




Welcome to **E-XFL.COM** 

**Understanding Embedded - CPLDs (Complex Programmable Logic Devices)** 

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

## **Applications of Embedded - CPLDs**

| Details                         |                                                               |
|---------------------------------|---------------------------------------------------------------|
| Product Status                  | Obsolete                                                      |
| Programmable Type               | EE PLD                                                        |
| Delay Time tpd(1) Max           | 15 ns                                                         |
| Voltage Supply - Internal       | 4.75V ~ 5.25V                                                 |
| Number of Logic Elements/Blocks | 2                                                             |
| Number of Macrocells            | 32                                                            |
| Number of Gates                 | 600                                                           |
| Number of I/O                   | 36                                                            |
| Operating Temperature           | 0°C ~ 70°C (TA)                                               |
| Mounting Type                   | Surface Mount                                                 |
| Package / Case                  | 44-LCC (J-Lead)                                               |
| Supplier Device Package         | 44-PLCC (16.59x16.59)                                         |
| Purchase URL                    | https://www.e-xfl.com/product-detail/intel/epm7032lc44-15s02a |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, and VeriBest
- Programming support
  - Altera's Master Programming Unit (MPU) and programming hardware from third-party manufacturers program all MAX 7000 devices
  - The BitBlaster<sup>TM</sup> serial download cable, ByteBlasterMV<sup>TM</sup> parallel port download cable, and MasterBlaster<sup>TM</sup> serial/universal serial bus (USB) download cable program MAX 7000S devices

# General Description

The MAX 7000 family of high-density, high-performance PLDs is based on Altera's second-generation MAX architecture. Fabricated with advanced CMOS technology, the EEPROM-based MAX 7000 family provides 600 to 5,000 usable gates, ISP, pin-to-pin delays as fast as 5 ns, and counter speeds of up to 175.4 MHz. MAX 7000S devices in the -5, -6, -7, and -10 speed grades as well as MAX 7000 and MAX 7000E devices in -5, -6, -7, -10P, and -12P speed grades comply with the PCI Special Interest Group (PCI SIG) *PCI Local Bus Specification, Revision 2.2.* See Table 3 for available speed grades.

| Device   | Speed Grade |          |          |          |          |          |          |          |          |          |  |  |  |
|----------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|--|--|
|          | -5          | -6       | -7       | -10P     | -10      | -12P     | -12      | -15      | -15T     | -20      |  |  |  |
| EPM7032  |             | <b>✓</b> | <b>✓</b> |          | <b>✓</b> |          | <b>✓</b> | <b>✓</b> | <b>✓</b> |          |  |  |  |
| EPM7032S | <b>✓</b>    | <b>✓</b> | <b>✓</b> |          | <b>✓</b> |          |          |          |          |          |  |  |  |
| EPM7064  |             | <b>✓</b> | <b>✓</b> |          | ~        |          | <b>✓</b> | <b>✓</b> |          |          |  |  |  |
| EPM7064S | <b>✓</b>    | <b>✓</b> | <b>✓</b> |          | ~        |          |          |          |          |          |  |  |  |
| EPM7096  |             |          | <b>✓</b> |          | ~        |          | <b>✓</b> | <b>✓</b> |          |          |  |  |  |
| EPM7128E |             |          | <b>✓</b> | <b>✓</b> | ~        |          | <b>✓</b> | <b>✓</b> |          | <b>✓</b> |  |  |  |
| EPM7128S |             | <b>✓</b> | <b>✓</b> |          | <b>✓</b> |          |          | <b>✓</b> |          |          |  |  |  |
| EPM7160E |             |          |          | <b>✓</b> | <b>✓</b> |          | <b>✓</b> | <b>✓</b> |          | <b>✓</b> |  |  |  |
| EPM7160S |             | <b>✓</b> | <b>✓</b> |          | ~        |          |          | <b>✓</b> |          |          |  |  |  |
| EPM7192E |             |          |          |          |          | <b>✓</b> | <b>✓</b> | <b>✓</b> |          | <b>✓</b> |  |  |  |
| EPM7192S |             |          | <b>✓</b> |          | <b>✓</b> |          |          | <b>✓</b> |          |          |  |  |  |
| EPM7256E |             |          |          |          |          | <b>✓</b> | <b>✓</b> | <b>✓</b> |          | <b>✓</b> |  |  |  |
| EPM7256S |             |          | <b>✓</b> |          | <b>✓</b> |          |          | <b>✓</b> |          |          |  |  |  |

The MAX 7000 architecture includes four dedicated inputs that can be used as general-purpose inputs or as high-speed, global control signals (clock, clear, and two output enable signals) for each macrocell and I/O pin. Figure 1 shows the architecture of EPM7032, EPM7064, and EPM7096 devices.

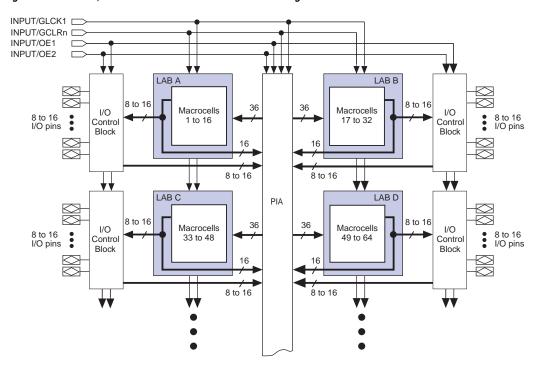



Figure 1. EPM7032, EPM7064 & EPM7096 Device Block Diagram

Each programmable register can be clocked in three different modes:

- By a global clock signal. This mode achieves the fastest clock-tooutput performance.
- By a global clock signal and enabled by an active-high clock enable. This mode provides an enable on each flipflop while still achieving the fast clock-to-output performance of the global clock.
- By an array clock implemented with a product term. In this mode, the flipflop can be clocked by signals from buried macrocells or I/O pins.

In EPM7032, EPM7064, and EPM7096 devices, the global clock signal is available from a dedicated clock pin, GCLK1, as shown in Figure 1. In MAX 7000E and MAX 7000S devices, two global clock signals are available. As shown in Figure 2, these global clock signals can be the true or the complement of either of the global clock pins, GCLK1 or GCLK2.

Each register also supports asynchronous preset and clear functions. As shown in Figures 3 and 4, the product-term select matrix allocates product terms to control these operations. Although the product-term-driven preset and clear of the register are active high, active-low control can be obtained by inverting the signal within the logic array. In addition, each register clear function can be individually driven by the active-low dedicated global clear pin (GCLRn). Upon power-up, each register in the device will be set to a low state.

All MAX 7000E and MAX 7000S I/O pins have a fast input path to a macrocell register. This dedicated path allows a signal to bypass the PIA and combinatorial logic and be driven to an input D flipflop with an extremely fast (2.5 ns) input setup time.

## **Expander Product Terms**

Although most logic functions can be implemented with the five product terms available in each macrocell, the more complex logic functions require additional product terms. Another macrocell can be used to supply the required logic resources; however, the MAX 7000 architecture also allows both shareable and parallel expander product terms ("expanders") that provide additional product terms directly to any macrocell in the same LAB. These expanders help ensure that logic is synthesized with the fewest possible logic resources to obtain the fastest possible speed.



