
E·XFL

Intel - EPM7032SLC44-7N Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

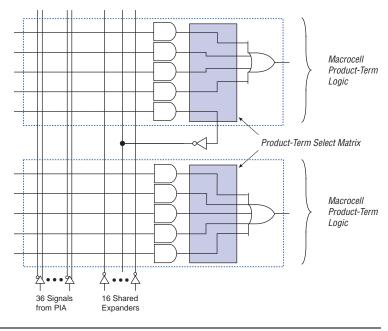
Details

Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	7.5 ns
Voltage Supply - Internal	4.75V ~ 5.25V
Number of Logic Elements/Blocks	2
Number of Macrocells	32
Number of Gates	600
Number of I/O	36
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm7032slc44-7n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. MAX 7000S Device Features							
Feature	EPM7032S	EPM7064S	EPM7128S	EPM7160S	EPM7192S	EPM7256S	
Usable gates	600	1,250	2,500	3,200	3,750	5,000	
Macrocells	32	64	128	160	192	256	
Logic array blocks	2	4	8	10	12	16	
Maximum user I/O pins	36	68	100	104	124	164	
t _{PD} (ns)	5	5	6	6	7.5	7.5	
t _{SU} (ns)	2.9	2.9	3.4	3.4	4.1	3.9	
t _{FSU} (ns)	2.5	2.5	2.5	2.5	3	3	
t _{CO1} (ns)	3.2	3.2	4	3.9	4.7	4.7	
f _{CNT} (MHz)	175.4	175.4	147.1	149.3	125.0	128.2	


...and More Features

- Open-drain output option in MAX 7000S devices
- Programmable macrocell flipflops with individual clear, preset, clock, and clock enable controls
- Programmable power-saving mode for a reduction of over 50% in each macrocell
- Configurable expander product-term distribution, allowing up to 32 product terms per macrocell
- 44 to 208 pins available in plastic J-lead chip carrier (PLCC), ceramic pin-grid array (PGA), plastic quad flat pack (PQFP), power quad flat pack (RQFP), and 1.0-mm thin quad flat pack (TQFP) packages
- Programmable security bit for protection of proprietary designs
- 3.3-V or 5.0-V operation
 - MultiVoltTM I/O interface operation, allowing devices to interface with 3.3-V or 5.0-V devices (MultiVolt I/O operation is not available in 44-pin packages)
 - Pin compatible with low-voltage MAX 7000A and MAX 7000B devices
- Enhanced features available in MAX 7000E and MAX 7000S devices
 - Six pin- or logic-driven output enable signals
 - Two global clock signals with optional inversion
 - Enhanced interconnect resources for improved routability
 - Fast input setup times provided by a dedicated path from I/O pin to macrocell registers
 - Programmable output slew-rate control
- Software design support and automatic place-and-route provided by Altera's development system for Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 workstations

Shareable Expanders

Each LAB has 16 shareable expanders that can be viewed as a pool of uncommitted single product terms (one from each macrocell) with inverted outputs that feed back into the logic array. Each shareable expander can be used and shared by any or all macrocells in the LAB to build complex logic functions. A small delay (t_{SEXP}) is incurred when shareable expanders are used. Figure 5 shows how shareable expanders can feed multiple macrocells.

Figure 5. Shareable Expanders

Shareable expanders can be shared by any or all macrocells in an LAB.

Parallel Expanders

Parallel expanders are unused product terms that can be allocated to a neighboring macrocell to implement fast, complex logic functions. Parallel expanders allow up to 20 product terms to directly feed the macrocell OR logic, with five product terms provided by the macrocell and 15 parallel expanders provided by neighboring macrocells in the LAB.

For more information on using the Jam language, refer to AN 122: Using Jam STAPL for ISP & ICR via an Embedded Processor.

The ISP circuitry in MAX 7000S devices is compatible with IEEE Std. 1532 specification. The IEEE Std. 1532 is a standard developed to allow concurrent ISP between multiple PLD vendors.

Programming Sequence

During in-system programming, instructions, addresses, and data are shifted into the MAX 7000S device through the TDI input pin. Data is shifted out through the TDO output pin and compared against the expected data.

Programming a pattern into the device requires the following six ISP stages. A stand-alone verification of a programmed pattern involves only stages 1, 2, 5, and 6.

