

E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	C166SV2
Core Size	16-Bit
Speed	80MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	119
Program Memory Size	384KB (384K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	34K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 24x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-144-4
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/sak-xe167fm-48f80l-aa

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

4.6 4.6.1	AC Parameters
4.6.2	Definition of Internal Timing 109
4.6.2.1	Phase Locked Loop (PLL) 110
4.6.2.2	Wakeup Clock 113
4.6.2.3	Selecting and Changing the Operating Frequency
4.6.3	External Clock Input Parameters 114
4.6.4	Pad Properties
4.6.5	External Bus Timing 119
4.6.5.1	Bus Cycle Control with the READY Input 125
4.6.5.2	External Bus Arbitration 127
4.6.6	Synchronous Serial Interface Timing 130
4.6.7	Debug Interface Timing 134
5	Package and Reliability 140
5.1	Packaging
5.2	Thermal Considerations 142
5.3	Quality Declarations

Summary of Features

- Two Synchronizable A/D Converters with a total of up to 24 channels, 10-bit resolution, conversion time below $1 \,\mu s$, optional data preprocessing (data reduction, range check), broken wire detection
- Up to 8 serial interface channels to be used as UART, LIN, high-speed synchronous channel (SPI), IIC bus interface (10-bit addressing, 400 kbit/s), IIS interface
- On-chip MultiCAN interface (Rev. 2.0B active) with up to 128 message objects (Full CAN/Basic CAN) on up to 6 CAN nodes and gateway functionality
- On-chip system timer and on-chip real time clock
- Up to 12 Mbytes external address space for code and data
 - Programmable external bus characteristics for different address ranges
 - Multiplexed or demultiplexed external address/data buses
 - Selectable address bus width
 - 16-bit or 8-bit data bus width
 - Five programmable chip-select signals
 - Hold- and hold-acknowledge bus arbitration support
- Single power supply from 3.0 V to 5.5 V
- Programmable watchdog timer and oscillator watchdog
- Up to 119 general purpose I/O lines
- On-chip bootstrap loaders
- Supported by a full range of development tools including C compilers, macroassembler packages, emulators, evaluation boards, HLL debuggers, simulators, logic analyzer disassemblers, programming boards
- On-chip debug support via Device Access Port (DAP) or JTAG interface
- 144-pin Green LQFP package, 0.5 mm (19.7 mil) pitch

Tabl	Table 5 Pin Definitions and Functions (cont'd)				
Pin	Symbol	Ctrl.	Туре	Function	
75	P0.0	O0 / I	St/B	Bit 0 of Port 0, General Purpose Input/Output	
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output	
	CCU61_CC6 0	O3	St/B	CCU61 Channel 0 IOutput	
	A0	OH	St/B	External Bus Interface Address Line 0	
	U1C0_DX0A	I	St/B	USIC1 Channel 0 Shift Data Input	
	CCU61_CC6 0INA	I	St/B	CCU61 Channel 0 Input	
	ESR1_11	I	St/B	ESR1 Trigger Input 11	
76	P4.5	O0 / I	St/B	Bit 5 of Port 4, General Purpose Input/Output	
	U3C0_DOUT	01	St/B	USIC3 Channel 0 Shift Data Output	
	CC2_CC29	O3 / I	St/B	CAPCOM2 CC29IO Capture Inp./Compare Out.	
	CCU61_CCP OS0A	I	St/B	CCU61 Position Input 0	
	U3C0_DX0B	I	St/B	USIC3 Channel 0 Shift Data Input	
	ESR2_10	I	St/B	ESR2 Trigger Input 10	
77	P4.6	O0 / I	St/B	Bit 6 of Port 4, General Purpose Input/Output	
	U3C0_DOUT	01	St/B	USIC3 Channel 0 Shift Data Output	
	CC2_CC30	O3 / I	St/B	CAPCOM2 CC30IO Capture Inp./ Compare Out.	
	T4INA	I	St/B	GPT12E Timer T4 Count/Gate Input	
	CCU61_CCP OS1A	I	St/B	CCU61 Position Input 1	
78	P2.7	O0 / I	St/B	Bit 7 of Port 2, General Purpose Input/Output	
	U0C1_SELO 0	01	St/B	USIC0 Channel 1 Select/Control 0 Output	
	U0C0_SELO 1	O2	St/B	USIC0 Channel 0 Select/Control 1 Output	
	CC2_CC20	O3 / I	St/B	CAPCOM2 CC20IO Capture Inp./ Compare Out.	
	A20	ОН	St/B	External Bus Interface Address Line 20	
	U0C1_DX2C	I	St/B	USIC0 Channel 1 Shift Control Input	
	RxDC1C	I	St/B	CAN Node 1 Receive Data Input	
	ESR2_7	I	St/B	ESR2 Trigger Input 7	

