

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	C166SV2
Core Size	16-Bit
Speed	80MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	119
Program Memory Size	384КВ (384К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	34K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-144-4
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-xe167gm-48f80l-aa

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2011-07 Published by Infineon Technologies AG 81726 Munich, Germany © 2011 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Summary of Features

16-Bit Single-Chip Real Time Signal Controller

XE167xM (XE166 Family)

1 Summary of Features

For a quick overview and easy reference, the features of the XE167xM are summarized here.

- High-performance CPU with five-stage pipeline and MPU
 - 12.5 ns instruction cycle at 80 MHz CPU clock (single-cycle execution)
 - One-cycle 32-bit addition and subtraction with 40-bit result
 - One-cycle multiplication (16 × 16 bit)
 - Background division (32 / 16 bit) in 21 cycles
 - One-cycle multiply-and-accumulate (MAC) instructions
 - Enhanced Boolean bit manipulation facilities
 - Zero-cycle jump execution
 - Additional instructions to support HLL and operating systems
 - Register-based design with multiple variable register banks
 - Fast context switching support with two additional local register banks
 - 16 Mbytes total linear address space for code and data
 - 1024 Bytes on-chip special function register area (C166 Family compatible)
 - Integrated Memory Protection Unit (MPU)
- · Interrupt system with 16 priority levels for up to 96 sources
 - Selectable external inputs for interrupt generation and wake-up
 - Fastest sample-rate 12.5 ns
- Eight-channel interrupt-driven single-cycle data transfer with Peripheral Event Controller (PEC), 24-bit pointers cover total address space
- Clock generation from internal or external clock sources, using on-chip PLL or prescaler
- Hardware CRC-Checker with Programmable Polynomial to Supervise On-Chip Memory Areas
- On-chip memory modules
 - 8 Kbytes on-chip stand-by RAM (SBRAM)
 - 2 Kbytes on-chip dual-port RAM (DPRAM)
 - Up to 16 Kbytes on-chip data SRAM (DSRAM)
 - Up to 32 Kbytes on-chip program/data SRAM (PSRAM)
 - Up to 576 Kbytes on-chip program memory (Flash memory)
 - Memory content protection through Error Correction Code (ECC)
- On-Chip Peripheral Modules
 - Multi-functional general purpose timer unit with 5 timers
 - 16-channel general purpose capture/compare unit (CAPCOM2)
 - Up to 4 capture/compare units for flexible PWM signal generation (CCU6x)

Summary of Features

1.2 Definition of Feature Variants

The XE167xM types are offered with several Flash memory sizes. **Table 2** describes the location of the available memory areas for each Flash memory size.

Table 2	Flash Memor	y Allocation
---------	-------------	--------------

Total Flash Size	Flash Area A ¹⁾	Flash Area B	Flash Area C
576 Kbytes	C0'0000 _H	C1'0000 _H	CC'0000 _H
	C0'EFFF _H	C7'FFFF _H	CC'FFFF _H
384 Kbytes	C0'0000 _H	C1'0000 _H	CC'0000 _H
	C0'EFFF _H	C4'FFFF _H	CC'FFFF _H

1) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0'F000_H to C0'FFFF_H).

Table 3 Flash Memory Module Allocation (in Kbytes)

Total Flash Size	Flash 0 ¹⁾	Flash 1	Flash 2	Flash 3
576 Kbytes	256	256		64
384 Kbytes	256	64		64

1) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0'F000_H to C0'FFFF_H).

The XE167xM types are offered with different interface options. Table 4 lists the available channels for each option.

Total Number	Available Channels
16 ADC0 channels	CH0 CH15
8 ADC0 channels	CH0 CH7
8 ADC1 channels	CH0 CH7 (overlay: CH8 CH11)
6 CAN nodes	CAN0, CAN1, CAN2, CAN3, CAN4, CAN5 128 message objects
2 CAN nodes	CAN0, CAN1 128 message objects
8 serial channels	U0C0, U0C1, U1C0, U1C1, U2C0, U2C1, U3C0, U3C1
4 serial channels	U0C0, U0C1, U1C0, U1C1

