has a digital trim capability to allow a positive or negative adjustment to the RTC count at fixed intervals.

The FLEX_RTC supports SensorStrobe mechanism. Using this mechanism, the ADuCM3027/ADuCM3029 MCUs can be used as a programmable clock generator in some power modes, including hibernate mode. In this way, the external sensors can have their timing domains mastered by the ADuCM3027/ADuCM3029 MCUs, as SensorStrobe can output a programmable divider from the FLEX_RTC, which can operate up to a resolution of 30.7 µs. The sensors and MCU are in sync, which removes the need for additional resampling of data to time align it.

In the absence of this mechanism,

- The external sensor uses an RC oscillator (~±30% typical variation). The MCU must sample the data and resample it on the time domain of the MCU before using it.
- Or
 - The MCU remains in a higher power state and drives each data conversion on the sensor side.

This mechanism allows the ADuCM3027/ADuCM3029 MCUs to be in a lower power state for a long duration and avoids unnecessary data processing which extends the battery life of the end product.

Beeper Driver

The ADuCM3027/ADuCM3029 MCUs have an integrated audio driver for a beeper.

The beeper driver module in the ADuCM3027/ADuCM3029 MCUs generate a differential square wave of programmable frequency. It drives an external piezoelectric sound component with two terminals that connect to the differential square wave output.

The beeper driver consists of a module that can deliver frequencies ranging from 8 kHz to \sim 0.25 kHz. It operates on a fixed independent 32 kHz clock source that is unaffected by changes in system clocks.

It allows programmable tone durations from 4 ms to 1.02 sec in 4 ms increments. Pulse (single-tone) and sequence (multitone) modes provide versatile playback options.

In sequence mode, the beeper can be programmed to play any number of tone pairs from 1 to 254 (2 to 508 tones) or be programmed to play forever (until stopped by the user). Interrupts are available to indicate the start or end of any beep, the end of a sequence, or when the sequence is nearing completion.

Debug Capability

The ADuCM3027/ADuCM3029 MCUs support SWD.

ON-CHIP PERIPHERAL FEATURES

The ADuCM3027/ADuCM3029 MCUs have a rich set of peripherals connected to the core via several concurrent high bandwidth buses, providing flexibility in system configuration as well as excellent overall system performance (see Figure 1).

The ADuCM3027/ADuCM3029 MCUs contain high speed serial ports, an interrupt controller for flexible management of interrupts from the on-chip peripherals or external sources, and power management control functions to tailor the performance and power characteristics of the MCU and system to many application scenarios.

Serial Ports (SPORT)

The ADuCM3027/ADuCM3029 MCUs provide two single direction half SPORTs or one bidirectional full SPORT. The synchronous serial ports provide an inexpensive interface to a wide variety of digital and mixed-signal peripheral devices such as Analog Devices audio codecs, ADCs, and DACs. The serial ports contain two data lines, a clock, and a frame sync. The data lines can be programmed to either transmit or receive, and each data line has a dedicated DMA channel.

Serial port data can be automatically transferred to and from on-chip memory or external memory via dedicated DMA channels. The frame sync and clock can be shared. Some of the ADCs and DACs require two control signals for their conversion process. To interface with such devices, the SPT0_ACNV and SPT0_BCNV signals are provided. To use these signals, enable the timer enable mode. In this mode, a PWM timer inside the module generates the programmable SPT0_ACNV and SPT0_BCNV signals. Serial ports operate in two modes:

- Standard digital signal processor (DSP) serial mode
- Timer enable mode

Serial Peripheral Interface (SPI) Ports

The ADuCM3027/ADuCM3029 MCUs provide three SPIs. SPI is an industry standard, full-duplex, synchronous serial interface that allows eight bits of data to be synchronously transmitted and simultaneously received. Each SPI incorporates two DMA channels that interface with the DMA controller. One DMA channel transmits and the other receives. The SPI on the MCU eases interfacing to external serial flash devices.

The SPI features include the following:

- Serial clock phase mode and serial clock polarity mode
- Loopback mode
- Continuous and repeated transfer mode
- Wired OR output mode
- Read command mode for half-duplex operation (transmit followed by receive)
- Flow control support in read command mode
- Support for 3-pin SPI in read command mode
- Multiple \overline{CS} line support
- $\overline{\text{CS}}$ software override support

UART Port

The ADuCM3027/ADuCM3029 MCUs provide a full-duplex UART port, which is fully compatible with PC standard UARTs. The UART port provides a simplified UART interface to other peripherals or hosts, supporting full-duplex, DMA, and asynchronous transfers of serial data. The UART port includes support for five to eight data bits, and none, even, or odd parity. A frame is terminated by one, one and a half, or two stop bits.