Table	Table 5 Pin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function		
117	P10.10	O0 / I	St/B	Bit 10 of Port 10, General Purpose Input/Output		
	U0C0_SELO 0	01	St/B	USIC0 Channel 0 Select/Control 0 Output		
	CCU60_COU T63	02	St/B	CCU60 Channel 3 Output		
	AD10	OH / IH	St/B	External Bus Interface Address/Data Line 10		
	U0C0_DX2C	I	St/B	USIC0 Channel 0 Shift Control Input		
	U0C1_DX1A	I	St/B	USIC0 Channel 1 Shift Clock Input		
	TDI_B	IH	St/B	JTAG Test Data Input If JTAG pos. B is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it.		
118	P10.11	O0 / I	St/B	Bit 11 of Port 10, General Purpose Input/Output		
	U1C0_SCLK OUT	01	St/B	USIC1 Channel 0 Shift Clock Output		
	BRKOUT	O2	St/B	OCDS Break Signal Output		
	U3C0_SELO 0	O3	St/B	USIC3 Channel 0 Select/Control 0 Output		
	AD11	OH / IH	St/B	External Bus Interface Address/Data Line 11		
	U1C0_DX1D	I	St/B	USIC1 Channel 0 Shift Clock Input		
	RxDC2B	I	St/B	CAN Node 2 Receive Data Input		
	TMS_B	IH	St/B	JTAG Test Mode Selection Input If JTAG pos. B is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it.		
	U3C0_DX2A	I	St/B	USIC3 Channel 0 Shift Control Input		
119	P9.2	O0 / I	St/B	Bit 2 of Port 9, General Purpose Input/Output		
	CCU63_CC6 2	01	St/B	CCU63 Channel 2 Output		
	CCU63_CC6 2INA	I	St/B	CCU63 Channel 2 Input		
	CAPINB	I	St/B	GPT12E Register CAPREL Capture Input		

Table 5 Pin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function	
123	P10.13	O0 / I	St/B	Bit 13 of Port 10, General Purpose Input/Output	
	U1C0_DOUT	O1	St/B	USIC1 Channel 0 Shift Data Output	
	TxDC3	O2	St/B	CAN Node 3 Transmit Data Output	
	U1C0_SELO 3	O3	St/B	USIC1 Channel 0 Select/Control 3 Output	
	WR/WRL	ОН	St/B	External Bus Interface Write Strobe Output Active for each external write access, when WR, active for ext. writes to the low byte, when WRL.	
	U1C0_DX0D	I	St/B	USIC1 Channel 0 Shift Data Input	
124	P1.3	O0 / I	St/B	Bit 3 of Port 1, General Purpose Input/Output	
	CCU62_COU T63	01	St/B	CCU62 Channel 3 Output	
	U1C0_SELO 7	02	St/B	USIC1 Channel 0 Select/Control 7 Output	
	U2C0_SELO 4	O3	St/B	USIC2 Channel 0 Select/Control 4 Output	
	A11	ОН	St/B	External Bus Interface Address Line 11	
	ESR2_4	I	St/B	ESR2 Trigger Input 4	
	CCU62_T12 HRB	I	St/B	External Run Control Input for T12 of CCU62	
125	P9.4	O0 / I	St/B	Bit 4 of Port 9, General Purpose Input/Output	
	CCU63_COU T61	01	St/B	CCU63 Channel 1 Output	
	U2C0_DOUT	O2	St/B	USIC2 Channel 0 Shift Data Output	
	CCU62_COU T63	O3	St/B	CCU62 Channel 3 Output	