For more information on using the Jam language, refer to AN 122: Using Jam STAPL for ISP & ICR via an Embedded Processor.

The ISP circuitry in MAX 7000S devices is compatible with IEEE Std. 1532 specification. The IEEE Std. 1532 is a standard developed to allow concurrent ISP between multiple PLD vendors.

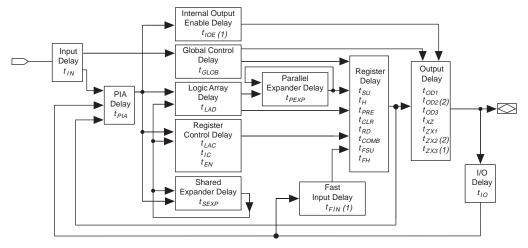
## **Programming Sequence**

During in-system programming, instructions, addresses, and data are shifted into the MAX 7000S device through the TDI input pin. Data is shifted out through the TDO output pin and compared against the expected data.

Programming a pattern into the device requires the following six ISP stages. A stand-alone verification of a programmed pattern involves only stages 1, 2, 5, and 6.

- Enter ISP. The enter ISP stage ensures that the I/O pins transition smoothly from user mode to ISP mode. The enter ISP stage requires 1 ms.
- 2. *Check ID*. Before any program or verify process, the silicon ID is checked. The time required to read this silicon ID is relatively small compared to the overall programming time.
- 3. *Bulk Erase*. Erasing the device in-system involves shifting in the instructions to erase the device and applying one erase pulse of 100 ms.
- Program. Programming the device in-system involves shifting in the address and data and then applying the programming pulse to program the EEPROM cells. This process is repeated for each EEPROM address.
- Verify. Verifying an Altera device in-system involves shifting in addresses, applying the read pulse to verify the EEPROM cells, and shifting out the data for comparison. This process is repeated for each EEPROM address.
- 6. Exit ISP. An exit ISP stage ensures that the I/O pins transition smoothly from ISP mode to user mode. The exit ISP stage requires 1 ms.

The programming times described in Tables 6 through 8 are associated with the worst-case method using the enhanced ISP algorithm.


| Table 6. MAX 7000S t <sub>PU</sub> | able 6. MAX 7000S t <sub>PULSE</sub> & Cycle <sub>TCK</sub> Values |                       |                          |                       |  |  |  |  |  |  |  |  |
|------------------------------------|--------------------------------------------------------------------|-----------------------|--------------------------|-----------------------|--|--|--|--|--|--|--|--|
| Device                             | Progra                                                             | ımming                | Stand-Alone Verification |                       |  |  |  |  |  |  |  |  |
|                                    | t <sub>PPULSE</sub> (s)                                            | Cycle <sub>PTCK</sub> | t <sub>VPULSE</sub> (s)  | Cycle <sub>VTCK</sub> |  |  |  |  |  |  |  |  |
| EPM7032S                           | 4.02                                                               | 342,000               | 0.03                     | 200,000               |  |  |  |  |  |  |  |  |
| EPM7064S                           | 4.50                                                               | 504,000               | 0.03                     | 308,000               |  |  |  |  |  |  |  |  |
| EPM7128S                           | 5.11                                                               | 832,000               | 0.03                     | 528,000               |  |  |  |  |  |  |  |  |
| EPM7160S                           | 5.35                                                               | 1,001,000             | 0.03                     | 640,000               |  |  |  |  |  |  |  |  |
| EPM7192S                           | 5.71                                                               | 1,192,000             | 0.03                     | 764,000               |  |  |  |  |  |  |  |  |
| EPM7256S                           | 6.43                                                               | 1,603,000             | 0.03                     | 1,024,000             |  |  |  |  |  |  |  |  |

Tables 7 and 8 show the in-system programming and stand alone verification times for several common test clock frequencies.

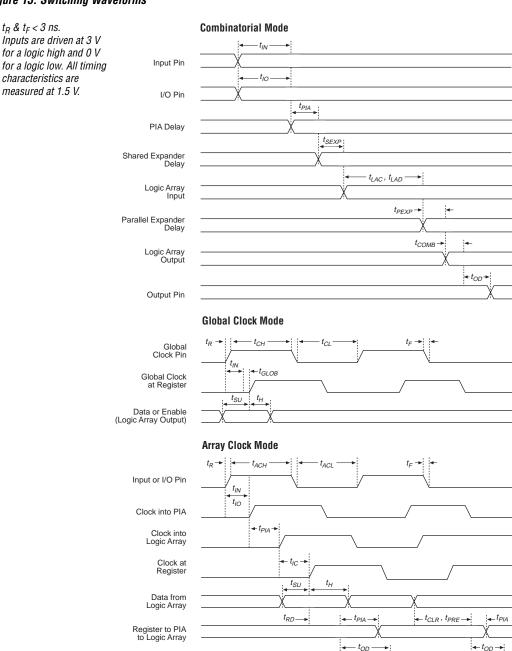
| Table 7. MAX 7000S In-System Programming Times for Different Test Clock Frequencies |        |       |       |       |         |         |         |        |       |  |  |  |
|-------------------------------------------------------------------------------------|--------|-------|-------|-------|---------|---------|---------|--------|-------|--|--|--|
| Device                                                                              |        |       |       | f     | TCK     |         |         |        | Units |  |  |  |
|                                                                                     | 10 MHz | 5 MHz | 2 MHz | 1 MHz | 500 kHz | 200 kHz | 100 kHz | 50 kHz |       |  |  |  |
| EPM7032S                                                                            | 4.06   | 4.09  | 4.19  | 4.36  | 4.71    | 5.73    | 7.44    | 10.86  | s     |  |  |  |
| EPM7064S                                                                            | 4.55   | 4.60  | 4.76  | 5.01  | 5.51    | 7.02    | 9.54    | 14.58  | S     |  |  |  |
| EPM7128S                                                                            | 5.19   | 5.27  | 5.52  | 5.94  | 6.77    | 9.27    | 13.43   | 21.75  | S     |  |  |  |
| EPM7160S                                                                            | 5.45   | 5.55  | 5.85  | 6.35  | 7.35    | 10.35   | 15.36   | 25.37  | S     |  |  |  |
| EPM7192S                                                                            | 5.83   | 5.95  | 6.30  | 6.90  | 8.09    | 11.67   | 17.63   | 29.55  | S     |  |  |  |
| EPM7256S                                                                            | 6.59   | 6.75  | 7.23  | 8.03  | 9.64    | 14.45   | 22.46   | 38.49  | S     |  |  |  |