ľC

The ADuCM3027/ADuCM3029 MCUs provide an I²C bus peripheral that has two pins for data transfer. SCL is a serial clock pin and SDA is a serial data pin. The pins are configured in a wired AND format that allows arbitration in a multimaster system. A master device can be configured to generate the serial clock. The frequency is programmed by the user in the serial clock divisor register. The master channel can operate in fast mode (400 kHz) or standard mode (100 kHz).

DEVELOPMENT SUPPORT

Development support for the ADuCM3027/ADuCM3029 MCUs includes documentation, evaluation hardware, and development software tools.

Documentation

The ADuCM302x Ultra Low Power ARM Cortex-M3 MCU with Integrated Power Management Hardware Reference details the functionality of each block on the ADuCM3027/ ADuCM3029 MCUs. It includes power management, clocking, memories, and peripherals.

SPECIFICATIONS

For information about product specifications, contact your Analog Devices, Inc. representative.

OPERATING CONDITIONS

Parameter		Conditions	Min	Тур	Max	Unit
V _{BAT} ^{1, 2}	External Battery Supply Voltage		1.74	3.0	3.6	V
V _{IH}	High Level Input Voltage	$V_{BAT} = 3.6 V$	2.5			V
V _{IL}	Low Level Input Voltage	$V_{BAT} = 1.74 V$			0.45	V
$V_{\text{bat_adc}}$	ADC Supply Voltage		1.74	3.0	3.6	V
TJ	Junction Temperature	$T_{AMBIENT} = -40^{\circ}C \text{ to } +85^{\circ}C$	-40		+85	°C

¹ The voltage must remain powered even if the associated function is not used.

 2 Value applies to the VBAT_ANA1, VBAT_ANA2,VBAT_DIG1, and VBAT_DIG2 pins.

ELECTRICAL CHARACTERISTICS

Parameter		Conditions	Min	Тур	Мах	Unit
V _{OH} ¹	High Level Output Voltage	$V_{BAT} = minimum V, I_{OH} = -1.0 mA$	1.4			V
V _{OL} ¹	Low Level Output Voltage	V_{BAT} = minimum V, I_{OL} = 1.0 mA			0.4	V
I _{IHPU} ²	High Level Input Current Pull-Up	$V_{BAT} = maximum V, V_{IN} = maximum V_{BAT}$		0.01	1	μΑ
I _{ILPU} ²	Low Level Input Current Pull-Up	$V_{BAT} = maximum V, V_{IN} = 0 V$			100	μΑ
I _{OZH} ³	Three-State Leakage Current	$V_{BAT} = maximum V, V_{IN} = maximum V_{BAT}$		0.01	1	μΑ
I _{OZL} ³	Three-State Leakage Current	$V_{BAT} = maximum V, V_{IN} = 0 V$		0.01	1	μΑ
I _{OZLPU} ⁴	Three-State Leakage Current Pull-Up	$V_{BAT} = maximum V, V_{IN} = 0 V$			100	μΑ
I _{OZHPU} ⁴	Three-State Leakage Current Pull-Up	$V_{BAT} = maximum V, V_{IN} = maximum V_{BAT}$			1	μΑ
I _{OZLPD} ⁵	Three-State Leakage Current Pull-Down	$V_{BAT} = maximum V, V_{IN} = 0 V$			1	μΑ
I _{OZHPD} ⁵	Three-State Leakage Current Pull-Down	$V_{BAT} = maximum V, V_{IN} = maximum V_{BAT}$			100	μΑ
C _{IN}	Input Capacitance	T _J = 25°C		10		pF

¹Applies to the output and bidirectional pins: P1_10, P0_10, P0_11, P1_02, P1_03, P1_04, P1_05, P2_01, P0_13, P0_15, P1_00, P1_01, P1_15, P2_00, P0_12, P2_11, P1_06, P1_07, P1_08, P1_09, P0_00, P0_01, P0_02, P0_03, P0_06, P0_07, P2_03, P2_04, P2_05, P2_06, P2_07, P2_08, P2_09, P2_10, P0_04, P0_05, P0_14, P2_02, P1_14, P1_13, P1_12, P1_11, P0_08, and P0_09.

² Applies to the input pin with pull-up: <u>SYS_HWRST</u>.