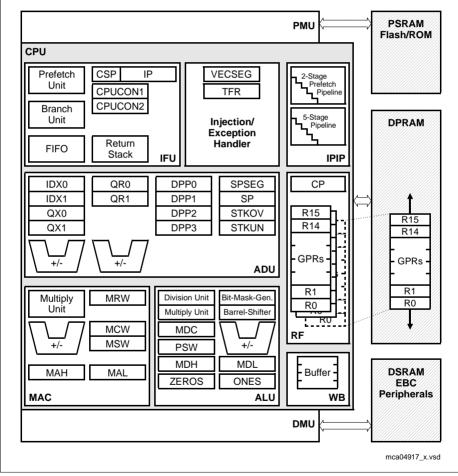


Table 5 Pin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function	
137	XTAL1	I	Sp/M	Crystal Oscillator Amplifier Input To clock the device from an external source, drive XTAL1, while leaving XTAL2 unconnected. Voltages on XTAL1 must comply to the core supply voltage V_{DDIM} .	
	ESR2_9	I	St/B	ESR2 Trigger Input 9	
138	PORST	1	In/B	Power On Reset Input A low level at this pin resets the XE167xM completely. A spike filter suppresses input pulses <10 ns. Input pulses >100 ns safely pass the filter. The minimum duration for a safe recognition should be 120 ns. An internal pull-up device will hold this pin high when nothing is driving it.	
139	ESR1	O0 / I	St/B	External Service Request 1 After power-up, an internal weak pull-up device holds this pin high when nothing is driving it.	
	RxDC0E	I	St/B	CAN Node 0 Receive Data Input	
	U1C0_DX0F	I	St/B	USIC1 Channel 0 Shift Data Input	
	U1C0_DX2C	I	St/B	USIC1 Channel 0 Shift Control Input	
	U1C1_DX0C	I	St/B	USIC1 Channel 1 Shift Data Input	
	U1C1_DX2B	I	St/B	USIC1 Channel 1 Shift Control Input	
	U2C1_DX2C	I	St/B	USIC2 Channel 1 Shift Control Input	

3.3 Central Processing Unit (CPU)

The core of the CPU consists of a 5-stage execution pipeline with a 2-stage instructionfetch pipeline, a 16-bit arithmetic and logic unit (ALU), a 32-bit/40-bit multiply and accumulate unit (MAC), a register-file providing three register banks, and dedicated SFRs. The ALU features a multiply-and-divide unit, a bit-mask generator, and a barrel shifter.

3.8 Capture/Compare Unit (CAPCOM2)

The CAPCOM2 unit supports generation and control of timing sequences on up to 16 channels with a maximum resolution of one system clock cycle (eight cycles in staggered mode). The CAPCOM2 unit is typically used to handle high-speed I/O tasks such as pulse and waveform generation, pulse width modulation (PWM), digital to analog (D/A) conversion, software timing, or time recording with respect to external events.

Two 16-bit timers (T7/T8) with reload registers provide two independent time bases for the capture/compare register array.

The input clock for the timers is programmable to several prescaled values of the internal system clock, or may be derived from an overflow/underflow of timer T6 in module GPT2. This provides a wide range or variation for the timer period and resolution and allows precise adjustments to the application-specific requirements. In addition, an external count input allows event scheduling for the capture/compare registers relative to external events.

The capture/compare register array contains 16 dual purpose capture/compare registers, each of which may be individually allocated to either CAPCOM timer and programmed for capture or compare function.

All registers have each one port pin associated with it which serves as an input pin for triggering the capture function, or as an output pin to indicate the occurrence of a compare event.

When a capture/compare register has been selected for capture mode, the current contents of the allocated timer will be latched ('captured') into the capture/compare register in response to an external event at the port pin which is associated with this register. In addition, a specific interrupt request for this capture/compare register is generated. Either a positive, a negative, or both a positive and a negative external signal transition at the pin can be selected as the triggering event.

The contents of all registers which have been selected for one of the five compare modes are continuously compared with the contents of the allocated timers.

When a match occurs between the timer value and the value in a capture/compare register, specific actions will be taken based on the selected compare mode.

Compare Modes	Function
Mode 0	Interrupt-only compare mode; Several compare interrupts per timer period are possible
Mode 1	Pin toggles on each compare match; Several compare events per timer period are possible

Table 8 Compare Modes


3.11 Real Time Clock

The Real Time Clock (RTC) module of the XE167xM can be clocked with a clock signal selected from internal sources or external sources (pins).