| Table 8. MAX | Table 8. MAX 7000S Stand-Alone Verification Times for Different Test Clock Frequencies |       |       |       |         |         |         |        |       |  |  |  |  |  |
|--------------|----------------------------------------------------------------------------------------|-------|-------|-------|---------|---------|---------|--------|-------|--|--|--|--|--|
| Device       |                                                                                        |       |       | 1     | тск     |         |         |        | Units |  |  |  |  |  |
|              | 10 MHz                                                                                 | 5 MHz | 2 MHz | 1 MHz | 500 kHz | 200 kHz | 100 kHz | 50 kHz |       |  |  |  |  |  |
| EPM7032S     | 0.05                                                                                   | 0.07  | 0.13  | 0.23  | 0.43    | 1.03    | 2.03    | 4.03   | s     |  |  |  |  |  |
| EPM7064S     | 0.06                                                                                   | 0.09  | 0.18  | 0.34  | 0.64    | 1.57    | 3.11    | 6.19   | S     |  |  |  |  |  |
| EPM7128S     | 0.08                                                                                   | 0.14  | 0.29  | 0.56  | 1.09    | 2.67    | 5.31    | 10.59  | S     |  |  |  |  |  |
| EPM7160S     | 0.09                                                                                   | 0.16  | 0.35  | 0.67  | 1.31    | 3.23    | 6.43    | 12.83  | S     |  |  |  |  |  |
| EPM7192S     | 0.11                                                                                   | 0.18  | 0.41  | 0.79  | 1.56    | 3.85    | 7.67    | 15.31  | S     |  |  |  |  |  |
| EPM7256S     | 0.13                                                                                   | 0.24  | 0.54  | 1.06  | 2.08    | 5.15    | 10.27   | 20.51  | S     |  |  |  |  |  |

Figure 12. MAX 7000 Timing Model



### Notes:


- (1) Only available in MAX 7000E and MAX 7000S devices.
- (2) Not available in 44-pin devices.

The timing characteristics of any signal path can be derived from the timing model and parameters of a particular device. External timing parameters, which represent pin-to-pin timing delays, can be calculated as the sum of internal parameters. Figure 13 shows the internal timing relationship of internal and external delay parameters.



For more infomration, see *Application Note* 94 (Understanding MAX 7000 *Timing*).

## Figure 13. Switching Waveforms



30 Altera Corporation

Register Output to Pin

| Symbol            | Parameter                                                                                 | Conditions     | Speed | Grade -6 | Speed ( | Grade -7 | Unit |
|-------------------|-------------------------------------------------------------------------------------------|----------------|-------|----------|---------|----------|------|
|                   |                                                                                           |                | Min   | Max      | Min     | Max      |      |
| t <sub>IN</sub>   | Input pad and buffer delay                                                                |                |       | 0.4      |         | 0.5      | ns   |
| $t_{IO}$          | I/O input pad and buffer delay                                                            |                |       | 0.4      |         | 0.5      | ns   |
| t <sub>FIN</sub>  | Fast input delay                                                                          | (2)            |       | 0.8      |         | 1.0      | ns   |
| t <sub>SEXP</sub> | Shared expander delay                                                                     |                |       | 3.5      |         | 4.0      | ns   |
| $t_{PEXP}$        | Parallel expander delay                                                                   |                |       | 0.8      |         | 0.8      | ns   |
| $t_{LAD}$         | Logic array delay                                                                         |                |       | 2.0      |         | 3.0      | ns   |
| t <sub>LAC</sub>  | Logic control array delay                                                                 |                |       | 2.0      |         | 3.0      | ns   |
| t <sub>IOE</sub>  | Internal output enable delay                                                              | (2)            |       |          |         | 2.0      | ns   |
| t <sub>OD1</sub>  | Output buffer and pad delay<br>Slow slew rate = off, V <sub>CCIO</sub> = 5.0 V            | C1 = 35 pF     |       | 2.0      |         | 2.0      | ns   |
| t <sub>OD2</sub>  | Output buffer and pad delay<br>Slow slew rate = off, V <sub>CCIO</sub> = 3.3 V            | C1 = 35 pF (7) |       | 2.5      |         | 2.5      | ns   |
| t <sub>OD3</sub>  | Output buffer and pad delay<br>Slow slew rate = on,<br>V <sub>CCIO</sub> = 5.0 V or 3.3 V | C1 = 35 pF (2) |       | 7.0      |         | 7.0      | ns   |
| t <sub>ZX1</sub>  | Output buffer enable delay<br>Slow slew rate = off, V <sub>CCIO</sub> = 5.0 V             | C1 = 35 pF     |       | 4.0      |         | 4.0      | ns   |
| t <sub>ZX2</sub>  | Output buffer enable delay<br>Slow slew rate = off, V <sub>CCIO</sub> = 3.3 V             | C1 = 35 pF (7) |       | 4.5      |         | 4.5      | ns   |
| t <sub>ZX3</sub>  | Output buffer enable delay<br>Slow slew rate = on<br>V <sub>CCIO</sub> = 5.0 V or 3.3 V   | C1 = 35 pF (2) |       | 9.0      |         | 9.0      | ns   |
| $t_{XZ}$          | Output buffer disable delay                                                               | C1 = 5 pF      |       | 4.0      |         | 4.0      | ns   |
| $t_{SU}$          | Register setup time                                                                       |                | 3.0   |          | 3.0     |          | ns   |
| $t_H$             | Register hold time                                                                        |                | 1.5   |          | 2.0     |          | ns   |
| t <sub>FSU</sub>  | Register setup time of fast input                                                         | (2)            | 2.5   |          | 3.0     |          | ns   |
| $t_{FH}$          | Register hold time of fast input                                                          | (2)            | 0.5   |          | 0.5     |          | ns   |
| $t_{RD}$          | Register delay                                                                            |                |       | 0.8      |         | 1.0      | ns   |
| t <sub>COMB</sub> | Combinatorial delay                                                                       |                |       | 0.8      |         | 1.0      | ns   |
| t <sub>IC</sub>   | Array clock delay                                                                         |                |       | 2.5      |         | 3.0      | ns   |
| t <sub>EN</sub>   | Register enable time                                                                      |                |       | 2.0      |         | 3.0      | ns   |
| t <sub>GLOB</sub> | Global control delay                                                                      |                |       | 0.8      |         | 1.0      | ns   |
| t <sub>PRE</sub>  | Register preset time                                                                      |                |       | 2.0      |         | 2.0      | ns   |
| t <sub>CLR</sub>  | Register clear time                                                                       |                |       | 2.0      |         | 2.0      | ns   |
| t <sub>PIA</sub>  | PIA delay                                                                                 |                |       | 0.8      |         | 1.0      | ns   |
| $t_{LPA}$         | Low-power adder                                                                           | (8)            |       | 10.0     |         | 10.0     | ns   |