³ Applies to the three-statable pins: P1_10, P0_10, P0_11, P1_02, P1_03, P1_04, P1_05, P2_01, P0_13, P0_15, P1_00, P1_15, P2_00, P0_12, P2_11, P1_06, P1_07, P1_08, P1_09, P0_00, P0_01, P0_02, P0_03, P2_03, P2_04, P2_05, P2_06, P2_07, P2_08, P2_09, P2_10, P0_04, P0_05, P0_14, P2_02, P1_14, P1_13, P1_12, P1_11, P0_08, and P0_09. ⁴ Applies to the three-statable pins with pull-ups: P1_10, P0_10, P0_11, P1_02, P1_03, P1_04, P1_05, P2_01, P0_13, P0_15, P1_00, P1_15, P2_00, P0_12, P2_11, P1_06, P1_07, P1_08, P1_09, P0_00, P0_01, P0_02, P0_03, P2_03, P2_04, P2_05, P2_06, P2_07, P2_08, P2_09, P2_10, P0_04, P0_05, P0_14, P2_02, P1_14, P1_13, P1_12, P1_11, P1_06, P1_07, P1_08, P1_09, P0_00, P0_01, P0_02, P0_03, P2_03, P2_04, P2_05, P2_06, P2_07, P2_08, P2_09, P2_10, P0_04, P0_05, P0_14, P2_02, P1_14, P1_13, P1_12, P1_11, P1_06, P1_07, P1_08, P1_09, P0_00, P0_01, P0_02, P0_03, P2_04, P2_05, P2_06, P2_07, P2_08, P2_09, P2_10, P0_04, P0_05, P0_14, P2_02, P1_14, P1_13, P1_12, P1_11, P0_08, P1_09, P0_00, P0_01, P0_02, P0_03, P2_04, P2_05, P2_06, P2_07, P2_08, P2_09, P2_10, P0_04, P0_05, P0_14, P2_02, P1_14, P1_13, P1_12, P1_11, P0_08, P1_09, P0_00, P0_01, P0_02, P0_03, P2_04, P2_05, P2_06, P2_07, P2_08, P2_09, P2_10, P0_04, P0_05, P0_14, P2_02, P1_14, P1_13, P1_12, P1_11, P0_08, P1_09, P0_00, P0_01, P0_02, P0_03, P2_04, P2_05, P2_06, P2_07, P2_08, P2_09, P2_10, P0_04, P0_05, P0_14, P2_02, P1_14, P1_13, P1_12, P1_11, P0_08, P1_09, P0_00, P0_01, P0_01,

P0_09, P0_07, and P1_01. ⁵ Applies to the three-statable pin with pull-down: P0_06.

SYSTEM CLOCKS/TIMERS

Table 7 and Table 8 show the system clock specifications for the ADuCM3027/ADuCM3029 MCUs.

Platform External Crystal Oscillator

Table 7. Platform External Crystal Oscillator Specifications

Parameter	Min	Тур	Max	Unit	Conditions
LOW FREQUENCY EXTERNAL CRYSTAL OSCILLATOR (LFXTAL)					
$C_{EXT1} = C_{EXT2}$	6		10	pF	External capacitor, $C_{EXT1} = C_{EXT2}$ (symmetrical load), for $C_L \le 5$ pF (maximum) and ESR = 30 k Ω (maximum). C_{EXT1} , C_{EXT2} must be selected considering the printed circuit board (PCB) trace capacitance due to routing.
Frequency		32,768	;	Hz	
HIGH FREQUENCY EXTERNAL CRYSTAL OSCILLATOR (HFXTAL)					
$C_{EXT1} = C_{EXT2}$			20	pF	External capacitor, $C_{EXT1} = C_{EXT2}$ (symmetrical load), for $C_L = 10 \text{ pF}$ (maximum) and ESR = 50 Ω (maximum). C_{EXT1} , C_{EXT2} must be selected considering the PCB trace capacitance due to routing.
Frequency		26		MHz	

On-Chip RC Oscillator

Table 8. On-Chip RC Oscillator Specifications

Parameter	Min	Тур	Мах	Unit	Conditions
HIGH FREQUENCY RC OSCILLATOR (HFOSC)					
Frequency	25.09	26	26.728	MHz	
LOW FREQUENCY RC OSCILLATOR (LFOSC)					
Frequency	30,800	32,768	34,407	Hz	