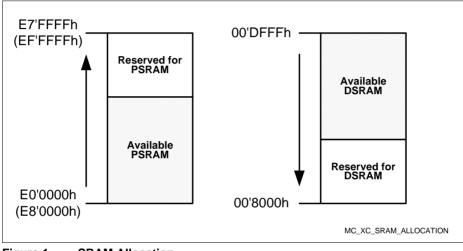
Table 4 Interface Channel Association

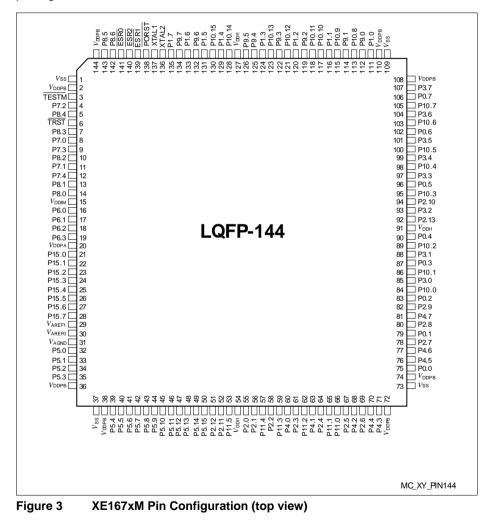
Summary of Features

The XE167xM types are offered with several SRAM memory sizes. **Figure 1** shows the allocation rules for PSRAM and DSRAM. Note that the rules differ:

- PSRAM allocation starts from the lower address
- DSRAM allocation starts from the higher address

For example 8 Kbytes of PSRAM will be allocated at E0'0000h-E0'1FFFh and 8 Kbytes of DSRAM will be at 00'C000h-00'DFFFh.




Figure 1 SRAM Allocation

General Device Information

2.1 Pin Configuration and Definition

The pins of the XE167xM are described in detail in **Table 5**, which includes all alternate functions. For further explanations please refer to the footnotes at the end of the table. The following figure summarizes all pins, showing their locations on the four sides of the package.

Table	Table 5 Pin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function		
56	P2.1	O0 / I	St/B	Bit 1 of Port 2, General Purpose Input/Output		
	TxDC0	01	St/B	CAN Node 0 Transmit Data Output		
	CCU63_CC6 1	O2	St/B	CCU63 Channel 1 Output		
	AD14	OH / IH	St/B	External Bus Interface Address/Data Line 14		
	RxDC5C	I	St/B	CAN Node 5 Receive Data Input		
	CCU63_CC6 1INB	I	St/B	CCU63 Channel 1 Input		
	T5EUDB	I	St/B	GPT12E Timer T5 External Up/Down Control Input		
	ESR1_5	I	St/B	ESR1 Trigger Input 5		
57	P11.4	O0 / I	St/B	Bit 4 of Port 11, General Purpose Input/Output		
	CCU61_CC6 2	01	St/B	CCU61 Channel 2 Output		
	U3C1_DOUT	02	St/B	USIC3 Channel 1 Shift Data Output		
	RxDC5B	I	St/B	CAN Node 5 Receive Data Input		
	CCU61_CC6 2INB	I	St/B	CCU61 Channel 2 Input		
	U3C1_DX0B	I	St/B	USIC3 Channel 1 Shift Data Input		
58	P2.2	O0 / I	St/B	Bit 2 of Port 2, General Purpose Input/Output		
	TxDC1	01	St/B	CAN Node 1 Transmit Data Output		
	CCU63_CC6 2	O2	St/B	CCU63 Channel 2 Output		
	AD15	OH / IH	St/B	External Bus Interface Address/Data Line 15		
	CCU63_CC6 2INB	I	St/B	CCU63 Channel 2 Input		
	ESR2_5	I	St/B	ESR2 Trigger Input 5		