| Table 2           | 23. MAX 7000 & MAX 7000E Ext             | ernal Timing Param | <b>eters</b> Note | e (1)       |       |                       |     |  |  |  |
|-------------------|------------------------------------------|--------------------|-------------------|-------------|-------|-----------------------|-----|--|--|--|
| Symbol            | Parameter                                | Conditions         |                   | Speed Grade |       |                       |     |  |  |  |
|                   |                                          |                    | MAX 700           | 0E (-12P)   |       | 00 (-12)<br>DOE (-12) |     |  |  |  |
|                   |                                          |                    | Min               | Max         | Min   | Max                   |     |  |  |  |
| t <sub>PD1</sub>  | Input to non-registered output           | C1 = 35 pF         |                   | 12.0        |       | 12.0                  | ns  |  |  |  |
| t <sub>PD2</sub>  | I/O input to non-registered output       | C1 = 35 pF         |                   | 12.0        |       | 12.0                  | ns  |  |  |  |
| t <sub>SU</sub>   | Global clock setup time                  |                    | 7.0               |             | 10.0  |                       | ns  |  |  |  |
| t <sub>H</sub>    | Global clock hold time                   |                    | 0.0               |             | 0.0   |                       | ns  |  |  |  |
| t <sub>FSU</sub>  | Global clock setup time of fast input    | (2)                | 3.0               |             | 3.0   |                       | ns  |  |  |  |
| t <sub>FH</sub>   | Global clock hold time of fast input     | (2)                | 0.0               |             | 0.0   |                       | ns  |  |  |  |
| t <sub>CO1</sub>  | Global clock to output delay             | C1 = 35 pF         |                   | 6.0         |       | 6.0                   | ns  |  |  |  |
| t <sub>CH</sub>   | Global clock high time                   |                    | 4.0               |             | 4.0   |                       | ns  |  |  |  |
| t <sub>CL</sub>   | Global clock low time                    |                    | 4.0               |             | 4.0   |                       | ns  |  |  |  |
| t <sub>ASU</sub>  | Array clock setup time                   |                    | 3.0               |             | 4.0   |                       | ns  |  |  |  |
| t <sub>AH</sub>   | Array clock hold time                    |                    | 4.0               |             | 4.0   |                       | ns  |  |  |  |
| t <sub>ACO1</sub> | Array clock to output delay              | C1 = 35 pF         |                   | 12.0        |       | 12.0                  | ns  |  |  |  |
| t <sub>ACH</sub>  | Array clock high time                    |                    | 5.0               |             | 5.0   |                       | ns  |  |  |  |
| t <sub>ACL</sub>  | Array clock low time                     |                    | 5.0               |             | 5.0   |                       | ns  |  |  |  |
| t <sub>CPPW</sub> | Minimum pulse width for clear and preset | (3)                | 5.0               |             | 5.0   |                       | ns  |  |  |  |
| t <sub>ODH</sub>  | Output data hold time after clock        | C1 = 35 pF (4)     | 1.0               |             | 1.0   |                       | ns  |  |  |  |
| t <sub>CNT</sub>  | Minimum global clock period              |                    |                   | 11.0        |       | 11.0                  | ns  |  |  |  |
| f <sub>CNT</sub>  | Maximum internal global clock frequency  | (5)                | 90.9              |             | 90.9  |                       | MHz |  |  |  |
| t <sub>ACNT</sub> | Minimum array clock period               |                    |                   | 11.0        |       | 11.0                  | ns  |  |  |  |
| f <sub>ACNT</sub> | Maximum internal array clock frequency   | (5)                | 90.9              |             | 90.9  |                       | MHz |  |  |  |
| f <sub>MAX</sub>  | Maximum clock frequency                  | (6)                | 125.0             |             | 125.0 |                       | MHz |  |  |  |

#### Notes to tables:

- (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This parameter applies to MAX 7000E devices only.
- This minimum pulse width for preset and clear applies for both global clear and array controls. The  $t_{LPA}$  parameter must be added to this minimum width if the clear or reset signal incorporates the  $t_{LAD}$  parameter into the signal path.
- (4) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (5) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (6) The  $f_{MAX}$  values represent the highest frequency for pipelined data.
- (7) Operating conditions:  $V_{CCIO} = 3.3 \text{ V} \pm 10\%$  for commercial and industrial use.
- (8) The  $t_{LPA}$  parameter must be added to the  $t_{LAD}$ ,  $t_{LAC}$ ,  $t_{IC}$ ,  $t_{EN}$ ,  $t_{SEXP}$ ,  $t_{ACL}$ , and  $t_{CPPW}$  parameters for macrocells running in the low-power mode.

Tables 27 and 28 show the EPM7032S AC operating conditions.

| Table 2           | Table 27. EPM7032S External Timing Parameters (Part 1 of 2) Note (1) |                |             |     |       |     |       |     |       |      |     |  |  |  |
|-------------------|----------------------------------------------------------------------|----------------|-------------|-----|-------|-----|-------|-----|-------|------|-----|--|--|--|
| Symbol            | Parameter                                                            | Conditions     | Speed Grade |     |       |     |       |     |       |      |     |  |  |  |
|                   |                                                                      |                | -           | -5  |       | 6   | -7    |     | -1    | 10   |     |  |  |  |
|                   |                                                                      |                | Min         | Max | Min   | Max | Min   | Max | Min   | Max  |     |  |  |  |
| t <sub>PD1</sub>  | Input to non-registered output                                       | C1 = 35 pF     |             | 5.0 |       | 6.0 |       | 7.5 |       | 10.0 | ns  |  |  |  |
| t <sub>PD2</sub>  | I/O input to non-registered output                                   | C1 = 35 pF     |             | 5.0 |       | 6.0 |       | 7.5 |       | 10.0 | ns  |  |  |  |
| t <sub>SU</sub>   | Global clock setup time                                              |                | 2.9         |     | 4.0   |     | 5.0   |     | 7.0   |      | ns  |  |  |  |
| t <sub>H</sub>    | Global clock hold time                                               |                | 0.0         |     | 0.0   |     | 0.0   |     | 0.0   |      | ns  |  |  |  |
| t <sub>FSU</sub>  | Global clock setup time of fast input                                |                | 2.5         |     | 2.5   |     | 2.5   |     | 3.0   |      | ns  |  |  |  |
| t <sub>FH</sub>   | Global clock hold time of fast input                                 |                | 0.0         |     | 0.0   |     | 0.0   |     | 0.5   |      | ns  |  |  |  |
| t <sub>CO1</sub>  | Global clock to output delay                                         | C1 = 35 pF     |             | 3.2 |       | 3.5 |       | 4.3 |       | 5.0  | ns  |  |  |  |
| t <sub>CH</sub>   | Global clock high time                                               |                | 2.0         |     | 2.5   |     | 3.0   |     | 4.0   |      | ns  |  |  |  |
| t <sub>CL</sub>   | Global clock low time                                                |                | 2.0         |     | 2.5   |     | 3.0   |     | 4.0   |      | ns  |  |  |  |
| t <sub>ASU</sub>  | Array clock setup time                                               |                | 0.7         |     | 0.9   |     | 1.1   |     | 2.0   |      | ns  |  |  |  |
| t <sub>AH</sub>   | Array clock hold time                                                |                | 1.8         |     | 2.1   |     | 2.7   |     | 3.0   |      | ns  |  |  |  |
| t <sub>ACO1</sub> | Array clock to output delay                                          | C1 = 35 pF     |             | 5.4 |       | 6.6 |       | 8.2 |       | 10.0 | ns  |  |  |  |
| t <sub>ACH</sub>  | Array clock high time                                                |                | 2.5         |     | 2.5   |     | 3.0   |     | 4.0   |      | ns  |  |  |  |
| t <sub>ACL</sub>  | Array clock low time                                                 |                | 2.5         |     | 2.5   |     | 3.0   |     | 4.0   |      | ns  |  |  |  |
| t <sub>CPPW</sub> | Minimum pulse width for clear and preset                             | (2)            | 2.5         |     | 2.5   |     | 3.0   |     | 4.0   |      | ns  |  |  |  |
| t <sub>ODH</sub>  | Output data hold time after clock                                    | C1 = 35 pF (3) | 1.0         |     | 1.0   |     | 1.0   |     | 1.0   |      | ns  |  |  |  |
| t <sub>CNT</sub>  | Minimum global clock period                                          |                |             | 5.7 |       | 7.0 |       | 8.6 |       | 10.0 | ns  |  |  |  |
| f <sub>CNT</sub>  | Maximum internal global clock frequency                              | (4)            | 175.4       |     | 142.9 |     | 116.3 |     | 100.0 |      | MHz |  |  |  |
| t <sub>ACNT</sub> | Minimum array clock period                                           |                |             | 5.7 |       | 7.0 |       | 8.6 |       | 10.0 | ns  |  |  |  |