ADC SPECIFICATIONS

Table 9. ADC Specifications

Parameter ^{1, 2}	VBAT/VREF (V)	Package	Тур	Unit	Conditions
NO MISSING CODE	1.8/1.25 (internal/external)	64-lead LFCSP	12	Bits	$F_{in} = 1068 \text{ Hz}, F_s = 100 \text{ KSPS},$
	1.8/1.25 (internal/external)	54-ball WLCSP	12	Bits	internal reference in low power
	3.0/2.5 (internal/external)	64-lead LFCSP	12	Bits	mode, 400,000 samples end point method used
INTEGRAL NONLINEARITY ERROR	1.8/1.25 (internal/external)	64-lead LFCSP	±1.6	LSB	
	1.8/1.25 (internal/external)	54-ball WLCSP	±1.8	LSB	
	3.0/2.5 (internal/external)	64-lead LFCSP	±1.4	LSB	
DIFFERENTIAL NONLINEARITY ERROR	1.8/1.25 (internal/external)	64-lead LFCSP	-0.7, +1.15	LSB	
	1.8/1.25 (internal/external)	54-ball WLCSP	-0.75, +1.2	LSB	
	3.0/2.5 (internal/external)	64-lead LFCSP	-0.7, +1.1	LSB	
OFFSET ERROR	1.8/1.25 (external)	64-lead LFCSP	±0.5	LSB	
	1.8/1.25 (external)	54-ball WLCSP	±0.5	LSB	
	3.0/2.5 (external)	64-lead LFCSP	±0.5	LSB	
GAIN ERROR	1.8/1.25 (external)	64-lead LFCSP	±2.5	LSB	
	1.8/1.25 (external)	54-ball WLCSP	±3.0	LSB	
	3.0/2.5 (external)	64-lead LFCSP	±0.5	LSB	
I _{VBAT_ADC} ³	1.8/1.25 (internal)	64-lead LFCSP	104	μA	$F_{in} = 1068 \text{ Hz}, F_s = 100 \text{ KSPS},$
	1.8/1.25 (internal)	54-ball WLCSP	108	μΑ	internal reference in low power
	3.0/2.5 (internal)	64-lead LFCSP	131	μΑ	mode

¹The ADC is characterized in standalone mode without core activity and minimal or no switching on the adjacent ADC channels and digital inputs/outputs.

²The specifications are characterized after performing internal ADC offset calibration.

 3 Current consumption from VBAT_ADC supply when ADC is performing the conversion.

FLASH SPECIFICATIONS

Table 10. Flash Specifications

Parameter	Min	Тур	Max	Unit	Conditions
FLASH					
Endurance	10,000			Cycles	
Data Retention		10		Years	

TIMING SPECIFICATIONS

Specifications are subject to change without notice.

Reset Timing

Table 13 and Figure 5 describe reset timing.

Table 13. Reset Timing

Parameter		Min	Мах	Unit
TIMING REQUIRE	MENTS			
t _{WRST}	SYS_HWRST Asserted Pulse Width Low ¹	4		μs

¹ Applies after power-up sequence is complete.

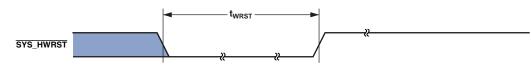


Figure 5. Reset Timing

System Clock and PLL

Table 14 describes system clock and phase-locked loop (PLL) specifications.

Table 14. System Clock and PLL

Parameter		Min	Max	Unit
TIMING REQUIREM	IENTS			
t _{CK}	PLL Input CLKIN Period ¹	38.5	62.5	ns
f _{PLL}	PLL Output Frequency ^{2, 3}	16	60	MHz
t _{PCLK}	System Peripheral Clock Period	38.5	154	ns
t _{HCLK}	Advanced High Performance Bus (AHB) Subsystem Clock Period	38.5	154	ns

¹ The input to the PLL can come either from the high frequency external crystal or from the high frequency internal RC oscillator. Refer to the ADuCM302x Ultra Low Power ARM Cortex-M3 MCU with Integrated Power Management Hardware Reference.

² For the minimum value, the recommended settings are PLL_MSEL = 13, PLL_NSEL = 16, and PLL_DIV2 = 1 for PLL input clock = 26 MHz; and PLL_MSEL = 13, PLL_NSEL = 26, and PLL_DIV2 = 1 for PLL input clock = 16 MHz.

³ For the maximum value, the recommended settings are PLL_MSEL = 13, PLL_NSEL = 30, and PLL_DIV2 = 0 for PLL input clock = 26 MHz; and PLL_MSEL = 8, PLL_NSEL = 30, and PLL_DIV2 = 0 for PLL input clock = 16 MHz.

Serial Ports

To determine whether communication is possible between two devices at a particular clock speed, confirm the following specifications:

- Frame sync delay and frame sync setup and hold
- Data delay and data setup and hold
- Serial clock (SPT_CLK) width

In Figure 6, use the rising edge or the falling edge of SPT_CLK (external or internal) as the active sampling edge.

When externally generated, the SPORT clock is called $f_{\text{SPTCLKEXT}}$.