- 1. *Enter ISP*. The enter ISP stage ensures that the I/O pins transition smoothly from user mode to ISP mode. The enter ISP stage requires 1 ms.
- 2. *Check ID*. Before any program or verify process, the silicon ID is checked. The time required to read this silicon ID is relatively small compared to the overall programming time.
- 3. *Bulk Erase.* Erasing the device in-system involves shifting in the instructions to erase the device and applying one erase pulse of 100 ms.
- 4. *Program*. Programming the device in-system involves shifting in the address and data and then applying the programming pulse to program the EEPROM cells. This process is repeated for each EEPROM address.
- 5. *Verify.* Verifying an Altera device in-system involves shifting in addresses, applying the read pulse to verify the EEPROM cells, and shifting out the data for comparison. This process is repeated for each EEPROM address.
- 6. *Exit ISP*. An exit ISP stage ensures that the I/O pins transition smoothly from ISP mode to user mode. The exit ISP stage requires 1 ms.

The programming times described in Tables 6 through 8 are associated

Device	Progra	mming	Stand-Alone Verification		
	t _{PPULSE} (s)	Cycle _{PTCK}	t _{VPULSE} (s)	Cycle _{VTCK}	
EPM7032S	4.02	342,000	0.03	200,000	
EPM7064S	4.50	504,000	0.03	308,000	
EPM7128S	5.11	832,000	0.03	528,000	
EPM7160S	5.35	1,001,000	0.03	640,000	
EPM7192S	5.71	1,192,000	0.03	764,000	
EPM7256S	6.43	1,603,000	0.03	1,024,000	

with the worst-case method using the enhanced ISP algorithm.

Tables 7 and 8 show the in-system programming and stand alone verification times for several common test clock frequencies.

Device		f _{TCK}							
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz]
EPM7032S	4.06	4.09	4.19	4.36	4.71	5.73	7.44	10.86	s
EPM7064S	4.55	4.60	4.76	5.01	5.51	7.02	9.54	14.58	S
EPM7128S	5.19	5.27	5.52	5.94	6.77	9.27	13.43	21.75	S
EPM7160S	5.45	5.55	5.85	6.35	7.35	10.35	15.36	25.37	S
EPM7192S	5.83	5.95	6.30	6.90	8.09	11.67	17.63	29.55	S
EPM7256S	6.59	6.75	7.23	8.03	9.64	14.45	22.46	38.49	S

Table 8. MAX 7000S Stand-Alone Verification Times for Different Test Clock Frequencies

									1
Device		f _{TCK}							
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz	
EPM7032S	0.05	0.07	0.13	0.23	0.43	1.03	2.03	4.03	S
EPM7064S	0.06	0.09	0.18	0.34	0.64	1.57	3.11	6.19	S
EPM7128S	0.08	0.14	0.29	0.56	1.09	2.67	5.31	10.59	S
EPM7160S	0.09	0.16	0.35	0.67	1.31	3.23	6.43	12.83	S
EPM7192S	0.11	0.18	0.41	0.79	1.56	3.85	7.67	15.31	S
EPM7256S	0.13	0.24	0.54	1.06	2.08	5.15	10.27	20.51	S

IEEE Std. 1149.1 (JTAG) Boundary-Scan Support

MAX 7000 devices support JTAG BST circuitry as specified by IEEE Std. 1149.1-1990. Table 9 describes the JTAG instructions supported by the MAX 7000 family. The pin-out tables (see the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information) show the location of the JTAG control pins for each device. If the JTAG interface is not required, the JTAG pins are available as user I/O pins.

