

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	C166SV2
Core Size	16-Bit
Speed	80MHz
Connectivity	EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	119
Program Memory Size	384KB (384K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	34K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 24x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-144-4
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/sak-xe167hm-48f80l-aa

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Features

1.1 Basic Device Types

Basic device types are available and can be ordered through Infineon's direct and/or distribution channels.

Derivative ¹⁾	Flash	PSRAM	Capt./Comp.	ADC ⁴⁾	Interfaces ⁴⁾
	Memory ²⁾	DSRAM ³⁾	Modules	Chan.	
XE167FM- 72FxxL	576 Kbytes	32 Kbytes 16 Kbytes	CC2 CCU60/1/2/3	16 + 8	6 CAN Nodes, 8 Serial Chan.
XE167FM- 48FxxL	384 Kbytes	16 Kbytes 16 Kbytes	CC2 CCU60/1/2/3	16 + 8	6 CAN Nodes, 8 Serial Chan.
XE167GM- 72FxxL	576 Kbytes	32 Kbytes 16 Kbytes	CC2 CCU60/1	8 + 8	2 CAN Nodes, 4 Serial Chan.
XE167GM- 48FxxL	384 Kbytes	16 Kbytes 16 Kbytes	CC2 CCU60/1	8 + 8	2 CAN Nodes, 4 Serial Chan.
XE167HM- 72FxxL	576 Kbytes	32 Kbytes 16 Kbytes	CC2 CCU60/1/2/3	16 + 8	No CAN Nodes, 8 Serial Chan.
XE167HM- 48FxxL	384 Kbytes	16 Kbytes 16 Kbytes	CC2 CCU60/1/2/3	16 + 8	No CAN Nodes, 8 Serial Chan.
XE167KM- 72FxxL	576 Kbytes	32 Kbytes 16 Kbytes	CC2 CCU60/1	8 + 8	No CAN Nodes, 4 Serial Chan.
XE167KM- 48FxxL	384 Kbytes	16 Kbytes 16 Kbytes	CC2 CCU60/1	8 + 8	No CAN Nodes, 4 Serial Chan.

Table 1Synopsis of XE167xM Basic Device Types

1) xx is a placeholder for the available speed grade (in MHz).

2) Specific information about the on-chip Flash memory in Table 2.

3) All derivatives additionally provide 8 Kbytes SBRAM and 2 Kbytes DPRAM.

 Specific information about the available channels in Table 4. Analog input channels are listed for each Analog/Digital Converter module separately (ADC0 + ADC1).

Summary of Features

The XE167xM types are offered with several SRAM memory sizes. **Figure 1** shows the allocation rules for PSRAM and DSRAM. Note that the rules differ:

- PSRAM allocation starts from the lower address
- DSRAM allocation starts from the higher address

For example 8 Kbytes of PSRAM will be allocated at E0'0000h-E0'1FFFh and 8 Kbytes of DSRAM will be at 00'C000h-00'DFFFh.

Figure 1 SRAM Allocation

XE167FM, XE167GM, XE167HM, XE167KM XE166 Family / Base Line

General Device Information

Table	Table 5 Pin Definitions and Functions (cont'd)									
Pin	Symbol	Ctrl.	Туре	Function						
84	P10.0	O0 / I	St/B	Bit 0 of Port 10, General Purpose Input/Output						
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output						
	CCU60_CC6 0	O2	St/B	CCU60 Channel 0 Output						
	AD0	OH / IH	St/B	External Bus Interface Address/Data Line 0						
	CCU60_CC6 0INA	I	St/B	CCU60 Channel 0 Input						
	ESR1_2	I	St/B	ESR1 Trigger Input 2						
	U0C0_DX0A	I	St/B	USIC0 Channel 0 Shift Data Input						
	U0C1_DX0A	I	St/B	USIC0 Channel 1 Shift Data Input						
85	P3.0	00 / 1	St/B	Bit 0 of Port 3, General Purpose Input/Output						
	U2C0_DOUT	01	St/B	USIC2 Channel 0 Shift Data Output						
	BREQ	ОН	St/B	External Bus Request Output						
	ESR1_1	I	St/B	ESR1 Trigger Input 1						
	U2C0_DX0A	I	St/B	USIC2 Channel 0 Shift Data Input						
	RxDC3B	I	St/B	CAN Node 3 Receive Data Input						
	U2C0_DX1A	I	St/B	USIC2 Channel 0 Shift Clock Input						
86	P10.1	O0 / I	St/B	Bit 1 of Port 10, General Purpose Input/Output						
	U0C0_DOUT	01	St/B	USIC0 Channel 0 Shift Data Output						
	CCU60_CC6 1	O2	St/B	CCU60 Channel 1 Output						
	AD1	OH / IH	St/B	External Bus Interface Address/Data Line 1						
	CCU60_CC6 1INA	I	St/B	CCU60 Channel 1 Input						
	U0C0_DX1A	I	St/B	USIC0 Channel 0 Shift Clock Input						
	U0C0 DX0B	I	St/B	USIC0 Channel 0 Shift Data Input						