 $t_{SPTCLKEXT} = \frac{1}{f_{SPTCLKEXT}}$

When internally generated, the programmed SPORT clock (f_{SPTCLKPROG}) frequency is set by the following equation:

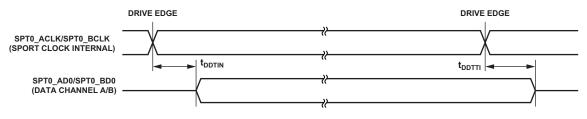
$$f_{SPTCLKPROG} = \frac{f_{PCLK}}{2 \times (CLKDIV + 1)}$$

where CLKDIV is a field in the SPORT_DIV register that can be set from 0 to 65535.

Table 15. Serial Ports-External Clock

Parameter	r	Min	Мах	Unit
TIMING RE	QUIREMENTS			
t _{SFSE}	Frame Sync Setup Before SPT_CLK (Externally Generated Frame Sync in Transmit or Receive Mode)	5		ns
t _{HFSE}	Frame Sync Hold After SPT_CLK (Externally Generated Frame Sync in Transmit or Receive Mode) ¹	5		ns
t _{sdre}	Receive Data Setup Before Receive SPT_CLK ¹	5		ns
t _{HDRE}	Receive Data Hold After SPT_CLK ¹	8		ns
t _{SCLKW}	SPT_CLK Width ²	38.5		ns
t _{sptclk}	SPT_CLK Period ²	77		ns
SWITCHING	5 CHARACTERISTICS			
t _{DFSE}	Frame Sync Delay After SPT_CLK (Internally Generated Frame Sync in Transmit or Receive Mode) ³	3	20	ns
t _{HOFSE}	Frame Sync Hold After SPT_CLK (Internally Generated Frame Sync in Transmit or Receive Mode) ³	2		ns
t _{DDTE}	Transmit Data Delay After Transmit SPT_CLK ³		20	ns
t _{HDTE}	Transmit Data Hold After Transmit SPT_CLK ³	1		ns

¹ This specification is referenced to the sample edge.


² This specification indicates the minimum instantaneous width or period that can be tolerated due to duty cycle variation or jitter on the external SPT_CLK.

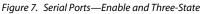

³ This specification is referenced to the drive edge.

Table 17. Serial Ports—Enable and Three-State

Parameter		Min	Max	Unit
SWITCHING CHARACTERISTICS				
t _{DDTIN}	Data Enable From Internal Transmit SPT_CLK ¹	5		ns
t _{DDTTI}	Data Disable From Internal Transmit SPT_CLK ¹		160	ns

¹This specification is referenced to the drive edge.

SPI Timing

Table 18, Figure 8, and Figure 9 (for master mode) and Table 19, Figure 10, and Figure 11 (for slave mode) describe SPI timing specifications. High speed SPI (SPIH) can be used for high data rate peripherals.

Table 18. SPI Master Mode Timing¹

Parameter		Min	Max	Unit
TIMING REQ	UIREMENTS			
t _{CS}	CS to SCLK Edge	$0.5 imes t_{PCLK} - 3$		ns
t _{sL}	SCLK Low Pulse Width	$\begin{array}{l} 0.5 \times t_{PCLK} - 3 \\ t_{PCLK} - 3.5 \end{array}$		ns
t _{sH}	SCLK High Pulse Width	t _{PCLK} – 3.5		ns
t _{DSU}	Data Input Setup Time Before SCLK Edge	5		ns
DHD	Data Input Hold Time After SCLK Edge	20		ns
SWITCHING	CHARACTERISTICS			
t _{DAV}	Data Output Valid After SCLK Edge		25	ns
t _{DOSU}	Data Output Setup Before SCLK Edge	t _{PCLK} – 2.2		ns
t _{SFS}	CS High After SCLK Edge	$t_{PCLK} - 2.2$ $0.5 \times t_{PCLK} - 3$		ns

¹This specification is characterized with respect to double drive strength.

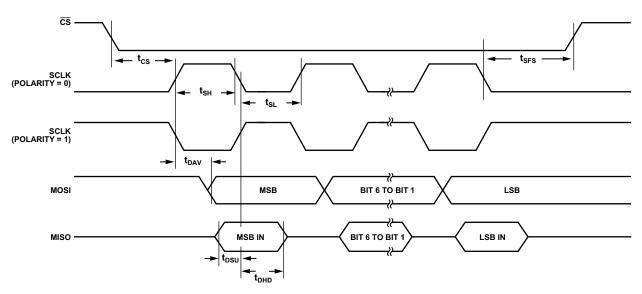
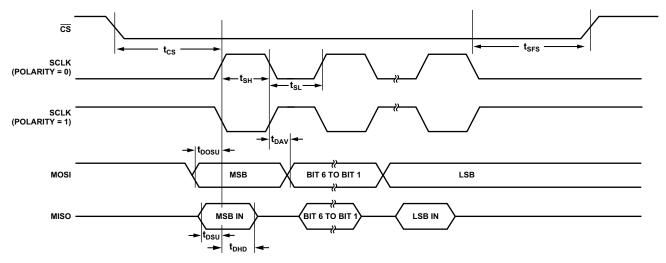