The RTC basically consists of a chain of divider blocks:

- Selectable 32:1 and 8:1 dividers (on off)
- The reloadable 16-bit timer T14
- The 32-bit RTC timer block (accessible via registers RTCH and RTCL) consisting of: – a reloadable 10-bit timer
 - a reloadable 6-bit timer
 - a reloadable 6-bit timer
 - a reloadable 10-bit timer

All timers count up. Each timer can generate an interrupt request. All requests are combined to a common node request.

Figure 10 RTC Block Diagram

Note: The registers associated with the RTC are only affected by a power reset.

3.16 Watchdog Timer

The Watchdog Timer is one of the fail-safe mechanisms which have been implemented to prevent the controller from malfunctioning for longer periods of time.

The Watchdog Timer is always enabled after an application reset of the chip. It can be disabled and enabled at any time by executing the instructions DISWDT and ENWDT respectively. The software has to service the Watchdog Timer before it overflows. If this is not the case because of a hardware or software failure, the Watchdog Timer overflows, generating a prewarning interrupt and then a reset request.

The Watchdog Timer is a 16-bit timer clocked with the system clock divided by 16,384 or 256. The Watchdog Timer register is set to a prespecified reload value (stored in WDTREL) in order to allow further variation of the monitored time interval. Each time it is serviced by the application software, the Watchdog Timer is reloaded and the prescaler is cleared.

Time intervals between 3.2 μ s and 13.42 s can be monitored (@ 80 MHz). The default Watchdog Timer interval after power-up is 6.5 ms (@ 10 MHz).

3.17 Clock Generation

The Clock Generation Unit can generate the system clock signal f_{SYS} for the XE167xM from a number of external or internal clock sources:

- External clock signals with pad voltage or core voltage levels
- External crystal or resonator using the on-chip oscillator
- On-chip clock source for operation without crystal/resonator
- Wake-up clock (ultra-low-power) to further reduce power consumption

The programmable on-chip PLL with multiple prescalers generates a clock signal for maximum system performance from standard crystals, a clock input signal, or from the on-chip clock source. See also **Section 4.6.2**.

The Oscillator Watchdog (OWD) generates an interrupt if the crystal oscillator frequency falls below a certain limit or stops completely. In this case, the system can be supplied with an emergency clock to enable operation even after an external clock failure.

All available clock signals can be output on one of two selectable pins.

2) The pad supply voltage pins (V_{DDPB}) provide the input current for the on-chip EVVRs and the current consumed by the pin output drivers. A small current is consumed because the drivers input stages are switched.

In Fast Startup Mode (with the Flash modules deactivated), the typical current is reduced to $3 + 0.6 \text{ x} f_{SYS}$.

3) Please consider the additional conditions described in section "Active Mode Power Supply Current".

Active Mode Power Supply Current

The actual power supply current in active mode not only depends on the system frequency but also on the configuration of the XE167xM's subsystem.

Besides the power consumed by the device logic the power supply pins also provide the current that flows through the pin output drivers.

A small current is consumed because the drivers' input stages are switched.

The IO power domains can be supplied separately. Power domain A ($V_{\rm DDPA}$) supplies the A/D converters and Port 6. Power domain B ($V_{\rm DDPB}$) supplies the on-chip EVVRs and all other ports.

During operation domain A draws a maximum current of 1.5 mA for each active A/D converter module from $V_{\rm DDPA}$.

In Fast Startup Mode (with the Flash modules deactivated), the typical current is reduced to $(3 + 0.6 \times f_{SYS})$ mA.

Electrical Parameters

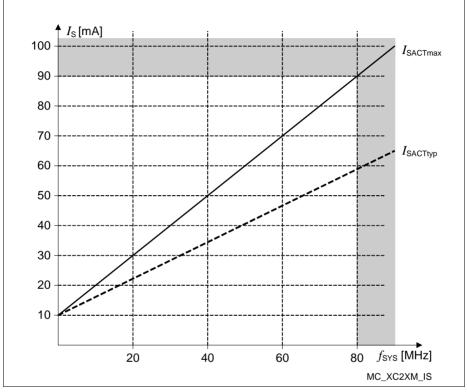


Figure 14Supply Current in Active Mode as a Function of FrequencyNote: Operating Conditions apply.