| Table 27. EPM7032S External Timing Parameters (Part 2 of 2) Note (1) |                                        |            |       |       |       |       |       |     |       |     |      |  |
|----------------------------------------------------------------------|----------------------------------------|------------|-------|-------|-------|-------|-------|-----|-------|-----|------|--|
| Symbol                                                               | Parameter                              | Conditions |       |       |       | Speed | Grade | 1   |       |     | Unit |  |
|                                                                      |                                        |            | -     | -5 -6 |       |       |       | 7   | -10   |     |      |  |
|                                                                      |                                        |            | Min   | Max   | Min   | Max   | Min   | Max | Min   | Max |      |  |
| f <sub>ACNT</sub>                                                    | Maximum internal array clock frequency | (4)        | 175.4 |       | 142.9 |       | 116.3 |     | 100.0 |     | MHz  |  |
| f <sub>MAX</sub>                                                     | Maximum clock frequency                | (5)        | 250.0 |       | 200.0 |       | 166.7 |     | 125.0 |     | MHz  |  |

| Table 28. EPM7032\$ Internal Timing Parameters Note (1) |                                   |                |     |     |     |       |       |     |     |     |      |  |
|---------------------------------------------------------|-----------------------------------|----------------|-----|-----|-----|-------|-------|-----|-----|-----|------|--|
| Symbol                                                  | Parameter                         | Conditions     |     |     |     | Speed | Grade | )   |     |     | Unit |  |
|                                                         |                                   |                | _   | 5   | -   | 6     | -     | 7   | -   | 10  |      |  |
|                                                         |                                   |                | Min | Max | Min | Max   | Min   | Max | Min | Max |      |  |
| t <sub>IN</sub>                                         | Input pad and buffer delay        |                |     | 0.2 |     | 0.2   |       | 0.3 |     | 0.5 | ns   |  |
| t <sub>IO</sub>                                         | I/O input pad and buffer delay    |                |     | 0.2 |     | 0.2   |       | 0.3 |     | 0.5 | ns   |  |
| t <sub>FIN</sub>                                        | Fast input delay                  |                |     | 2.2 |     | 2.1   |       | 2.5 |     | 1.0 | ns   |  |
| t <sub>SEXP</sub>                                       | Shared expander delay             |                |     | 3.1 |     | 3.8   |       | 4.6 |     | 5.0 | ns   |  |
| t <sub>PEXP</sub>                                       | Parallel expander delay           |                |     | 0.9 |     | 1.1   |       | 1.4 |     | 0.8 | ns   |  |
| $t_{LAD}$                                               | Logic array delay                 |                |     | 2.6 |     | 3.3   |       | 4.0 |     | 5.0 | ns   |  |
| t <sub>LAC</sub>                                        | Logic control array delay         |                |     | 2.5 |     | 3.3   |       | 4.0 |     | 5.0 | ns   |  |
| t <sub>IOE</sub>                                        | Internal output enable delay      |                |     | 0.7 |     | 0.8   |       | 1.0 |     | 2.0 | ns   |  |
| t <sub>OD1</sub>                                        | Output buffer and pad delay       | C1 = 35 pF     |     | 0.2 |     | 0.3   |       | 0.4 |     | 1.5 | ns   |  |
| t <sub>OD2</sub>                                        | Output buffer and pad delay       | C1 = 35 pF (6) |     | 0.7 |     | 0.8   |       | 0.9 |     | 2.0 | ns   |  |
| t <sub>OD3</sub>                                        | Output buffer and pad delay       | C1 = 35 pF     |     | 5.2 |     | 5.3   |       | 5.4 |     | 5.5 | ns   |  |
| t <sub>ZX1</sub>                                        | Output buffer enable delay        | C1 = 35 pF     |     | 4.0 |     | 4.0   |       | 4.0 |     | 5.0 | ns   |  |
| t <sub>ZX2</sub>                                        | Output buffer enable delay        | C1 = 35 pF (6) |     | 4.5 |     | 4.5   |       | 4.5 |     | 5.5 | ns   |  |
| t <sub>ZX3</sub>                                        | Output buffer enable delay        | C1 = 35 pF     |     | 9.0 |     | 9.0   |       | 9.0 |     | 9.0 | ns   |  |
| $t_{XZ}$                                                | Output buffer disable delay       | C1 = 5 pF      |     | 4.0 |     | 4.0   |       | 4.0 |     | 5.0 | ns   |  |
| t <sub>SU</sub>                                         | Register setup time               |                | 0.8 |     | 1.0 |       | 1.3   |     | 2.0 |     | ns   |  |
| $t_H$                                                   | Register hold time                |                | 1.7 |     | 2.0 |       | 2.5   |     | 3.0 |     | ns   |  |
| t <sub>FSU</sub>                                        | Register setup time of fast input |                | 1.9 |     | 1.8 |       | 1.7   |     | 3.0 |     | ns   |  |
| t <sub>FH</sub>                                         | Register hold time of fast input  |                | 0.6 |     | 0.7 |       | 0.8   |     | 0.5 |     | ns   |  |
| $t_{RD}$                                                | Register delay                    |                |     | 1.2 |     | 1.6   |       | 1.9 |     | 2.0 | ns   |  |
| $t_{COMB}$                                              | Combinatorial delay               |                |     | 0.9 |     | 1.1   |       | 1.4 |     | 2.0 | ns   |  |
| t <sub>IC</sub>                                         | Array clock delay                 |                |     | 2.7 |     | 3.4   |       | 4.2 |     | 5.0 | ns   |  |
| t <sub>EN</sub>                                         | Register enable time              |                |     | 2.6 |     | 3.3   |       | 4.0 |     | 5.0 | ns   |  |
| t <sub>GLOB</sub>                                       | Global control delay              |                |     | 1.6 |     | 1.4   |       | 1.7 |     | 1.0 | ns   |  |
| t <sub>PRE</sub>                                        | Register preset time              |                |     | 2.0 |     | 2.4   |       | 3.0 |     | 3.0 | ns   |  |
| t <sub>CLR</sub>                                        | Register clear time               |                |     | 2.0 |     | 2.4   |       | 3.0 |     | 3.0 | ns   |  |