General Device Information

Table	Table 5 Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function				
101	P3.5	O0 / I	St/B	Bit 5 of Port 3, General Purpose Input/Output				
	U2C1_SCLK OUT	O1	St/B	USIC2 Channel 1 Shift Clock Output				
	U2C0_SELO 2	O2	St/B	USIC2 Channel 0 Select/Control 2 Output				
	U0C0_SELO 5	O3	St/B	USIC0 Channel 0 Select/Control 5 Output				
	U2C1_DX1A	I	St/B	USIC2 Channel 1 Shift Clock Input				
102	P0.6	O0 / I	St/B	Bit 6 of Port 0, General Purpose Input/Output				
	U1C1_DOUT	01	St/B	USIC1 Channel 1 Shift Data Output				
	TxDC1	02	St/B	CAN Node 1 Transmit Data Output				
	CCU61_COU T63	O3	St/B	CCU61 Channel 3 Output				
	A6	ОН	St/B	External Bus Interface Address Line 6				
	U1C1_DX0A	I	St/B	USIC1 Channel 1 Shift Data Input				
	CCU61_CTR APA	I	St/B	CCU61 Emergency Trap Input				
	U1C1_DX1B	I	St/B	USIC1 Channel 1 Shift Clock Input				
103	P10.6	O0 / I	St/B	Bit 6 of Port 10, General Purpose Input/Output				
	U0C0_DOUT	01	St/B	USIC0 Channel 0 Shift Data Output				
	TxDC4	02	St/B	CAN Node 4 Transmit Data Output				
	U1C0_SELO 0	O3	St/B	USIC1 Channel 0 Select/Control 0 Output				
	AD6	OH / IH	St/B	External Bus Interface Address/Data Line 6				
	U0C0_DX0C	I	St/B	USIC0 Channel 0 Shift Data Input				
	U1C0_DX2D	I	St/B	USIC1 Channel 0 Shift Control Input				
	CCU60_CTR APA	1	St/B	CCU60 Emergency Trap Input				

General Device Information

Table	Fable 5 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
120	P1.2	O0 / I	St/B	Bit 2 of Port 1, General Purpose Input/Output			
	CCU62_CC6 2	01	St/B	CCU62 Channel 2 Output			
	U1C0_SELO 6	O2	St/B	USIC1 Channel 0 Select/Control 6 Output			
	U2C1_SCLK OUT	O3	St/B	USIC2 Channel 1 Shift Clock Output			
	A10	ОН	St/B	External Bus Interface Address Line 10			
	ESR1_4	I	St/B	ESR1 Trigger Input 4			
	CCU61_T12 HRB	1	St/B	External Run Control Input for T12 of CCU61			
	CCU62_CC6 2INA	1	St/B	CCU62 Channel 2 Input			
	U2C1_DX0D	I	St/B	USIC2 Channel 1 Shift Data Input			
	U2C1_DX1C	I	St/B	USIC2 Channel 1 Shift Clock Input			
121	P10.12	O0 / I	St/B	Bit 12 of Port 10, General Purpose Input/Output			
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output			
	TxDC2	O2	St/B	CAN Node 2 Transmit Data Output			
	TDO_B	OH / IH	St/B	JTAG Test Data Output / DAP1 Input/Output If DAP pos. 1 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it.			
	AD12	OH / IH	St/B	External Bus Interface Address/Data Line 12			
	U1C0_DX0C	I	St/B	USIC1 Channel 0 Shift Data Input			
	U1C0_DX1E	I	St/B	USIC1 Channel 0 Shift Clock Input			
122	P9.3	O0 / I	St/B	Bit 3 of Port 9, General Purpose Input/Output			
	CCU63_COU T60	O1	St/B	CCU63 Channel 0 Output			
	BRKOUT	O2	St/B	OCDS Break Signal Output			