Table 9. MAX 7000 J	Table 9. MAX 7000 JTAG Instructions						
JTAG Instruction	Devices	Description					
SAMPLE/PRELOAD	EPM7128S	Allows a snapshot of signals at the device pins to be captured and					
	EPM7160S	examined during normal device operation, and permits an initial data					
	EPM7192S	pattern output at the device pins.					
	EPM7256S						
EXTEST	EPM7128S	Allows the external circuitry and board-level interconnections to be					
	EPM7160S	tested by forcing a test pattern at the output pins and capturing test					
	EPM7192S	results at the input pins.					
	EPM7256S						
BYPASS	EPM7032S	Places the 1-bit bypass register between the TDI and TDO pins, which					
	EPM7064S	allows the BST data to pass synchronously through a selected device					
	EPM7128S	to adjacent devices during normal device operation.					
	EPM7160S						
	EPM7192S						
	EPM7256S						
IDCODE	EPM7032S	Selects the IDCODE register and places it between TDI and TDO,					
	EPM7064S	allowing the IDCODE to be serially shifted out of TDO.					
	EPM7128S						
	EPM7160S						
	EPM7192S						
	EPM7256S						
ISP Instructions	EPM7032S	These instructions are used when programming MAX 7000S devices					
	EPM7064S	via the JTAG ports with the MasterBlaster, ByteBlasterMV, BitBlaster					
	EPM7128S	download cable, or using a Jam File (.jam), Jam Byte-Code file (.jbc),					
	EPM7160S	or Serial Vector Format file (.svf) via an embedded processor or test					
	EPM7192S	equipment.					
	EPM7256S						

The instruction register length of MAX 7000S devices is 10 bits. Tables 10 and 11 show the boundary-scan register length and device IDCODE information for MAX 7000S devices.

Table 10. MAX 7000S Boundary-Scan Register Length						
Device Boundary-Scan Register Length						
EPM7032S	1 (1)					
EPM7064S	1 (1)					
EPM7128S	288					
EPM7160S	312					
EPM7192S	360					
EPM7256S	480					

Note:

 This device does not support JTAG boundary-scan testing. Selecting either the EXTEST or SAMPLE/PRELOAD instruction will select the one-bit bypass register.

Table 11. 32-Bit MAX 7000 Device IDCODE Note (1)								
Device	IDCODE (32 Bits)							
	Version (4 Bits)	Part Number (16 Bits)	Manufacturer's Identity (11 Bits)	1 (1 Bit) (2)				
EPM7032S	0000	0111 0000 0011 0010	00001101110	1				
EPM7064S	0000	0111 0000 0110 0100	00001101110	1				
EPM7128S	0000	0111 0001 0010 1000	00001101110	1				
EPM7160S	0000	0111 0001 0110 0000	00001101110	1				
EPM7192S	0000	0111 0001 1001 0010	00001101110	1				
EPM7256S	0000	0111 0010 0101 0110	00001101110	1				

Notes:

(1) The most significant bit (MSB) is on the left.

(2) The least significant bit (LSB) for all JTAG IDCODEs is 1.

devices.

Figure 9 shows the timing requirements for the JTAG signals.

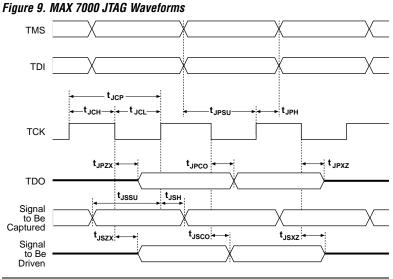


Table 12 shows the JTAG timing parameters and values for MAX 7000S

Table 1	Table 12. JTAG Timing Parameters & Values for MAX 7000S Devices								
Symbol	Parameter	Min	Мах	Unit					
t _{JCP}	TCK clock period	100		ns					
t _{JCH}	TCK clock high time	50		ns					
t _{JCL}	TCK clock low time	50		ns					
t _{JPSU}	JTAG port setup time	20		ns					
t _{JPH}	JTAG port hold time	45		ns					
t _{JPCO}	JTAG port clock to output		25	ns					
t _{JPZX}	JTAG port high impedance to valid output		25	ns					
t _{JPXZ}	JTAG port valid output to high impedance		25	ns					
t _{JSSU}	Capture register setup time	20		ns					
t _{JSH}	Capture register hold time	45		ns					
t _{JSCO}	Update register clock to output		25	ns					
t _{JSZX}	Update register high impedance to valid output		25	ns					
t _{JSXZ}	Update register valid output to high impedance		25	ns					

For more information, see *Application Note* 39 (IEEE 1149.1 (JTAG) *Boundary-Scan Testing in Altera Devices*).

Operating Conditions

Tables 13 through 18 provide information about absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for 5.0-V MAX 7000 devices.