Tabl	Table 5 Pin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function		
75	P0.0	O0 / I	St/B	Bit 0 of Port 0, General Purpose Input/Output		
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output		
	CCU61_CC6 0	O3	St/B	CCU61 Channel 0 IOutput		
	A0	OH	St/B	External Bus Interface Address Line 0		
	U1C0_DX0A	I	St/B	USIC1 Channel 0 Shift Data Input		
	CCU61_CC6 0INA	I	St/B	CCU61 Channel 0 Input		
	ESR1_11	I	St/B	ESR1 Trigger Input 11		
76	P4.5	O0 / I	St/B	Bit 5 of Port 4, General Purpose Input/Output		
	U3C0_DOUT	01	St/B	USIC3 Channel 0 Shift Data Output		
	CC2_CC29	O3 / I	St/B	CAPCOM2 CC29IO Capture Inp./Compare Out.		
	CCU61_CCP OS0A	I	St/B	CCU61 Position Input 0		
	U3C0_DX0B	I	St/B	USIC3 Channel 0 Shift Data Input		
	ESR2_10	I	St/B	ESR2 Trigger Input 10		
77	P4.6	O0 / I	St/B	Bit 6 of Port 4, General Purpose Input/Output		
	U3C0_DOUT	01	St/B	USIC3 Channel 0 Shift Data Output		
	CC2_CC30	O3 / I	St/B	CAPCOM2 CC30IO Capture Inp./ Compare Out.		
	T4INA	I	St/B	GPT12E Timer T4 Count/Gate Input		
	CCU61_CCP OS1A	I	St/B	CCU61 Position Input 1		
78	P2.7	O0 / I	St/B	Bit 7 of Port 2, General Purpose Input/Output		
	U0C1_SELO 0	01	St/B	USIC0 Channel 1 Select/Control 0 Output		
	U0C0_SELO 1	O2	St/B	USIC0 Channel 0 Select/Control 1 Output		
	CC2_CC20	O3 / I	St/B	CAPCOM2 CC20IO Capture Inp./ Compare Out.		
	A20	ОН	St/B	External Bus Interface Address Line 20		
	U0C1_DX2C	I	St/B	USIC0 Channel 1 Shift Control Input		
	RxDC1C	I	St/B	CAN Node 1 Receive Data Input		
	ESR2_7	I	St/B	ESR2 Trigger Input 7		

Table	Table 5Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
82	P2.9	O0 / I	St/B	Bit 9 of Port 2, General Purpose Input/Output			
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output			
	TxDC1	O2	St/B	CAN Node 1 Transmit Data Output			
	CC2_CC22	O3 / I	St/B	CAPCOM2 CC22IO Capture Inp./ Compare Out.			
	A22	ОН	St/B	External Bus Interface Address Line 22			
	CLKIN1	I	St/B	Clock Signal Input 1			
	TCK_A	IH	St/B	DAP0/JTAG Clock Input If JTAG pos. A is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it. If DAP pos. 0 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it.			
83	P0.2	O0 / I	St/B	Bit 2 of Port 0, General Purpose Input/Output			
	U1C0_SCLK OUT	01	St/B	USIC1 Channel 0 Shift Clock Output			
	TxDC0	02	St/B	CAN Node 0 Transmit Data Output			
	CCU61_CC6 2	O3	St/B	CCU61 Channel 2 Output			
	A2	ОН	St/B	External Bus Interface Address Line 2			
	U1C0_DX1B	I	St/B	USIC1 Channel 0 Shift Clock Input			
	CCU61_CC6 2INA	I	St/B	CCU61 Channel 2 Input			

Table	Table 5 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
90	P0.4	O0 / I	St/B	Bit 4 of Port 0, General Purpose Input/Output			
	U1C1_SELO 0	O1	St/B	USIC1 Channel 1 Select/Control 0 Output			
	U1C0_SELO 1	O2	St/B	USIC1 Channel 0 Select/Control 1 Output			
	CCU61_COU T61	O3	St/B	CCU61 Channel 1 Output			
	A4	ОН	St/B	External Bus Interface Address Line 4			
	U1C1_DX2A	I	St/B	USIC1 Channel 1 Shift Control Input			
	RxDC1B	I	St/B	CAN Node 1 Receive Data Input			
	ESR2_8	I	St/B	ESR2 Trigger Input 8			
92	P2.13	O0 / I	St/B	Bit 13 of Port 2, General Purpose Input/Output			
	U2C1_SELO 2	O1	St/B	USIC2 Channel 1 Select/Control 2 Output			
	RxDC2D	I	St/B	CAN Node 2 Receive Data Input			
93	P3.2	O0 / I	St/B	Bit 2 of Port 3, General Purpose Input/Output			
	U2C0_SCLK OUT	O1	St/B	USIC2 Channel 0 Shift Clock Output			
	TxDC3	O2	St/B	CAN Node 3 Transmit Data Output			
	U2C0_DX1B	Ι	St/B	USIC2 Channel 0 Shift Clock Input			
	HOLD	IH	St/B	External Bus Master Hold Request Input			
94	P2.10	O0 / I	St/B	Bit 10 of Port 2, General Purpose Input/Output			
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output			
	U0C0_SELO 3	O2	St/B	USIC0 Channel 0 Select/Control 3 Output			
	CC2_CC23	O3 / I	St/B	CAPCOM2 CC23IO Capture Inp./ Compare Out.			
	A23	ОН	St/B	External Bus Interface Address Line 23			
	U0C1_DX0E	I	St/B	USIC0 Channel 1 Shift Data Input			
	CAPINA	I	St/B	GPT12E Register CAPREL Capture Input			
	U3C1_DX0A	Ι	St/B	USIC3 Channel 1 Shift Data Input			