General Device Information

Table	Fin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
143	P8.5	O0 / I	St/B	Bit 5 of Port 8, General Purpose Input/Output			
	CCU60_COU T62	01	St/B	CCU60 Channel 2 Output			
	CCU62_CC6 2	O2	St/B	CCU62 Channel 2 Output			
	TCK_D	IH	St/B	DAP0/JTAG Clock Input If JTAG pos. D is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it.			
	CCU62_CC6 2INB	1	St/B	CCU62 Channel 2 Input			
15	V _{DDIM}	-	PS/M	Digital Core Supply Voltage for Domain M Decouple with a ceramic capacitor, see Data Sheet for details.			
54, 91, 127	V _{DDI1}	-	PS/1	Digital Core Supply Voltage for Domain 1 Decouple with a ceramic capacitor, see Data Sheet for details. All V_{DDI1} pins must be connected to each other.			
20	V _{DDPA}	-	PS/A	Digital Pad Supply Voltage for Domain A Connect decoupling capacitors to adjacent V_{DDP}/V_{SS} pin pairs as close as possible to the pins. Note: The A/D_Converters and ports P5, P6 and P15 are fed from supply voltage V_{DDP4} .			

General Device Information

2.2 Identification Registers

The identification registers describe the current version of the XE167xM and of its modules.

Table 6 XE167xM Identification Registers

Short Name	Value	Address	Notes
SCU_IDMANUF	1820 _H	00'F07E _H	
SCU_IDCHIP	3801 _H	00'F07C _H	
SCU_IDMEM	30D0 _H	00'F07A _H	
SCU_IDPROG	1313 _H	00'F078 _H	
JTAG_ID	0017'E083 _H		marking EES-AA, ES-AA or AA

Functional Description

With this hardware most XE167xM instructions are executed in a single machine cycle of 12.5 ns with an 80-MHz CPU clock. For example, shift and rotate instructions are always processed during one machine cycle, no matter how many bits are shifted. Also, multiplication and most MAC instructions execute in one cycle. All multiple-cycle instructions have been optimized so that they can be executed very fast; for example, a 32-/16-bit division is started within 4 cycles while the remaining cycles are executed in the background. Another pipeline optimization, the branch target prediction, eliminates the execution time of branch instructions if the prediction was correct.

The CPU has a register context consisting of up to three register banks with 16 wordwide GPRs each at its disposal. One of these register banks is physically allocated within the on-chip DPRAM area. A Context Pointer (CP) register determines the base address of the active register bank accessed by the CPU at any time. The number of these register bank copies is only restricted by the available internal RAM space. For easy parameter passing, a register bank may overlap others.

A system stack of up to 32 Kwords is provided for storage of temporary data. The system stack can be allocated to any location within the address space (preferably in the on-chip RAM area); it is accessed by the CPU with the stack pointer (SP) register. Two separate SFRs, STKOV and STKUN, are implicitly compared with the stack pointer value during each stack access to detect stack overflow or underflow.

The high performance of the CPU hardware implementation can be best utilized by the programmer with the highly efficient XE167xM instruction set. This includes the following instruction classes:

- Standard Arithmetic Instructions
- DSP-Oriented Arithmetic Instructions
- Logical Instructions
- Boolean Bit Manipulation Instructions
- Compare and Loop Control Instructions
- Shift and Rotate Instructions
- Prioritize Instruction
- Data Movement Instructions
- System Stack Instructions
- Jump and Call Instructions
- Return Instructions
- System Control Instructions
- Miscellaneous Instructions

The basic instruction length is either 2 or 4 bytes. Possible operand types are bits, bytes and words. A variety of direct, indirect or immediate addressing modes are provided to specify the required operands.

Functional Description

3.12 A/D Converters

For analog signal measurement, up to two 10-bit A/D converters (ADC0, ADC1) with 16 + 8 multiplexed input channels and a sample and hold circuit have been integrated on-chip. 4 inputs can be converted by both A/D converters. Conversions use the successive approximation method. The sample time (to charge the capacitors) and the conversion time are programmable so that they can be adjusted to the external circuit. The A/D converters can also operate in 8-bit conversion mode, further reducing the conversion time.

Several independent conversion result registers, selectable interrupt requests, and highly flexible conversion sequences provide a high degree of programmability to meet the application requirements. Both modules can be synchronized to allow parallel sampling of two input channels.