Table 13. MAX 7000 5.0-V Device Absolute Maximum Ratings Note (1)

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	Supply voltage	With respect to ground (2)	-2.0	7.0	V
VI	DC input voltage		-2.0	7.0	V
I _{OUT}	DC output current, per pin		-25	25	mA
T _{STG}	Storage temperature	No bias	-65	150	°C
T _{AMB}	Ambient temperature	Under bias	-65	135	°C
TJ	Junction temperature	Ceramic packages, under bias		150	°C
		PQFP and RQFP packages, under bias		135	°C

Table 14. MAX 7000 5.0-V Device Recommended Operating Conditions							
Symbol	Parameter	Conditions	Min	Мах	Unit		
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4), (5)	4.75 (4.50)	5.25 (5.50)	V		
V _{CCIO}	Supply voltage for output drivers, 5.0-V operation	(3), (4)	4.75 (4.50)	5.25 (5.50)	V		
	Supply voltage for output drivers, 3.3-V operation	(3), (4), (6)	3.00 (3.00)	3.60 (3.60)	V		
V _{CCISP}	Supply voltage during ISP	(7)	4.75	5.25	V		
VI	Input voltage		-0.5 (8)	V _{CCINT} + 0.5	V		
Vo	Output voltage		0	V _{CCIO}	V		
T _A	Ambient temperature	For commercial use	0	70	°C		
		For industrial use	-40	85	°C		
TJ	Junction temperature	For commercial use	0	90	°C		
		For industrial use	-40	105	°C		
t _R	Input rise time			40	ns		
t _F	Input fall time			40	ns		

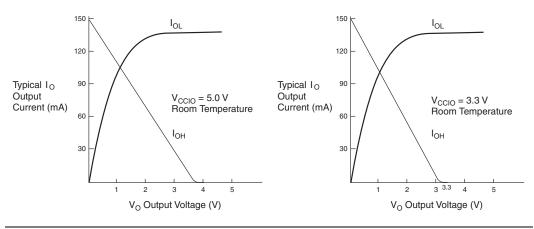
Table 15. MAX 7000 5.0-V Device DC Operating Conditions Note (9)							
Symbol	Parameter	Conditions	Min	Max	Unit		
V _{IH}	High-level input voltage		2.0	V _{CCINT} + 0.5	V		
V _{IL}	Low-level input voltage		-0.5 (8)	0.8	V		
V _{OH}	5.0-V high-level TTL output voltage	$I_{OH} = -4 \text{ mA DC}, V_{CCIO} = 4.75 \text{ V} (10)$	2.4		V		
	3.3-V high-level TTL output voltage	$I_{OH} = -4 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V} (10)$	2.4		V		
	3.3-V high-level CMOS output voltage	I_{OH} = -0.1 mA DC, V_{CCIO} = 3.0 V (10)	V _{CCIO} – 0.2		V		
V _{OL}	5.0-V low-level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 4.75 V (11)		0.45	V		
	3.3-V low-level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 3.00 V (11)		0.45	V		
	3.3-V low-level CMOS output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 3.0 V(11)		0.2	V		
I _I	Leakage current of dedicated input pins	$V_{I} = -0.5$ to 5.5 V (11)	-10	10	μΑ		
I _{OZ}	I/O pin tri-state output off-state current	V _I = -0.5 to 5.5 V (11), (12)	-40	40	μA		

Table 1	Table 16. MAX 7000 5.0-V Device Capacitance: EPM7032, EPM7064 & EPM7096 Devices Note (13)								
Symbol	Parameter	Conditions	Min	Max	Unit				
CIN	Input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		12	pF				
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		12	pF				

Table 17. MAX 7000 5.0-V Device Capacitance: MAX 7000E Devices Note (13)								
Symbol	Parameter	Conditions	Min	Max	Unit			
C _{IN}	Input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		15	pF			
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		15	pF			

Table 18. MAX 7000 5.0-V Device Capacitance: MAX 7000S Devices Note (13)									
Symbol	Parameter	Conditions	Min	Max	Unit				
CIN	Dedicated input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF				
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		10	pF				