Figure 8. SPI Master Mode Timing (Phase Mode = 1)

Table 19. SPI Slave Mode Timing

Parameter		Min	Мах	Unit
TIMING REQUIREM	1ENTS			
t _{cs}	CS to SCLK Edge	38.5		ns
t _{SL}	SCLK Low Pulse Width	38.5		ns
t _{sH}	SCLK High Pulse Width	38.5		ns
t _{DSU}	Data Input Setup Time Before SCLK Edge	6		ns
t _{DHD}	Data Input Hold Time After SCLK Edge	8		ns
SWITCHING CHAR	ACTERISTICS			
t _{DAV}	Data Output Valid After SCLK Edge	25		ns
t _{DOCS}	Data Output Valid After CS Edge		20	ns
t _{SFS}	CS High After SCLK Edge	38.5		ns

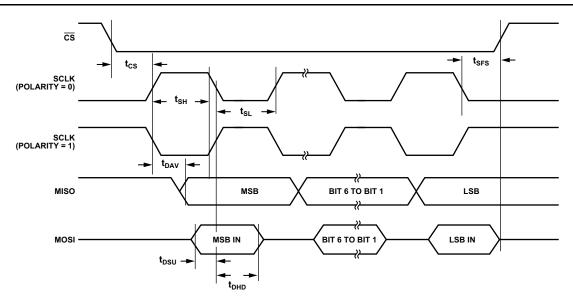
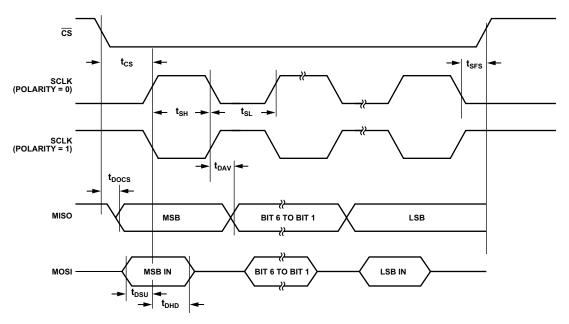
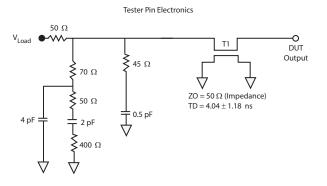


Figure 10. SPI Slave Mode Timing (Phase Mode = 1)




Figure 11. SPI Slave Mode Timing (Phase Mode = 0)

MCU TEST CONDITIONS

The ac signal specifications (timing parameters) that appear in this data sheet include output disable time, output enable time, and others. Timing is measured on signals when they cross the V_{MEAS} level as described in Figure 14. All delays (in ns or μs) are measured between the point that the first signal reaches V_{MEAS} and the point that the second signal reaches V_{MEAS} . The value of V_{MEAS} is set to $V_{\text{BAT}}/2$.

Figure 14. Voltage Reference Levels for AC Measurements (Except Output Enable/Disable)

NOTES:

THE WORST CASE TRANSMISSION LINE DELAY IS SHOWN AND CAN BE USED FOR THE OUTPUT TIMING ANALYSIS TO REFELECT THE TRANSMISSION LINE EFFECT AND MUST BE CONSIDERED. THE TRANSMISSION LINE (TD) IS FOR LOAD ONLY AND DOES NOT AFFECT THE DATA SHEET TIMING SPECIFICATIONS.

ANALOG DEVICES RECOMMENDS USING THE IBIS MODEL TIMING FOR A GIVEN SYSTEM REQUIREMENT. IF NECESSARY, A SYSTEM MAY INCORPORATE EXTERNAL DRIVERS TO COMPENSATE FOR ANY TIMING DIFFERENCES.

Figure 15. Equivalent Device Loading for AC Measurements (Includes All Fixtures)

DRIVER TYPES

Table 22 shows driver types.

Table 22. Driver Types

Driver Type ^{1, 2, 3}	Associated Pins
Type A	P0_00, P0_01, P0_02, P0_03, P0_07, P0_10,
	P0_11, P0_12, P0_13, P0_15, P1_00, P1_01,
	P1_02, P1_03, P1_04, P1_05, P1_06, P1_07,
	P1_08, P1_09, P1_10, P1_15, P2_00, P2_01,
	P2_04, P2_05, P2_06, P2_07, P2_08, P2_09,
	P2_10, P2_11, SYS_HWRST
Туре В	P0_08, P0_09, P0_14, P1_11, P1_12, P1_13,
	P1_14, P2_02
Type C	P0_04, P0_05
Type D	P0_06

¹ In single drive mode, the maximum source/sink capacity is 2 mA.