Table	able 5 Fin Definitions and Functions (cont d)						
Pin	Symbol	Ctrl.	Туре	Function			
113	P10.8	O0 / I	St/B	Bit 8 of Port 10, General Purpose Input/Output			
	U0C0_MCLK OUT	O1	St/B	USIC0 Channel 0 Master Clock Output			
	U0C1_SELO 0	O2	St/B	USIC0 Channel 1 Select/Control 0 Output			
	U2C1_DOUT	O3	St/B	USIC2 Channel 1 Shift Data Output			
	AD8	OH / IH	St/B	External Bus Interface Address/Data Line 8			
	CCU60_CCP OS1A	I	St/B	CCU60 Position Input 1			
	U0C0_DX1C	I	St/B	USIC0 Channel 0 Shift Clock Input			
	BRKIN_B	I	St/B	OCDS Break Signal Input			
	T3EUDB	I	St/B	GPT12E Timer T3 External Up/Down Control Input			
114	P9.1	O0 / I	St/B	Bit 1 of Port 9, General Purpose Input/Output			
	CCU63_CC6 1	O1	St/B	CCU63 Channel 1 Output			
	CCU63_CC6 1INA	I	St/B	CCU63 Channel 1 Input			

Functional Description

3.6 Interrupt System

The architecture of the XE167xM supports several mechanisms for fast and flexible response to service requests; these can be generated from various sources internal or external to the microcontroller. Any of these interrupt requests can be programmed to be serviced by the Interrupt Controller or by the Peripheral Event Controller (PEC).

Where in a standard interrupt service the current program execution is suspended and a branch to the interrupt vector table is performed, just one cycle is 'stolen' from the current CPU activity to perform a PEC service. A PEC service implies a single byte or word data transfer between any two memory locations with an additional increment of either the PEC source pointer, the destination pointer, or both. An individual PEC transfer counter is implicitly decremented for each PEC service except when performing in the continuous transfer mode. When this counter reaches zero, a standard interrupt is performed to the corresponding source-related vector location. PEC services are particularly well suited to supporting the transmission or reception of blocks of data. The XE167xM has eight PEC channels, each whith fast interrupt-driven data transfer capabilities.

With a minimum interrupt response time of 7/11¹⁾ CPU clocks, the XE167xM can react quickly to the occurrence of non-deterministic events.

Interrupt Nodes and Source Selection

The interrupt system provides 96 physical nodes with separate control register containing an interrupt request flag, an interrupt enable flag and an interrupt priority bit field. Most interrupt sources are assigned to a dedicated node. A particular subset of interrupt sources shares a set of nodes. The source selection can be programmed using the interrupt source selection (ISSR) registers.

External Request Unit (ERU)

A dedicated External Request Unit (ERU) is provided to route and preprocess selected on-chip peripheral and external interrupt requests. The ERU features 4 programmable input channels with event trigger logic (ETL) a routing matrix and 4 output gating units (OGU). The ETL features rising edge, falling edge, or both edges event detection. The OGU combines the detected interrupt events and provides filtering capabilities depending on a programmable pattern match or miss.

Trap Processing

The XE167xM provides efficient mechanisms to identify and process exceptions or error conditions that arise during run-time, the so-called 'Hardware Traps'. A hardware trap causes an immediate system reaction similar to a standard interrupt service (branching

¹⁾ Depending if the jump cache is used or not.