For applications that require more analog input channels, external analog multiplexers can be controlled automatically. For applications that require fewer analog input channels, the remaining channel inputs can be used as digital input port pins.

The A/D converters of the XE167xM support two types of request sources which can be triggered by several internal and external events.

- Parallel requests are activated at the same time and then executed in a predefined sequence.
- Queued requests are executed in a user-defined sequence.

In addition, the conversion of a specific channel can be inserted into a running sequence without disturbing that sequence. All requests are arbitrated according to the priority level assigned to them.

Data reduction features reduce the number of required CPU access operations allowing the precise evaluation of analog inputs (high conversion rate) even at a low CPU speed. Result data can be reduced by limit checking or accumulation of results.

The Peripheral Event Controller (PEC) can be used to control the A/D converters or to automatically store conversion results to a table in memory for later evaluation, without requiring the overhead of entering and exiting interrupt routines for each data transfer. Each A/D converter contains eight result registers which can be concatenated to build a result FIFO. Wait-for-read mode can be enabled for each result register to prevent the loss of conversion data.

In order to decouple analog inputs from digital noise and to avoid input trigger noise, those pins used for analog input can be disconnected from the digital input stages. This can be selected for each pin separately with the Port x Digital Input Disable registers.

The Auto-Power-Down feature of the A/D converters minimizes the power consumption when no conversion is in progress.

Broken wire detection for each channel and a multiplexer test mode provide information to verify the proper operation of the analog signal sources (e.g. a sensor system).

2) The pad supply voltage pins (V_{DDPB}) provide the input current for the on-chip EVVRs and the current consumed by the pin output drivers. A small current is consumed because the drivers input stages are switched.

In Fast Startup Mode (with the Flash modules deactivated), the typical current is reduced to $3 + 0.6 \text{ x} f_{SYS}$.

3) Please consider the additional conditions described in section "Active Mode Power Supply Current".

Active Mode Power Supply Current

The actual power supply current in active mode not only depends on the system frequency but also on the configuration of the XE167xM's subsystem.

Besides the power consumed by the device logic the power supply pins also provide the current that flows through the pin output drivers.

A small current is consumed because the drivers' input stages are switched.

The IO power domains can be supplied separately. Power domain A ($V_{\rm DDPA}$) supplies the A/D converters and Port 6. Power domain B ($V_{\rm DDPB}$) supplies the on-chip EVVRs and all other ports.

During operation domain A draws a maximum current of 1.5 mA for each active A/D converter module from $V_{\rm DDPA}$.

In Fast Startup Mode (with the Flash modules deactivated), the typical current is reduced to $(3 + 0.6 \times f_{SYS})$ mA.

4.3 Analog/Digital Converter Parameters

These parameters describe the conditions for optimum ADC performance. *Note: Operating Conditions apply.*

Table 17 ADC Parameters

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Switched capacitance at an analog input	C _{AINSW} CC	-	4	5	pF	not subject to production test ¹⁾
Total capacitance at an analog input	C _{AINT} CC	-	10	12	pF	not subject to production test ¹⁾
Switched capacitance at the reference input	C _{AREFSW} CC	-	7	9	pF	not subject to production test ¹⁾
Total capacitance at the reference input	C _{AREFT} CC	-	13	15	pF	not subject to production test ¹⁾
Differential Non-Linearity Error	EA _{DNL} CC	-	0.8	1.0	LSB	not subject to production test
Gain Error	EA _{GAIN} CC	-	0.4	0.8	LSB	not subject to production test
Integral Non-Linearity	EA _{INL} CC	-	0.8	1.2	LSB	not subject to production test
Offset Error	EA _{OFF} CC	-	0.5	0.8	LSB	not subject to production test
Analog clock frequency	$f_{\rm ADCI}{\rm SR}$	0.5	-	20	MHz	Upper voltage range
		0.5	-	16.5	MHz	Lower voltage range
Input resistance of the selected analog channel	R _{AIN} CC	-	-	2	kOh m	not subject to production test ¹⁾
Input resistance of the reference input	R _{AREF} CC	-	_	2	kOh m	not subject to production test ¹⁾

Table 17ADC Parameters (cont'd)