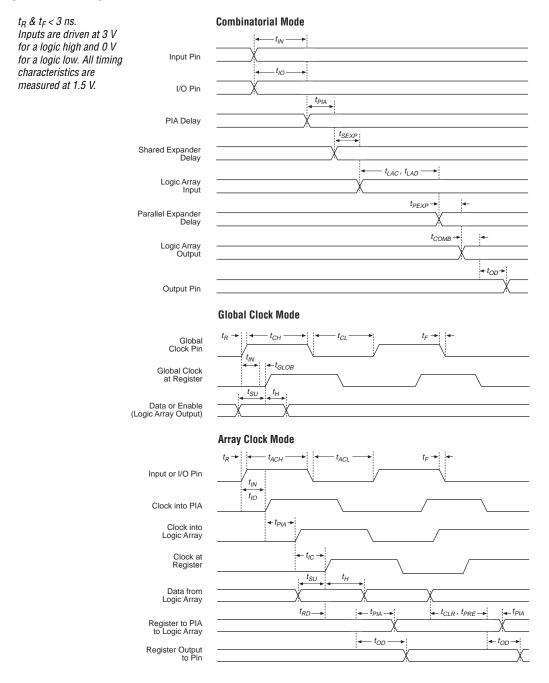
.


MAX 7000 Programmable Logic Device Family Data Sheet

Notes to tables:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input voltage on I/O pins is -0.5 V and on 4 dedicated input pins is -0.3 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 7.0 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) Numbers in parentheses are for industrial-temperature-range devices.
- (4) V_{CC} must rise monotonically.
- (5) The POR time for all 7000S devices does not exceed 300 μs. The sufficient V_{CCINT} voltage level for POR is 4.5 V. The device is fully initialized within the POR time after V_{CCINT} reaches the sufficient POR voltage level.
- (6) 3.3-V I/O operation is not available for 44-pin packages.
- (7) The V_{CCISP} parameter applies only to MAX 7000S devices.
- (8) During in-system programming, the minimum DC input voltage is -0.3 V.
- (9) These values are specified under the MAX 7000 recommended operating conditions in Table 14 on page 26.
- (10) The parameter is measured with 50% of the outputs each sourcing the specified current. The I_{OH} parameter refers to high-level TTL or CMOS output current.
- (11) The parameter is measured with 50% of the outputs each sinking the specified current. The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current.
- (12) When the JTAG interface is enabled in MAX 7000S devices, the input leakage current on the JTAG pins is typically -60 μA.
- (13) Capacitance is measured at 25° C and is sample-tested only. The OE1 pin has a maximum capacitance of 20 pF.

Figure 11 shows the typical output drive characteristics of MAX 7000 devices.


Figure 11. Output Drive Characteristics of 5.0-V MAX 7000 Devices

Timing Model

MAX 7000 device timing can be analyzed with the Altera software, with a variety of popular industry-standard EDA simulators and timing analyzers, or with the timing model shown in Figure 12. MAX 7000 devices have fixed internal delays that enable the designer to determine the worst-case timing of any design. The Altera software provides timing simulation, point-to-point delay prediction, and detailed timing analysis for a device-wide performance evaluation.

Figure 13. Switching Waveforms

Table 2	21. MAX 7000 & MAX 7000E Ext	ernal Timing Parame	eters Note	(1)			
Symbol	Parameter	Conditions		Speed (Grade		Unit
			MAX 700	0E (-10P)		00 (-10) Doe (-10)	
			Min	Мах	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF		10.0		10.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		10.0		10.0	ns
t _{SU}	Global clock setup time		7.0		8.0		ns
t _H	Global clock hold time		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input	(2)	3.0		3.0		ns
t _{FH}	Global clock hold time of fast input	(2)	0.5		0.5		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		5.0		5	ns
t _{CH}	Global clock high time		4.0		4.0		ns
t _{CL}	Global clock low time		4.0		4.0		ns
t _{ASU}	Array clock setup time		2.0		3.0		ns
t _{AH}	Array clock hold time		3.0		3.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		10.0		10.0	ns
t _{ACH}	Array clock high time		4.0		4.0		ns
t _{ACL}	Array clock low time		4.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	4.0		4.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF (4)	1.0		1.0		ns
t _{CNT}	Minimum global clock period			10.0		10.0	ns
f _{CNT}	Maximum internal global clock frequency	(5)	100.0		100.0		MHz
t _{ACNT}	Minimum array clock period			10.0		10.0	ns
f _{acnt}	Maximum internal array clock frequency	(5)	100.0		100.0		MHz
f _{MAX}	Maximum clock frequency	(6)	125.0		125.0		MHz