| Table 2           | Table 29. EPM7064S External Timing Parameters (Part 2 of 2) Note (1) |                |       |     |       |       |       |     |       |      |      |  |  |
|-------------------|----------------------------------------------------------------------|----------------|-------|-----|-------|-------|-------|-----|-------|------|------|--|--|
| Symbol            | Parameter                                                            | Conditions     |       |     |       | Speed | Grade |     |       |      | Unit |  |  |
|                   |                                                                      |                | -     | 5   | -     | 6     | -     | 7   | -1    | 10   |      |  |  |
|                   |                                                                      |                | Min   | Max | Min   | Max   | Min   | Max | Min   | Max  |      |  |  |
| t <sub>ACO1</sub> | Array clock to output delay                                          | C1 = 35 pF     |       | 5.4 |       | 6.7   |       | 7.5 |       | 10.0 | ns   |  |  |
| t <sub>ACH</sub>  | Array clock high time                                                |                | 2.5   |     | 2.5   |       | 3.0   |     | 4.0   |      | ns   |  |  |
| t <sub>ACL</sub>  | Array clock low time                                                 |                | 2.5   |     | 2.5   |       | 3.0   |     | 4.0   |      | ns   |  |  |
| t <sub>CPPW</sub> | Minimum pulse width for clear and preset                             | (2)            | 2.5   |     | 2.5   |       | 3.0   |     | 4.0   |      | ns   |  |  |
| t <sub>ODH</sub>  | Output data hold time after clock                                    | C1 = 35 pF (3) | 1.0   |     | 1.0   |       | 1.0   |     | 1.0   |      | ns   |  |  |
| t <sub>CNT</sub>  | Minimum global clock period                                          |                |       | 5.7 |       | 7.1   |       | 8.0 |       | 10.0 | ns   |  |  |
| f <sub>CNT</sub>  | Maximum internal global clock frequency                              | (4)            | 175.4 |     | 140.8 |       | 125.0 |     | 100.0 |      | MHz  |  |  |
| t <sub>ACNT</sub> | Minimum array clock period                                           |                |       | 5.7 |       | 7.1   |       | 8.0 |       | 10.0 | ns   |  |  |
| f <sub>ACNT</sub> | Maximum internal array clock frequency                               | (4)            | 175.4 |     | 140.8 |       | 125.0 |     | 100.0 |      | MHz  |  |  |
| f <sub>MAX</sub>  | Maximum clock frequency                                              | (5)            | 250.0 |     | 200.0 |       | 166.7 |     | 125.0 |      | MHz  |  |  |

| Table 3           | Table 30. EPM7064S Internal Timing Parameters (Part 1 of 2) Note (1) |                |             |     |     |     |     |     |     |     |    |  |  |
|-------------------|----------------------------------------------------------------------|----------------|-------------|-----|-----|-----|-----|-----|-----|-----|----|--|--|
| Symbol            | Parameter                                                            | Conditions     | Speed Grade |     |     |     |     |     |     |     |    |  |  |
|                   |                                                                      |                | -           | -5  |     | -6  |     | 7   | -10 |     |    |  |  |
|                   |                                                                      |                | Min         | Max | Min | Max | Min | Max | Min | Max |    |  |  |
| $t_{IN}$          | Input pad and buffer delay                                           |                |             | 0.2 |     | 0.2 |     | 0.5 |     | 0.5 | ns |  |  |
| t <sub>IO</sub>   | I/O input pad and buffer delay                                       |                |             | 0.2 |     | 0.2 |     | 0.5 |     | 0.5 | ns |  |  |
| t <sub>FIN</sub>  | Fast input delay                                                     |                |             | 2.2 |     | 2.6 |     | 1.0 |     | 1.0 | ns |  |  |
| t <sub>SEXP</sub> | Shared expander delay                                                |                |             | 3.1 |     | 3.8 |     | 4.0 |     | 5.0 | ns |  |  |
| t <sub>PEXP</sub> | Parallel expander delay                                              |                |             | 0.9 |     | 1.1 |     | 0.8 |     | 0.8 | ns |  |  |
| $t_{LAD}$         | Logic array delay                                                    |                |             | 2.6 |     | 3.2 |     | 3.0 |     | 5.0 | ns |  |  |
| t <sub>LAC</sub>  | Logic control array delay                                            |                |             | 2.5 |     | 3.2 |     | 3.0 |     | 5.0 | ns |  |  |
| t <sub>IOE</sub>  | Internal output enable delay                                         |                |             | 0.7 |     | 0.8 |     | 2.0 |     | 2.0 | ns |  |  |
| t <sub>OD1</sub>  | Output buffer and pad delay                                          | C1 = 35 pF     |             | 0.2 |     | 0.3 |     | 2.0 |     | 1.5 | ns |  |  |
| t <sub>OD2</sub>  | Output buffer and pad delay                                          | C1 = 35 pF (6) |             | 0.7 |     | 0.8 |     | 2.5 |     | 2.0 | ns |  |  |
| t <sub>OD3</sub>  | Output buffer and pad delay                                          | C1 = 35 pF     |             | 5.2 |     | 5.3 |     | 7.0 |     | 5.5 | ns |  |  |
| $t_{ZX1}$         | Output buffer enable delay                                           | C1 = 35 pF     |             | 4.0 |     | 4.0 |     | 4.0 |     | 5.0 | ns |  |  |
| $t_{ZX2}$         | Output buffer enable delay                                           | C1 = 35 pF (6) |             | 4.5 |     | 4.5 |     | 4.5 |     | 5.5 | ns |  |  |
| t <sub>ZX3</sub>  | Output buffer enable delay                                           | C1 = 35 pF     |             | 9.0 |     | 9.0 |     | 9.0 |     | 9.0 | ns |  |  |
| $t_{XZ}$          | Output buffer disable delay                                          | C1 = 5 pF      |             | 4.0 |     | 4.0 |     | 4.0 |     | 5.0 | ns |  |  |
| t <sub>SU</sub>   | Register setup time                                                  |                | 0.8         |     | 1.0 |     | 3.0 |     | 2.0 |     | ns |  |  |
| t <sub>H</sub>    | Register hold time                                                   |                | 1.7         |     | 2.0 |     | 2.0 |     | 3.0 |     | ns |  |  |