Electrical Parameters

Figure 16 Equivalent Circuitry for Analog Inputs

4.5 Flash Memory Parameters

The XE167xM is delivered with all Flash sectors erased and with no protection installed. The data retention time of the XE167xM's Flash memory (i.e. the time after which stored data can still be retrieved) depends on the number of times the Flash memory has been erased and programmed.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Parameter	Symbol		Values	8	Unit	Note /	
		Min. Typ.		Max.		Test Condition	
Parallel Flash module program/erase limit	$N_{\rm PP}{ m SR}$	-	-	4 ¹⁾		$N_{\text{FL}_{\text{RD}}} \le 1,$ $f_{\text{SYS}} \le 80 \text{ MHz}$	
depending on Flash read activity		-	-	1 ²⁾		$N_{\rm FL_RD}$ > 1	
Flash erase endurance for security pages	$N_{\rm SEC}{ m SR}$	10	-	-	cycle s	$t_{RET} \ge 20$ years	
Flash wait states3)	N _{WSFLAS} _H SR	1	-	-		$f_{SYS} \le 8 \text{ MHz}$	
		2	-	-		$f_{SYS} \le 13 \text{ MHz}$	
		3	-	-		$f_{\rm SYS} \le 17 \ \rm MHz$	
		4	-	-		$f_{\rm SYS}$ > 17 MHz	
Erase time per sector/page	t _{ER} CC	-	7 ⁴⁾	8.0	ms		
Programming time per page	t _{PR} CC	-	34)	3.5	ms		
Data retention time	t _{RET} CC	20	-	-	year s	$N_{\rm Er} \le 1\ 000$ cycles	
Drain disturb limit	$N_{\rm DD}{ m SR}$	32	-	-	cycle s		

Table 22 Flash Parameters

4.6 AC Parameters

These parameters describe the dynamic behavior of the XE167xM.

4.6.1 Testing Waveforms

These values are used for characterization and production testing (except pin XTAL1).

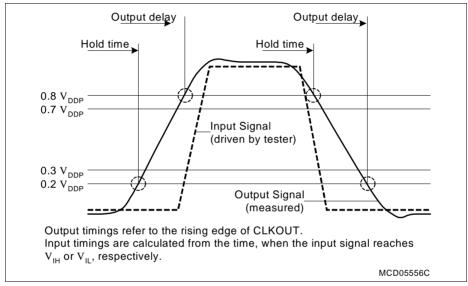
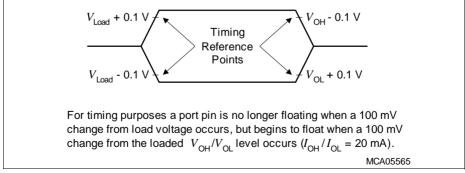



Figure 17 Input Output Waveforms

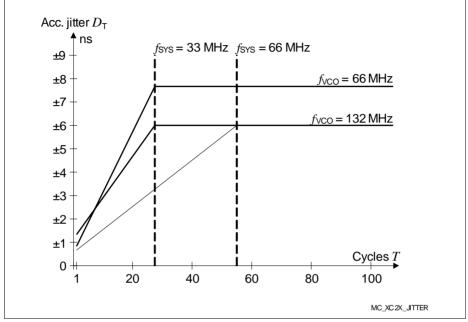


Figure 20 Approximated Accumulated PLL Jitter

Note: The specified PLL jitter values are valid if the capacitive load per pin does not exceed $C_L = 20 \text{ pF}$.

The maximum peak-to-peak noise on the pad supply voltage (measured between V_{DDPB} pin 100 and V_{SS} pin 1) is limited to a peak-to-peak voltage of V_{PP} = 50 mV. This can be achieved by appropriate blocking of the supply voltage as close as possible to the supply pins and using PCB supply and ground planes.

Note: The term CLKOUT refers to the reference clock output signal which is generated by selecting f_{SYS} as the source signal for the clock output signal EXTCLK on pin P2.8 and by enabling the high-speed clock driver on this pin.