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Broken wire detection delay against VAGND ²⁾	t _{BWG} CC	-	-	50	3)	
Broken wire detection delay against VAREF ²⁾	t _{BWR} CC	-	-	50	4)	
Conversion time for 8-bit result ²⁾	t _{c8} CC	$(11 + STC) \times t_{ADCI}$ + 2 x t_{SYS}				
Conversion time for 10-bit $result^{2)}$	<i>t</i> _{c10} CC	(13 + S [·] + 2 x t _S ·	TC) x t _{AD} YS	ICI		
Total Unadjusted Error	TUE CC	-	1	2	LSB	5)
Wakeup time from analog powerdown, fast mode ²⁾	t _{WAF} CC	-	-	4	μS	
Wakeup time from analog powerdown, slow mode ²⁾	t _{WAS} CC	-	-	15	μS	
Analog reference ground	V_{AGND} SR	V _{SS} - 0.05	-	1.5	V	
Analog input voltage range	$V_{\rm AIN}{ m SR}$	$V_{\rm AGND}$	-	V_{AREF}	V	6)
Analog reference voltage	V_{AREF} SR	V _{AGND} + 1.0	-	V _{DDPA} + 0.05	V	5)

 These parameter values cover the complete operating range. Under relaxed operating conditions (room temperature, nominal supply voltage) the typical values can be used for calculation.

2) This parameter includes the sample time (also the additional sample time specified by STC), the time to determine the digital result and the time to load the result register with the conversion result. Values for the basic clock t_{ADCI} depend on programming.

- 3) The broken wire detection delay against V_{AGND} is measured in numbers of consecutive precharge cycles at a conversion rate of not more than 500 µs. Result below 10% (66_H).
- 4) The broken wire detection delay against V_{AREF} is measured in numbers of consecutive precharge cycles at a conversion rate of not more than 10 μs. This function is influenced by leakage current, in particular at high temperature. Result above 80% (332_H).
- 5) TUE is tested at V_{AREF} = V_{DDPA} = 5.0 V, V_{AGND} = 0 V. It is verified by design for all other voltages within the defined voltage range. The specified TUE is valid only if the absolute sum of input overload currents on analog port pins (see I_{OV} specification) does not exceed 10 mA, and if V_{AREF} and V_{AGND} remain stable during the measurement time.
- V_{AIN} may exceed V_{AGND} or V_{AREF} up to the absolute maximum ratings. However, the conversion result in these cases will be X000_H or X3FF_H, respectively.

Electrical Parameters

Figure 16 Equivalent Circuitry for Analog Inputs

4.4 System Parameters

The following parameters specify several aspects which are important when integrating the XE167xM into an application system.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Short-term deviation of internal clock source frequency ¹⁾	∆f _{INT} CC	-1	-	1	%	⊿ <i>T</i> _J ≤ 10 °C
Internal clock source frequency	$f_{INT}CC$	4.8	5.0	5.2	MHz	
Wakeup clock source	$f_{\rm WU}{ m CC}$	400	-	700	kHz	FREQSEL= 00
frequency ²⁾		210	-	390	kHz	FREQSEL= 01
		140	-	260	kHz	FREQSEL= 10
		110	-	200	kHz	FREQSEL= 11
Startup time from power- on with code execution from Flash	t _{SPO} CC	1.8	2.2	2.7	ms	$f_{\rm WU}$ = 500 kHz
Startup time from stopover mode with code execution from PSRAM	t _{SSO} CC	11 / f _{WU} ³⁾	-	12 / f _{WU} ³⁾	μS	
Core voltage (PVC) supervision level	V _{PVC} CC	V _{LV} - 0.03	V _{LV}	V _{LV} + 0.07 ₄₎	V	5)
Supply watchdog (SWD) supervision level	V _{SWD} CC	V _{LV} - 0.10 ⁶⁾	$V_{\rm LV}$	V _{LV} + 0.15	V	Lower voltage range ⁵⁾
		V _{LV} - 0.15	V_{LV}	V _{LV} + 0.15	V	Upper voltage range ⁵⁾

Table 19 Various System Parameters

 The short-term frequency deviation refers to a timeframe of a few hours and is measured relative to the current frequency at the beginning of the respective timeframe. This parameter is useful to determine a time span for re-triggering a LIN synchronization.

 This parameter is tested for the fastest and the slowest selection. The medium selections are not subject to production test - verified by design/characterization

4.6.2 Definition of Internal Timing

The internal operation of the XE167xM is controlled by the internal system clock f_{SYS} .

Because the system clock signal f_{SYS} can be generated from a number of internal and external sources using different mechanisms, the duration of the system clock periods (TCSs) and their variation (as well as the derived external timing) depend on the mechanism used to generate f_{SYS} . This must be considered when calculating the timing for the XE167xM.