² In double drive mode, the maximum source/sink capacity is 4 mA.

³ At maximum drive capacity, only 16 GPIOs are allowed to switch at any given point of time.

Figure 16 through Figure 21 show the typical current voltage characteristics for the output drivers of the MCU.

The curves represent the current drive capability of the output drivers as a function of output voltage.

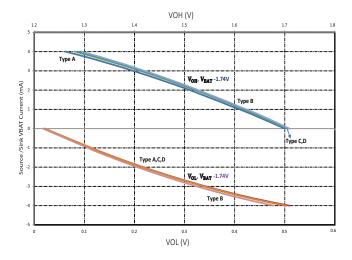


Figure 16. Output Double Drive Strength Characteristics (VBAT = 1.74 V)

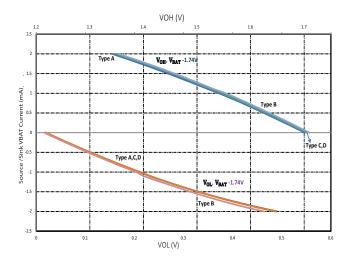


Figure 17. Output Single Drive Strength Characteristics (VBAT = 1.74 V)

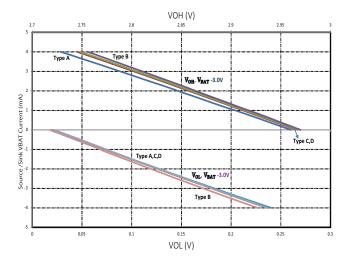
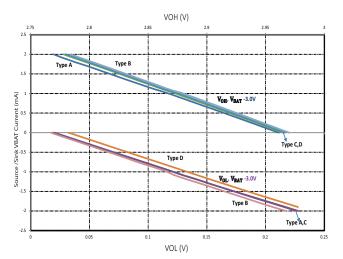



Figure 18. Output Double Drive Strength Characteristics (VBAT = 3.0 V)

Figure 19. Output Single Drive Strength Characteristics (VBAT = 3.0 V)

ENVIRONMENTAL CONDITIONS

Table 23. Thermal Characteristics (64-Lead LFCSP)

Parameter	Тур	Unit
θ_{JA}	28.2	°C/W
θ _{JC}	5.4	°C/W

Values of θ_{JA} are provided for package comparison and PCB design considerations. θ_{JA} can be used for a first-order approximation of T_J by the equation:

$$T_I = T_A + (\theta_{IA} \times P_D)$$

where:

 T_A is ambient temperature (°C).

 T_J is junction temperature (°C).

 $P_{\rm D}$ is power dissipation (To calculate $P_{\rm D}$, see the Power Supply Current section).

Values of θ_{JC} are provided for package comparison and PCB design considerations when an external heat sink is required.

Figure 23 shows an overview of signal placement on the 54-Ball WLCSP.

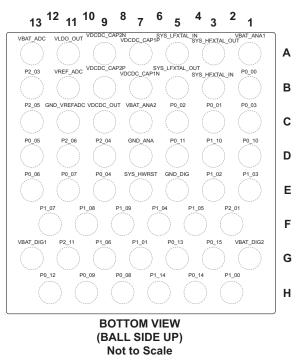
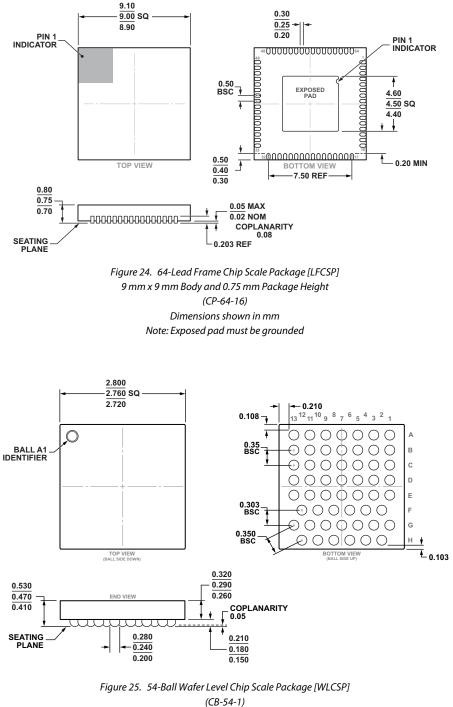


Figure 23. 54-Ball WLCSP Configuration

Table 26 lists the 54-Ball WLCSP package by ball number for the ADuCM3027/ADuCM3029 MCUs.