Symbol	Parameter	Conditions			Speed	Grade			Unit
			-	15	-1	5T	-2	20	
			Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			2.0		2.0		3.0	ns
t _{IO}	I/O input pad and buffer delay			2.0		2.0		3.0	ns
t _{FIN}	Fast input delay	(2)		2.0		-		4.0	ns
t _{SEXP}	Shared expander delay			8.0		10.0		9.0	ns
t _{PEXP}	Parallel expander delay			1.0		1.0		2.0	ns
t _{LAD}	Logic array delay			6.0		6.0		8.0	ns
tLAC	Logic control array delay			6.0		6.0		8.0	ns
t _{IOE}	Internal output enable delay	(2)		3.0		-		4.0	ns
t _{OD1}	Output buffer and pad delay Slow slew rate = off $V_{CCIO} = 5.0 V$	C1 = 35 pF		4.0		4.0		5.0	ns
t _{OD2}	Slow slew rate = off V _{CCIO} = 3.3 V		6.0	ns					
t _{OD3}	Output buffer and pad delay Slow slew rate = on V _{CCIO} = 5.0 V or 3.3 V	C1 = 35 pF (2)		8.0		-		9.0	ns
t _{ZX1}	Output buffer enable delay Slow slew rate = off V _{CCIO} = 5.0 V	C1 = 35 pF		6.0		6.0		10.0	ns
t _{ZX2}	Output buffer enable delay Slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF (7)		7.0		-		11.0	ns
t _{ZX3}	Output buffer enable delay Slow slew rate = on V _{CCIO} = 5.0 V or 3.3 V	C1 = 35 pF (2)		10.0		-		14.0	ns
t _{XZ}	Output buffer disable delay	C1 = 5 pF		6.0		6.0		10.0	ns
t _{SU}	Register setup time		4.0		4.0		4.0		ns
t _H	Register hold time		4.0		4.0		5.0		ns
t _{FSU}	Register setup time of fast input	(2)	2.0		-		4.0		ns
t _{FH}	Register hold time of fast input	(2)	2.0		-		3.0		ns
t _{RD}	Register delay			1.0		1.0		1.0	ns
t _{COMB}	Combinatorial delay			1.0		1.0		1.0	ns
t _{IC}	Array clock delay			6.0		6.0		8.0	ns
t _{EN}	Register enable time			6.0		6.0		8.0	ns
t _{GLOB}	Global control delay			1.0		1.0		3.0	ns
t _{PRE}	Register preset time			4.0		4.0		4.0	ns
t _{CLR}	Register clear time			4.0		4.0		4.0	ns
t _{PIA}	PIA delay			2.0		2.0		3.0	ns
t _{LPA}	Low-power adder	(8)		13.0		15.0		15.0	ns

Table 27. EPM7032S External Timing Parameters (Part 2 of 2) Note (1)											
Symbol	Parameter	Conditions	onditions Speed Grade						Unit		
			-5 -6 -7 -10		0						
			Min	Max	Min	Max	Min	Max	Min	Max	
f _{ACNT}	Maximum internal array clock frequency	(4)	175.4		142.9		116.3		100.0		MHz
f _{MAX}	Maximum clock frequency	(5)	250.0		200.0		166.7		125.0		MHz