Figure 19 Generation Mechanisms for the System Clock

Note: The example of PLL operation shown in **Figure 19** uses a PLL factor of 1:4; the example of prescaler operation uses a divider factor of 2:1.

The specification of the external timing (AC Characteristics) depends on the period of the system clock (TCS).

Figure 20 Approximated Accumulated PLL Jitter

Note: The specified PLL jitter values are valid if the capacitive load per pin does not exceed $C_L = 20 \text{ pF}$.

The maximum peak-to-peak noise on the pad supply voltage (measured between V_{DDPB} pin 100 and V_{SS} pin 1) is limited to a peak-to-peak voltage of V_{PP} = 50 mV. This can be achieved by appropriate blocking of the supply voltage as close as possible to the supply pins and using PCB supply and ground planes.

4.6.3 External Clock Input Parameters

These parameters specify the external clock generation for the XE167xM. The clock can be generated in two ways:

- By connecting a crystal or ceramic resonator to pins XTAL1/XTAL2
- By supplying an external clock signal
 - This clock signal can be supplied either to pin XTAL1 (core voltage domain) or to pin CLKIN1 (IO voltage domain)

If connected to CLKIN1, the input signal must reach the defined input levels $V_{\rm IL}$ and $V_{\rm IH}$. If connected to XTAL1, a minimum amplitude $V_{\rm AX1}$ (peak-to-peak voltage) is sufficient for the operation of the on-chip oscillator.

Note: The given clock timing parameters $(t_1 \dots t_4)$ are only valid for an external clock input signal.

Note: Operating Conditions apply.

Parameter	Symbol		Values	;	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Oscillator frequency	$f_{\rm OSC}{\rm SR}$	4	-	40	MHz	Input = clock signal
		4	-	16	MHz	Input = crystal or ceramic resonator
XTAL1 input current absolute value	I _{IL} CC	-	-	20	μA	
Input clock high time	t ₁ SR	6	-	-	ns	
Input clock low time	t ₂ SR	6	-	-	ns	
Input clock rise time	t ₃ SR	-	-	8	ns	
Input clock fall time	t ₄ SR	-	-	8	ns	
Input voltage amplitude on XTAL1 ¹⁾	$V_{\rm AX1}{ m SR}$	$0.3 ext{ x}$ $V_{ ext{DDIM}}$	-	-	V	4 to 16 MHz
		$0.4 ext{ x}$ $V_{ ext{DDIM}}$	-	-	V	16 to 25 MHz
		$0.5 ext{ x}$ $V_{ ext{DDIM}}$	-	-	V	25 to 40 MHz
Input voltage range limits for signal on XTAL1	$V_{\rm IX1}$ SR	-1.7 + V _{DDIM}	-	1.7	V	2)

Table 24 External Clock Input Characteristics

Electrical Parameters

Figure 27 External Bus Arbitration, Regaining the Bus

Notes

- 1. This is the last chance for BREQ to trigger the indicated regain sequence. Even if BREQ is activated earlier, the regain sequence is initiated by HOLD going high. Please note that HOLD may also be deactivated without the XE167xM requesting the bus.
- 2. The control outputs will be resistive high (pull-up) before being driven inactive (ALE will be low).
- 3. The next XE167xM-driven bus cycle may start here.

Package and Reliability

5.3 Quality Declarations

The operation lifetime of the XE167xM depends on the operating temperature. The life time decreases with increasing temperature as shown in **Table 43**.

Table 42 Quality Parameters

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Operation lifetime	t _{OP} CC	-	-	20	а	See Table 43
ESD susceptibility according to Human Body Model (HBM)	$V_{\rm HBM}$ SR	-	-	2 000	V	EIA/JESD22- A114-B
Moisture sensitivity level	MSL CC	-	-	3	_	JEDEC J-STD-020C

Table 43 Lifetime dependency from Temperature

Operating Time	Operating Temperature
20 a	$T_{\rm J} \leq 110^{\circ}{\rm C}$
95 500 h	$T_{\rm J}$ = 120°C
68 500 h	$T_{\rm J} = 125^{\circ}{\rm C}$
49 500 h	$T_{\rm J}=130^{\circ}{\rm C}$
26 400 h	$T_{\rm J}=140^{\circ}{\rm C}$
14 500 h	$T_{\rm J} = 150^{\circ}{\rm C}$

www.infineon.com

Published by Infineon Technologies AG