| Symbol            | Parameter                         | Conditions |     | Speed Grade |     |      |     |      |     |      | Unit |
|-------------------|-----------------------------------|------------|-----|-------------|-----|------|-----|------|-----|------|------|
|                   |                                   |            | -5  |             | -6  |      | -7  |      | -10 |      |      |
|                   |                                   |            | Min | Max         | Min | Max  | Min | Max  | Min | Max  |      |
| t <sub>FSU</sub>  | Register setup time of fast input |            | 1.9 |             | 1.8 |      | 3.0 |      | 3.0 |      | ns   |
| t <sub>FH</sub>   | Register hold time of fast input  |            | 0.6 |             | 0.7 |      | 0.5 |      | 0.5 |      | ns   |
| t <sub>RD</sub>   | Register delay                    |            |     | 1.2         |     | 1.6  |     | 1.0  |     | 2.0  | ns   |
| t <sub>COMB</sub> | Combinatorial delay               |            |     | 0.9         |     | 1.0  |     | 1.0  |     | 2.0  | ns   |
| t <sub>IC</sub>   | Array clock delay                 |            |     | 2.7         |     | 3.3  |     | 3.0  |     | 5.0  | ns   |
| t <sub>EN</sub>   | Register enable time              |            |     | 2.6         |     | 3.2  |     | 3.0  |     | 5.0  | ns   |
| $t_{GLOB}$        | Global control delay              |            |     | 1.6         |     | 1.9  |     | 1.0  |     | 1.0  | ns   |
| t <sub>PRE</sub>  | Register preset time              |            |     | 2.0         |     | 2.4  |     | 2.0  |     | 3.0  | ns   |
| t <sub>CLR</sub>  | Register clear time               |            |     | 2.0         |     | 2.4  |     | 2.0  |     | 3.0  | ns   |
| t <sub>PIA</sub>  | PIA delay                         | (7)        |     | 1.1         |     | 1.3  |     | 1.0  |     | 1.0  | ns   |
| $t_{LPA}$         | Low-power adder                   | (8)        |     | 12.0        |     | 11.0 |     | 10.0 |     | 11.0 | ns   |

### Notes to tables:

- (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t<sub>LPA</sub> parameter must be added to this minimum width if the clear or reset signal incorporates the t<sub>LAD</sub> parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The  $f_{MAX}$  values represent the highest frequency for pipelined data.
- (6) Operating conditions:  $V_{CCIO} = 3.3 \text{ V} \pm 10\%$  for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The  $t_{LPA}$  parameter must be added to the  $t_{LAD}$ ,  $t_{LAC}$ ,  $t_{IC}$ ,  $t_{EN}$ ,  $t_{SEXP}$ ,  $\mathbf{t_{ACL}}$ , and  $\mathbf{t_{CPPW}}$  parameters for macrocells running in the low-power mode.

Tables 31 and 32 show the EPM7128S AC operating conditions.

| Table 31. EPM7128S External Timing Parameters Note (1) |                                          |                |                        |     |       |     |       |      |       |      |     |
|--------------------------------------------------------|------------------------------------------|----------------|------------------------|-----|-------|-----|-------|------|-------|------|-----|
| Symbol                                                 | Parameter                                | Conditions     | Conditions Speed Grade |     |       |     |       |      |       | Unit |     |
|                                                        |                                          |                | -6                     |     | -7    |     | -10   |      | -15   |      | •   |
|                                                        |                                          |                | Min                    | Max | Min   | Max | Min   | Max  | Min   | Max  |     |
| t <sub>PD1</sub>                                       | Input to non-registered output           | C1 = 35 pF     |                        | 6.0 |       | 7.5 |       | 10.0 |       | 15.0 | ns  |
| t <sub>PD2</sub>                                       | I/O input to non-registered output       | C1 = 35 pF     |                        | 6.0 |       | 7.5 |       | 10.0 |       | 15.0 | ns  |
| t <sub>SU</sub>                                        | Global clock setup time                  |                | 3.4                    |     | 6.0   |     | 7.0   |      | 11.0  |      | ns  |
| t <sub>H</sub>                                         | Global clock hold time                   |                | 0.0                    |     | 0.0   |     | 0.0   |      | 0.0   |      | ns  |
| t <sub>FSU</sub>                                       | Global clock setup time of fast input    |                | 2.5                    |     | 3.0   |     | 3.0   |      | 3.0   |      | ns  |
| t <sub>FH</sub>                                        | Global clock hold time of fast input     |                | 0.0                    |     | 0.5   |     | 0.5   |      | 0.0   |      | ns  |
| t <sub>CO1</sub>                                       | Global clock to output delay             | C1 = 35 pF     |                        | 4.0 |       | 4.5 |       | 5.0  |       | 8.0  | ns  |
| t <sub>CH</sub>                                        | Global clock high time                   |                | 3.0                    |     | 3.0   |     | 4.0   |      | 5.0   |      | ns  |
| t <sub>CL</sub>                                        | Global clock low time                    |                | 3.0                    |     | 3.0   |     | 4.0   |      | 5.0   |      | ns  |
| t <sub>ASU</sub>                                       | Array clock setup time                   |                | 0.9                    |     | 3.0   |     | 2.0   |      | 4.0   |      | ns  |
| t <sub>AH</sub>                                        | Array clock hold time                    |                | 1.8                    |     | 2.0   |     | 5.0   |      | 4.0   |      | ns  |
| t <sub>ACO1</sub>                                      | Array clock to output delay              | C1 = 35 pF     |                        | 6.5 |       | 7.5 |       | 10.0 |       | 15.0 | ns  |
| t <sub>ACH</sub>                                       | Array clock high time                    |                | 3.0                    |     | 3.0   |     | 4.0   |      | 6.0   |      | ns  |
| t <sub>ACL</sub>                                       | Array clock low time                     |                | 3.0                    |     | 3.0   |     | 4.0   |      | 6.0   |      | ns  |
| t <sub>CPPW</sub>                                      | Minimum pulse width for clear and preset | (2)            | 3.0                    |     | 3.0   |     | 4.0   |      | 6.0   |      | ns  |
| t <sub>ODH</sub>                                       | Output data hold time after clock        | C1 = 35 pF (3) | 1.0                    |     | 1.0   |     | 1.0   |      | 1.0   |      | ns  |
| t <sub>CNT</sub>                                       | Minimum global clock period              |                |                        | 6.8 |       | 8.0 |       | 10.0 |       | 13.0 | ns  |
| f <sub>CNT</sub>                                       | Maximum internal global clock frequency  | (4)            | 147.1                  |     | 125.0 |     | 100.0 |      | 76.9  |      | MHz |
| t <sub>ACNT</sub>                                      | Minimum array clock period               |                |                        | 6.8 |       | 8.0 |       | 10.0 |       | 13.0 | ns  |
| f <sub>ACNT</sub>                                      | Maximum internal array clock frequency   | (4)            | 147.1                  |     | 125.0 |     | 100.0 |      | 76.9  |      | MHz |
| f <sub>MAX</sub>                                       | Maximum clock frequency                  | (5)            | 166.7                  |     | 166.7 |     | 125.0 |      | 100.0 |      | MHz |