Symbol	Parameter	Conditions				Speed	Grade				Unit
			-	5	-	6	-7		-	10	_
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.2		0.2		0.3		0.5	ns
t _{IO}	I/O input pad and buffer delay			0.2		0.2		0.3		0.5	ns
t _{FIN}	Fast input delay			2.2		2.1		2.5		1.0	ns
t _{SEXP}	Shared expander delay			3.1		3.8		4.6		5.0	ns
t _{PEXP}	Parallel expander delay			0.9		1.1		1.4		0.8	ns
t _{LAD}	Logic array delay			2.6		3.3		4.0		5.0	ns
t _{LAC}	Logic control array delay			2.5		3.3		4.0		5.0	ns
t _{IOE}	Internal output enable delay			0.7		0.8		1.0		2.0	ns
t _{OD1}	Output buffer and pad delay	C1 = 35 pF		0.2		0.3		0.4		1.5	ns
t _{OD2}	Output buffer and pad delay	C1 = 35 pF (6)		0.7		0.8		0.9		2.0	ns
t _{OD3}	Output buffer and pad delay	C1 = 35 pF		5.2		5.3		5.4		5.5	ns
t _{ZX1}	Output buffer enable delay	C1 = 35 pF		4.0		4.0		4.0		5.0	ns
t _{ZX2}	Output buffer enable delay	C1 = 35 pF (6)		4.5		4.5		4.5		5.5	ns
t _{ZX3}	Output buffer enable delay	C1 = 35 pF		9.0		9.0		9.0		9.0	ns
t _{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		4.0		5.0	ns
t _{SU}	Register setup time		0.8		1.0		1.3		2.0		ns
t _H	Register hold time		1.7		2.0		2.5		3.0		ns
t _{FSU}	Register setup time of fast input		1.9		1.8		1.7		3.0		ns
t _{FH}	Register hold time of fast input		0.6		0.7		0.8		0.5		ns
t _{RD}	Register delay			1.2		1.6		1.9		2.0	ns
t _{COMB}	Combinatorial delay			0.9		1.1		1.4		2.0	ns
t _{IC}	Array clock delay			2.7		3.4		4.2		5.0	ns
t _{EN}	Register enable time			2.6		3.3		4.0		5.0	ns
t _{GLOB}	Global control delay			1.6		1.4		1.7		1.0	ns
t _{PRE}	Register preset time			2.0		2.4		3.0		3.0	ns
t _{CLR}	Register clear time			2.0		2.4		3.0		3.0	ns

Symbol	Parameter	Conditions				Speed	Grade)			Unit
			-	6	-	7	-10		-1	5	
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns
t _{SU}	Global clock setup time		3.4		6.0		7.0		11.0		ns
t _H	Global clock hold time		0.0		0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.5		0.5		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		4.0		4.5		5.0		8.0	ns
t _{CH}	Global clock high time		3.0		3.0		4.0		5.0		ns
t _{CL}	Global clock low time		3.0		3.0		4.0		5.0		ns
t _{ASU}	Array clock setup time		0.9		3.0		2.0		4.0		ns
t _{AH}	Array clock hold time		1.8		2.0		5.0		4.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		6.5		7.5		10.0		15.0	ns
t _{ACH}	Array clock high time		3.0		3.0		4.0		6.0		ns
t _{ACL}	Array clock low time		3.0		3.0		4.0		6.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(2)	3.0		3.0		4.0		6.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		1.0		ns
t _{CNT}	Minimum global clock period			6.8		8.0		10.0		13.0	ns
fcnt	Maximum internal global clock frequency	(4)	147.1		125.0		100.0		76.9		MHz
t _{acnt}	Minimum array clock period			6.8		8.0		10.0		13.0	ns
facnt	Maximum internal array clock frequency	(4)	147.1		125.0		100.0		76.9		MHz
f _{MAX}	Maximum clock frequency	(5)	166.7		166.7		125.0		100.0		MHz

Tables 31 and 32 show the EPM7128S AC operating conditions.

٦

Г

Notes to tables:

- (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells running in the low-power mode.

Tables 33 and 34 show the EPM7160S AC operating conditions.

Symbol	Parameter	Conditions	Speed Grade								
			-6		-7		-10		-15		
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns
t _{SU}	Global clock setup time		3.4		4.2		7.0		11.0		ns
t _H	Global clock hold time		0.0		0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.5		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		3.9		4.8		5		8	ns
t _{CH}	Global clock high time		3.0		3.0		4.0		5.0		ns
t _{CL}	Global clock low time		3.0		3.0		4.0		5.0		ns
t _{ASU}	Array clock setup time		0.9		1.1		2.0		4.0		ns
t _{AH}	Array clock hold time		1.7		2.1		3.0		4.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		6.4		7.9		10.0		15.0	ns
t _{ACH}	Array clock high time		3.0		3.0		4.0		6.0		ns
t _{ACL}	Array clock low time		3.0		3.0		4.0		6.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(2)	2.5		3.0		4.0		6.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF <i>(3)</i>	1.0		1.0		1.0		1.0		ns
t _{CNT}	Minimum global clock period			6.7		8.2		10.0		13.0	ns
f _{сnт}	Maximum internal global clock frequency	(4)	149.3		122.0		100.0		76.9		MHz