Functional Description

3.18 Parallel Ports

The XE167xM provides up to 119 I/O lines which are organized into 11 input/output ports and 2 input ports. All port lines are bit-addressable, and all input/output lines can be individually (bit-wise) configured via port control registers. This configuration selects the direction (input/output), push/pull or open-drain operation, activation of pull devices, and edge characteristics (shape) and driver characteristics (output current) of the port drivers. The I/O ports are true bidirectional ports which are switched to high impedance state when configured as inputs. During the internal reset, all port pins are configured as inputs without pull devices active.

All port lines have alternate input or output functions associated with them. These alternate functions can be programmed to be assigned to various port pins to support the best utilization for a given application. For this reason, certain functions appear several times in Table 9.

All port lines that are not used for alternate functions may be used as general purpose I/O lines.

Port	Width	I/O	Connected Modules			
P0	8	I/O	EBC (A7A0), CCU6, USIC, CAN			
P1	8	I/O	EBC (A15A8), CCU6, USIC			
P2	14	I/O	EBC (READY, BHE, A23A16, AD15AD13, D15D13), CAN, CC2, GPT12E, USIC, DAP/JTAG			
P3	8	I/O	CAN, USIC			
P4	8	I/O	EBC (CS3CS0), CC2, CAN, GPT12E, USIC			
P5	16	I	Analog Inputs, CCU6, DAP/JTAG, GPT12E, CAN			
P6	4	I/O	ADC, CAN, GPT12E			
P7	5	I/O	CAN, GPT12E, SCU, DAP/JTAG, CCU6, ADC, USIC			
P8	7	I/O	CCU6, DAP/JTAG, USIC			
P9	8	I/O	CCU6, DAP/JTAG, CAN			
P10	16	I/O	EBC (ALE, RD, WR, AD12AD0, D12D0), CCU6, USIC, DAP/JTAG, CAN			
P11	6	I/O	CCU6, USIC, CAN			
P15	8	Ι	Analog Inputs, GPT12E			

Table 9Summary of the XE167xM's Ports

4 Electrical Parameters

The operating range for the XE167xM is defined by its electrical parameters. For proper operation the specified limits must be respected when integrating the device in its target environment.

4.1 General Parameters

These parameters are valid for all subsequent descriptions, unless otherwise noted.

4.1.1 Absolut Maximum Rating Conditions

Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for an extended time may affect device reliability.

During absolute maximum rating overload conditions ($V_{\rm IN} > V_{\rm DDP}$ or $V_{\rm IN} < V_{\rm SS}$) the voltage on $V_{\rm DDP}$ pins with respect to ground ($V_{\rm SS}$) must not exceed the values defined by the absolute maximum ratings.

Parameter	Symbol	Values			Unit	Note /
		Min. Typ.		Max.	1	Test Condition
Output current on a pin when high value is driven	I _{OH} SR	-30	-	-	mA	
Output current on a pin when low value is driven	I _{OL} SR	-	-	30	mA	
Overload current	$I_{\rm OV}{\rm SR}$	-10	-	10	mA	1)
Absolute sum of overload currents	$\Sigma I_{\rm OV} $ SR	-	-	100	mA	1)
Junction Temperature	$T_{\sf J}{\sf SR}$	-40	-	150	°C	
Storage Temperature	$T_{\rm ST}{ m SR}$	-65	-	150	°C	
Digital supply voltage for IO pads and voltage regulators	$V_{\rm DDPA}, \\ V_{\rm DDPB} \\ {\rm SR}$	-0.5	-	6.0	V	
Voltage on any pin with respect to ground (Vss)	$V_{\rm IN}$ SR	-0.5	-	V _{DDP} + 0.5	V	$V_{\rm IN} \leq V_{\rm DDP(max)}$

Table 11 Absolute Maximum Rating Parameters

 Overload condition occurs if the input voltage V_{IN} is out of the absolute maximum rating range. In this case the current must be limited to the listed values by design measures.

4.2.3 Power Consumption

The power consumed by the XE167xM depends on several factors such as supply voltage, operating frequency, active circuits, and operating temperature. The power consumption specified here consists of two components:

- The switching current $I_{\rm S}$ depends on the device activity
- The leakage current I_{LK} depends on the device temperature

To determine the actual power consumption, always both components, switching current $I_{\rm S}$ and leakage current $I_{\rm LK}$ must be added:

 $I_{\text{DDP}} = I_{\text{S}} + I_{\text{LK}}.$

Note: The power consumption values are not subject to production test. They are verified by design/characterization.