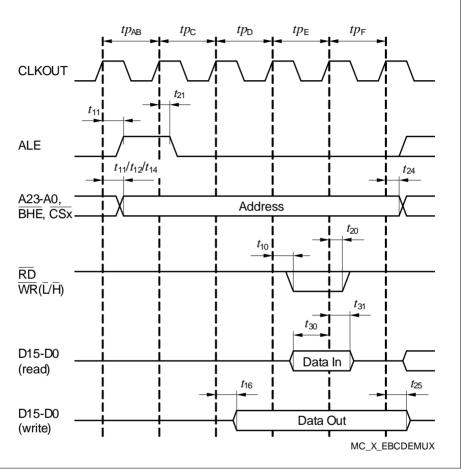
Variable Memory Cycles

External bus cycles of the XE167xM are executed in five consecutive cycle phases (AB, C, D, E, F). The duration of each cycle phase is programmable (via the TCONCSx registers) to adapt the external bus cycles to the respective external module (memory, peripheral, etc.).

The duration of the access phase can optionally be controlled by the external module using the READY handshake input.

This table provides a summary of the phases and the ranges for their length.

Table 28Programmable Bus Cycle Phases (see timing diagrams)


Bus Cycle Phase	Parameter	Valid Values	Unit
Address setup phase, the standard duration of this phase (1 \dots 2 TCS) can be extended by 0 \dots 3 TCS if the address window is changed	tpAB	1 2 (5)	TCS
Command delay phase	tpC	03	TCS
Write Data setup/MUX Tristate phase	tpD	0 1	TCS
Access phase	tpE	1 32	TCS
Address/Write Data hold phase	tpF	03	TCS

Note: The bandwidth of a parameter (from minimum to maximum value) covers the whole operating range (temperature, voltage) as well as process variations. Within a given device, however, this bandwidth is smaller than the specified range. This is also due to interdependencies between certain parameters. Some of these interdependencies are described in additional notes (see standard timing).

Note: Operating Conditions apply; $C_L = 20 \text{ pF}$.

Electrical Parameters

Electrical Parameters

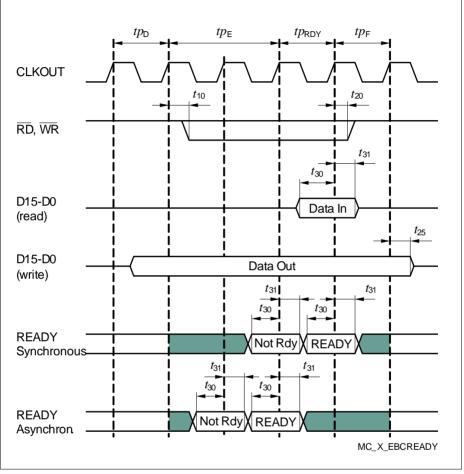


Figure 25 READY Timing

Note: If the READY input is sampled inactive at the indicated sampling point ("Not Rdy") a READY-controlled waitstate is inserted (tpRDY),

sampling the READY input active at the indicated sampling point ("Ready") terminates the currently running bus cycle.

Note the different sampling points for synchronous and asynchronous READY. This example uses one mandatory waitstate (see tpE) before the READY input value is used.

Debug via JTAG

The following parameters are applicable for communication through the JTAG debug interface. The JTAG module is fully compliant with IEEE1149.1-2000.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply; C_L = 20 pF.

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
TCK clock period	t ₁ SR	50 ¹⁾	_	-	ns	2)
TCK high time	t ₂ SR	16	-	-	ns	
TCK low time	t ₃ SR	16	-	-	ns	
TCK clock rise time	t_4 SR	-	-	8	ns	
TCK clock fall time	t ₅ SR	-	-	8	ns	
TDI/TMS setup to TCK rising edge	t ₆ SR	6	-	-	ns	
TDI/TMS hold after TCK rising edge	t ₇ SR	6	-	-	ns	
TDO valid from TCK falling edge (propagation delay) ³⁾	t ₈ CC	-	25	29	ns	
TDO high impedance to valid output from TCK falling edge ⁴⁾³⁾	t ₉ CC	-	25	29	ns	
TDO valid output to high impedance from TCK falling edge ³⁾	<i>t</i> ₁₀ CC	-	25	29	ns	
TDO hold after TCK falling edge ³⁾	<i>t</i> ₁₈ CC	5	-	-	ns	

Table 39JTAG Interface Timing for Upper Voltage Range

1) The debug interface cannot operate faster than the overall system, therefore $t_1 \ge t_{SYS}$.

2) Under typical conditions, the interface can operate at transfer rates up to 20 MHz.

3) The falling edge on TCK is used to generate the TDO timing.

4) The setup time for TDO is given implicitly by the TCK cycle time.