Table 26.	Pin Fu	inction	Descri	ptions,	54-Ball	WLCSP
-----------	--------	---------	--------	---------	---------	-------

Ball No.	GPIO	Pin Label	Description	GPIO Pull
A01		VBAT_ANA1	Analog 3 V Supply.	
A03		SYS_HFXTAL_OUT	26 MHz High Frequency Crystal.	
A05		SYS_LFXTAL_IN	32 kHz Low Frequency Crystal.	
A07		VDCDC_CAP1P	Buck Fly Capacitor.	
A09		VDCDC_CAP2N	Buck Fly Capacitor.	
A11		VLDO_OUT	LDO Output Capacitor	
A13		VBAT_ADC	Analog 3 V Supply for ADC.	
B01	P0_00	SPI0_CLK/SPT0_BCLK/GPIO00		PU
B03		SYS_HFXTAL_IN	26 MHz High Frequency Crystal.	
B05		SYS_LFXTAL_OUT	32 kHz Low Frequency Crystal.	
B07		VDCDC_CAP1N	Buck Fly Capacitor.	
B09		VDCDC_CAP2P	Buck Fly Capacitor.	
B11		VREF_ADC	Analog Reference Voltage for ADC.	
B13	P2_03	ADC0_VIN0/GPIO35		PU
C01	P0_03	SPI0_CS0/SPT0_BCNV/SPI2_RDY/GPIO03		PU
C03	P0_01	SPI0_MOSI/SPT0_BFS/GPIO01		PU
C05	P0_02	SPI0_MISO/SPT0_BD0/GPIO02		PU
C07		VBAT_ANA2	Analog 3 V Supply.	
C09		VDCDC_OUT	Buck Output Capacitor.	
C11		GND_VREFADC	Reference Ground for ADC.	
C13	P2_05	ADC0_VIN2/GPIO37		PU
D01	P0_10	UART0_TX/GPIO10		PU
D03	P1_10	SPI0_CS1/SYS_CLKIN/SPI1_CS3/GPIO26		PU
D05	P0_11	UART0_RX/GPIO11		PU
D07		GND_ANA	Analog Ground.	
D09	P2_04	ADC0_VIN1/GPIO36		PU
D11	P2_06	ADC0_VIN3/GPIO38		PU
D13	P0_05	I2C0_SDA/GPIO05		PU
E01	P1_03	SPI2_MOSI/GPIO19		PU
E03	P1_02	SPI2_CLK/GPIO18		PU
E05		GND_DIG	Digital Ground.	
E07		SYS_HWRST	System Hardware Reset.	
E09	P0_04	I2C0_SCL/GPIO04		PU
E11	P0_07	GPIO07/SWD0_DATA		PU
E13	P0_06	GPIO06/SWD0_CLK		PD
F02	P2_01	XINT0_WAKE3/TMR2_OUT/GPIO33		PU
F04	P1_05	SPI2_CS0/GPIO21		PU
F06	P1_04	SPI2_MISO/GPIO20		PU
F08	P1_09	SPI1_CS0/GPIO25		PU
F10	P1_08	SPI1_MISO/GPIO24		PU
F12	P1_07	SPI1_MOSI/GPIO23		PU
G01		VBAT_DIG2	Digital 3 V Supply.	
G03	P0_15	XINT0_WAKE0/GPIO15		PU

Ball No.	GPIO	Pin Label	Description	GPIO Pull
G05	P0_13	XINT0_WAKE2/GPIO13		PU
G07	P1_01	GPIO17/SYS_BMODE0		PU
G09	P1_06	SPI1_CLK/GPIO22		PU
G11	P2_11	SPI1_CS1/SYS_CLKOUT/GPIO43/RTC1_SS1		PU
G13		VBAT_DIG1	Digital 3 V Supply.	
H02	P1_00	XINT0_WAKE1/GPIO16		PU
H04	P0_14	TMR0_OUT/SPI1_RDY/GPIO14		PU
H06	P1_14	SPI0_RDY/GPIO30		PU
H08	P0_08	BPR0_TONE_N/GPIO08		PU
H10	P0_09	BPR0_TONE_P/SPI2_CS1/GPIO09		PU
H12	P0_12	SPT0_AD0/GPIO12/UART0_SOUT_EN		PU

Table 26	Pin Function Descr	intions 54-Ball	WLCSP (Continued)
Table 20.	FIII FUNCTION Desci	iptions, 54-Dan	wLCSP (Continued)

OUTLINE DIMENSIONS

Dimensions shown in mm