To determine the total power consumption for dimensioning the external power supply, also the pad driver currents must be considered.

The given power consumption parameters and their values refer to specific operating conditions:

Active mode:

Regular operation, i.e. peripherals are active, code execution out of Flash.

Stopover mode:

Crystal oscillator and PLL stopped, Flash switched off, clock in domain DMP_1 stopped.

Note: The maximum values cover the complete specified operating range of all manufactured devices.

The typical values refer to average devices under typical conditions, such as nominal supply voltage, room temperature, application-oriented activity.

After a power reset, the decoupling capacitors for $V_{\rm DDIM}$ and $V_{\rm DDI1}$ are charged with the maximum possible current.

For additional information, please refer to Section 5.2, Thermal Considerations.

Note: Operating Conditions apply.

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Power supply current (active) with all peripherals active and EVVRs on	I _{SACT} CC	_	$10 + 0.6 x f_{SYS}^{1)}$	10 + 1.0 x f _{SYS} ¹⁾	mA	2)3)
Power supply current in stopover mode, EVVRs on	I _{SSO} CC	-	0.7	2.0	mA	

Table 15 Switching Power Consumption

1) $f_{\rm SYS}$ in MHz.

Electrical Parameters

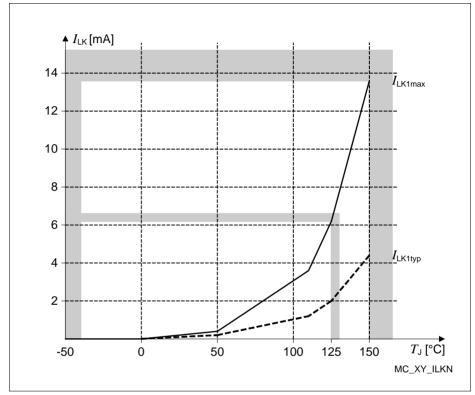


Figure 15 Leakage Supply Current as a Function of Temperature

4.6.4 Pad Properties

The output pad drivers of the XE167xM can operate in several user-selectable modes. Strong driver mode allows controlling external components requiring higher currents such as power bridges or LEDs. Reducing the driving power of an output pad reduces electromagnetic emissions (EME). In strong driver mode, selecting a slower edge reduces EME.

The dynamic behavior, i.e. the rise time and fall time, depends on the applied external capacitance that must be charged and discharged. Timing values are given for a capacitance of 20 pF, unless otherwise noted.

In general, the performance of a pad driver depends on the available supply voltage V_{DDP} . The following table lists the pad parameters.

- Note: These parameters are not subject to production test but verified by design and/or characterization.
- Note: Operating Conditions apply.

 Table 25
 is valid under the following conditions:

 $V_{\text{DDP}} \ge 4.5 \text{ V}; V_{\text{DDPtyp}} = 5 \text{ V}; V_{\text{DDP}} \le 5.5 \text{ V}; C_{\text{L}} \ge 20 \text{ pF}; C_{\text{L}} \le 100 \text{ pF};$

Table 25 Standard Pad Parameters for Upper Voltage Range

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Maximum output driver current (absolute value) ¹⁾	I _{Omax} CC	-	-	10	mA	Strong driver
		_	-	4.0	mA	Medium driver
		-	-	0.5	mA	Weak driver
Nominal output driver current (absolute value)	I _{Onom} CC	-	-	2.5	mA	Strong driver
		_	-	1.0	mA	Medium driver
		_	-	0.1	mA	Weak driver
Rise and Fall times (10% - 90%)	t _{RF} CC	-	-	4.2 + 0.14 x <i>C</i> _L	ns	Strong driver; Sharp edge
		-	-	11.6 + 0.22 x <i>C</i> _L	ns	Strong driver; Medium edge
		-	-	20.6 + 0.22 x <i>C</i> _L	ns	Strong driver; Slow edge
		-	-	23 + 0.6 x <i>C</i> L	ns	Medium driver
		-	-	212 + 1.9 x <i>C</i> L	ns	Weak driver

 The total output current that may be drawn at a given time must be limited to protect the supply rails from damage. For any group of 16 neighboring output pins, the total output current in each direction (ΣI_{OL} and Σ-I_{OH}) must remain below 50 mA.