Altera Corporation

Symbol	Parameter	Conditions	Speed Grade						
			-7		-10		-1	15	1
			Min	Max	Min	Max	Min	Max	1
t _{PD1}	Input to non-registered output	C1 = 35 pF		7.5		10.0		15.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		7.5		10.0		15.0	ns
t _{SU}	Global clock setup time		3.9		7.0		11.0		ns
t _H	Global clock hold time		0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		3.0		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.5		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		4.7		5.0		8.0	ns
t _{CH}	Global clock high time		3.0		4.0		5.0		ns
t _{CL}	Global clock low time		3.0		4.0		5.0		ns
t _{ASU}	Array clock setup time		0.8		2.0		4.0		ns
t _{AH}	Array clock hold time		1.9		3.0		4.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		7.8		10.0		15.0	ns
t _{ACH}	Array clock high time		3.0		4.0		6.0		ns
t _{ACL}	Array clock low time		3.0		4.0		6.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(2)	3.0		4.0		6.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		ns
t _{CNT}	Minimum global clock period			7.8		10.0		13.0	ns
fcnt	Maximum internal global clock frequency	(4)	128.2		100.0		76.9		MHz
t _{ACNT}	Minimum array clock period			7.8		10.0		13.0	ns
f _{acnt}	Maximum internal array clock frequency	(4)	128.2		100.0		76.9		MHz
f _{MAX}	Maximum clock frequency	(5)	166.7		125.0		100.0		MHz

Tables 37 and 38 show the EPM7256S AC operating conditions.

Notes to tables:

- (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells running in the low-power mode.

Power Consumption

Supply power (P) versus frequency (f_{MAX} in MHz) for MAX 7000 devices is calculated with the following equation:

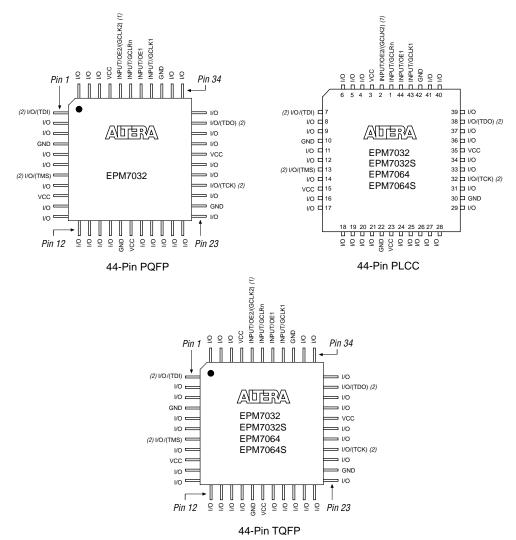
$$P = P_{INT} + P_{IO} = I_{CCINT} \times V_{CC} + P_{IO}$$

The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note* 74 (*Evaluating Power for Altera Devices*).

The I_{CCINT} value, which depends on the switching frequency and the application logic, is calculated with the following equation:

 $I_{CCINT} =$

 $A \times MC_{TON} + B \times (MC_{DEV} - MC_{TON}) + C \times MC_{USED} \times f_{MAX} \times tog_{LC}$


The parameters in this equation are shown below:

MC _{TON}	=	Number of macrocells with the Turbo Bit option turned on,
		as reported in the MAX+PLUS II Report File (.rpt)
MC _{DEV}	=	Number of macrocells in the device
MC _{USED}	=	Total number of macrocells in the design, as reported
		in the MAX+PLUS II Report File (.rpt)
f _{MAX}	=	Highest clock frequency to the device
togLC	=	Average ratio of logic cells toggling at each clock
		(typically 0.125)
A, B, C	=	Constants, shown in Table 39

Figures 16 through 22 show the package pin-out diagrams for MAX 7000 devices.

Figure 16. 44-Pin Package Pin-Out Diagram

Package outlines not drawn to scale.

Notes:

- (1) The pin functions shown in parenthesis are only available in MAX 7000E and MAX 7000S devices.
- (2) JTAG ports are available in MAX 7000S devices only.