| Table 36. EPM7192S Internal Timing Parameters (Part 2 of 2) Note (1) |                                   |            |     |             |     |      |     |      |    |  |
|----------------------------------------------------------------------|-----------------------------------|------------|-----|-------------|-----|------|-----|------|----|--|
| Symbol                                                               | Parameter                         | Conditions |     | Speed Grade |     |      |     |      |    |  |
|                                                                      |                                   |            | -7  |             | -10 |      | -15 |      |    |  |
|                                                                      |                                   |            | Min | Max         | Min | Max  | Min | Max  |    |  |
| t <sub>H</sub>                                                       | Register hold time                |            | 1.7 |             | 3.0 |      | 4.0 |      | ns |  |
| t <sub>FSU</sub>                                                     | Register setup time of fast input |            | 2.3 |             | 3.0 |      | 2.0 |      | ns |  |
| t <sub>FH</sub>                                                      | Register hold time of fast input  |            | 0.7 |             | 0.5 |      | 1.0 |      | ns |  |
| t <sub>RD</sub>                                                      | Register delay                    |            |     | 1.4         |     | 2.0  |     | 1.0  | ns |  |
| t <sub>COMB</sub>                                                    | Combinatorial delay               |            |     | 1.2         |     | 2.0  |     | 1.0  | ns |  |
| $t_{IC}$                                                             | Array clock delay                 |            |     | 3.2         |     | 5.0  |     | 6.0  | ns |  |
| t <sub>EN</sub>                                                      | Register enable time              |            |     | 3.1         |     | 5.0  |     | 6.0  | ns |  |
| $t_{GLOB}$                                                           | Global control delay              |            |     | 2.5         |     | 1.0  |     | 1.0  | ns |  |
| t <sub>PRE</sub>                                                     | Register preset time              |            |     | 2.7         |     | 3.0  |     | 4.0  | ns |  |
| t <sub>CLR</sub>                                                     | Register clear time               |            |     | 2.7         |     | 3.0  |     | 4.0  | ns |  |
| t <sub>PIA</sub>                                                     | PIA delay                         | (7)        |     | 2.4         |     | 1.0  |     | 2.0  | ns |  |
| $t_{LPA}$                                                            | Low-power adder                   | (8)        |     | 10.0        |     | 11.0 |     | 13.0 | ns |  |

#### Notes to tables:

- These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t<sub>LPA</sub> parameter must be added to this minimum width if the clear or reset signal incorporates the t<sub>LAD</sub> parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The  $f_{MAX}$  values represent the highest frequency for pipelined data.
- (6) Operating conditions:  $V_{CCIO} = 3.3 \text{ V} \pm 10\%$  for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The  $t_{LPA}$  parameter must be added to the  $t_{LAD}$ ,  $t_{LAC}$ ,  $t_{IC}$ ,  $t_{EN}$ ,  $t_{SEXP}$ ,  $\mathbf{t_{ACL}}$ , and  $\mathbf{t_{CPPW}}$  parameters for macrocells running in the low-power mode.

#### Notes to tables:

- These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t<sub>LPA</sub> parameter must be added to this minimum width if the clear or reset signal incorporates the t<sub>LAD</sub> parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The  $f_{MAX}$  values represent the highest frequency for pipelined data.
- (6) Operating conditions:  $V_{CCIO} = 3.3 \text{ V} \pm 10\%$  for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The  $t_{LPA}$  parameter must be added to the  $t_{LAD}$ ,  $t_{LAC}$ ,  $t_{IC}$ ,  $t_{EN}$ ,  $t_{SEXP}$ ,  $\mathbf{t_{ACL}}$ , and  $\mathbf{t_{CPPW}}$  parameters for macrocells running in the low-power mode.

## Power Consumption

Supply power (P) versus frequency ( $f_{MAX}$  in MHz) for MAX 7000 devices is calculated with the following equation:

$$P = P_{INT} + P_{IO} = I_{CCINT} \times V_{CC} + P_{IO}$$

The  $P_{IO}$  value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note* 74 (*Evaluating Power for Altera Devices*).

The I<sub>CCINT</sub> value, which depends on the switching frequency and the application logic, is calculated with the following equation:

$$I_{CCINT} =$$

$$A \times MC_{TON} + B \times (MC_{DEV} - MC_{TON}) + C \times MC_{USED} \times f_{MAX} \times tog_{USED}$$

The parameters in this equation are shown below:

 $MC_{TON}$  = Number of macrocells with the Turbo Bit option turned on,

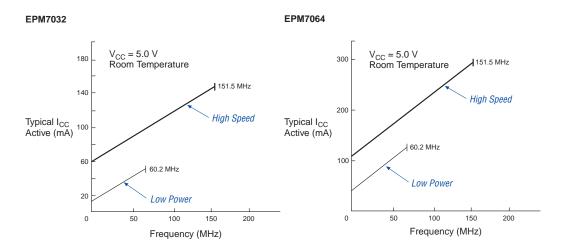
as reported in the MAX+PLUS II Report File (.rpt)

 $MC_{DEV}$  = Number of macrocells in the device

MC<sub>USED</sub> = Total number of macrocells in the design, as reported

in the MAX+PLUS II Report File (.rpt)

 $f_{MAX}$  = Highest clock frequency to the device


tog<sub>LC</sub> = Average ratio of logic cells toggling at each clock

(typically 0.125)

A, B, C = Constants, shown in Table 39

Figure 14 shows typical supply current versus frequency for MAX 7000 devices.

Figure 14. I<sub>CC</sub> vs. Frequency for MAX 7000 Devices (Part 1 of 2)



### EPM7096



## Figure 21. 192-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

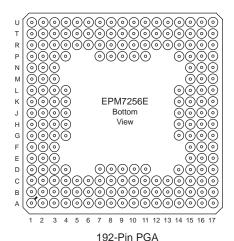
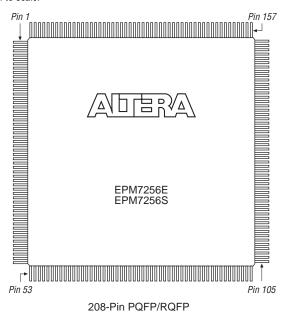




Figure 22. 208-Pin Package Pin-Out Diagram

Package outline not drawn to scale.



# Revision History

The information contained in the *MAX 7000 Programmable Logic Device Family Data Sheet* version 6.7 supersedes information published in previous versions. The following changes were made in the *MAX 7000 Programmable Logic Device Family Data Sheet* version 6.7:

### Version 6.7

The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.7:

Reference to AN 88: Using the Jam Language for ISP & ICR via an Embedded Processor has been replaced by AN 122: Using Jam STAPL for ISP & ICR via an Embedded Processor.

## Version 6.6

The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.6:

- Added Tables 6 through 8.
- Added "Programming Sequence" section on page 17 and "Programming Times" section on page 18.

## Version 6.5

The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.5:

Updated text on page 16.

### Version 6.4

The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.4:

Added Note (5) on page 28.

### Version 6.3

The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.3:

■ Updated the "Open-Drain Output Option (MAX 7000S Devices Only)" section on page 20.



101 Innovation Drive San Jose, CA 95134 (408) 544-7000 www.altera.com Applications Hotline: (800) 800-EPLD Literature Services: literature@altera.com Copyright © 2005 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

I.S. EN ISO 9001