4.6.5 External Bus Timing

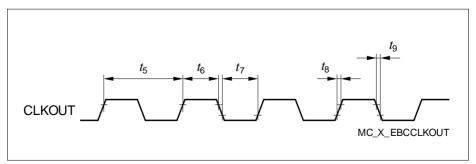
The following parameters specify the behavior of the XE167xM bus interface.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Bus Interface Performance Limits

The output frequency at the bus interface pins is limited by the performance of the output drivers. The fast clock driver (used for CLKOUT) can drive 80-MHz signals, the standard drivers can drive 40-MHz signals


Therefore, the speed of the EBC must be limited, either by limiting the system frequency to $f_{SYS} \le 80$ MHz or by adding waitstates so that signal transitions have a minimum distance of 12.5 ns.

For a description of the bus protocol and the programming of its variable timing parameters, please refer to the User's Manual.

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
CLKOUT Cycle Time ¹⁾	t ₅ CC	-	$1/f_{\rm SYS}$	-	ns	
CLKOUT high time	t ₆ CC	2	-	-		
CLKOUT low time	t ₇ CC	2	_	_		
CLKOUT rise time	t ₈ CC	-	-	3	ns	
CLKOUT fall time	t ₉ CC	-	-	3		

Table 27 EBC Parameters

1) The CLKOUT cycle time is influenced by PLL jitter. For longer periods the relative deviation decreases (see PLL deviation formula).

Debug via JTAG

The following parameters are applicable for communication through the JTAG debug interface. The JTAG module is fully compliant with IEEE1149.1-2000.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply; C_L = 20 pF.

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
TCK clock period	t ₁ SR	50 ¹⁾	_	-	ns	2)
TCK high time	t ₂ SR	16	-	-	ns	
TCK low time	t ₃ SR	16	-	-	ns	
TCK clock rise time	t_4 SR	-	-	8	ns	
TCK clock fall time	t ₅ SR	-	-	8	ns	
TDI/TMS setup to TCK rising edge	t ₆ SR	6	-	-	ns	
TDI/TMS hold after TCK rising edge	t ₇ SR	6	-	-	ns	
TDO valid from TCK falling edge (propagation delay) ³⁾	t ₈ CC	-	25	29	ns	
TDO high impedance to valid output from TCK falling edge ⁴⁾³⁾	t ₉ CC	-	25	29	ns	
TDO valid output to high impedance from TCK falling edge ³⁾	<i>t</i> ₁₀ CC	-	25	29	ns	
TDO hold after TCK falling edge ³⁾	<i>t</i> ₁₈ CC	5	-	-	ns	

Table 39JTAG Interface Timing for Upper Voltage Range

1) The debug interface cannot operate faster than the overall system, therefore $t_1 \ge t_{SYS}$.

2) Under typical conditions, the interface can operate at transfer rates up to 20 MHz.

3) The falling edge on TCK is used to generate the TDO timing.

4) The setup time for TDO is given implicitly by the TCK cycle time.

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	1	Test Condition
TCK clock period	t ₁ SR	50 ¹⁾	_	_	ns	2)
TCK high time	t ₂ SR	16	_	_	ns	
TCK low time	t ₃ SR	16	-	-	ns	
TCK clock rise time	t ₄ SR	-	_	8	ns	
TCK clock fall time	t ₅ SR	-	-	8	ns	
TDI/TMS setup to TCK rising edge	t ₆ SR	6	-	-	ns	
TDI/TMS hold after TCK rising edge	t ₇ SR	6	-	-	ns	
TDO valid from TCK falling edge (propagation delay) ³⁾	t ₈ CC	-	32	36	ns	
TDO high impedance to valid output from TCK falling edge ⁴⁾³⁾	t ₉ CC	-	32	36	ns	
TDO valid output to high impedance from TCK falling edge ³⁾	<i>t</i> ₁₀ CC	-	32	36	ns	
TDO hold after TCK falling edge ³⁾	<i>t</i> ₁₈ CC	5	-	-	ns	

Table 40 JTAG Interface Timing for Lower Voltage Range

1) The debug interface cannot operate faster than the overall system, therefore $t_1 \ge t_{SYS}$.

2) Under typical conditions, the interface can operate at transfer rates up to 20 MHz.

3) The falling edge on TCK is used to generate the TDO timing.

4) The setup time for TDO is given implicitly by the TCK cycle time.