

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	7.5 ns
Voltage Supply - Internal	4.5V ~ 5.5V
Number of Logic Elements/Blocks	2
Number of Macrocells	32
Number of Gates	600
Number of I/O	36
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm7032sli44-7n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. MAX	Table 2. MAX 7000S Device Features										
Feature	EPM7032S	EPM7064S	EPM7128S	EPM7160S	EPM7192S	EPM7256S					
Usable gates	600	1,250	2,500	3,200	3,750	5,000					
Macrocells	32	64	128	160	192	256					
Logic array blocks	2	4	8	10	12	16					
Maximum user I/O pins	36	68	100	104	124	164					
t _{PD} (ns)	5	5	6	6	7.5	7.5					
t _{SU} (ns)	2.9	2.9	3.4	3.4	4.1	3.9					
t _{FSU} (ns)	2.5	2.5	2.5	2.5	3	3					
t _{CO1} (ns)	3.2	3.2	4	3.9	4.7	4.7					
f _{CNT} (MHz)	175.4	175.4	147.1	149.3	125.0	128.2					

...and More Features

- Open-drain output option in MAX 7000S devices
- Programmable macrocell flipflops with individual clear, preset, clock, and clock enable controls
- Programmable power-saving mode for a reduction of over 50% in each macrocell
- Configurable expander product-term distribution, allowing up to 32 product terms per macrocell
- 44 to 208 pins available in plastic J-lead chip carrier (PLCC), ceramic pin-grid array (PGA), plastic quad flat pack (PQFP), power quad flat pack (RQFP), and 1.0-mm thin quad flat pack (TQFP) packages
- Programmable security bit for protection of proprietary designs
- 3.3-V or 5.0-V operation
 - MultiVoltTM I/O interface operation, allowing devices to interface with 3.3-V or 5.0-V devices (MultiVolt I/O operation is not available in 44-pin packages)
 - Pin compatible with low-voltage MAX 7000A and MAX 7000B devices
- Enhanced features available in MAX 7000E and MAX 7000S devices
 - Six pin- or logic-driven output enable signals
 - Two global clock signals with optional inversion
 - Enhanced interconnect resources for improved routability
 - Fast input setup times provided by a dedicated path from I/O pin to macrocell registers
 - Programmable output slew-rate control
- Software design support and automatic place-and-route provided by Altera's development system for Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 workstations

	 Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, and VeriBest Programming support Altera's Master Programming Unit (MPU) and programming hardware from third-party manufacturers program all MAX 7000 devices The BitBlasterTM serial download cable, ByteBlasterMVTM parallel port download cable, and MasterBlasterTM serial/universal serial bus (USB) download cable program MAX 7000S devices
General Description	The MAX 7000 family of high-density, high-performance PLDs is based on Altera's second-generation MAX architecture. Fabricated with advanced CMOS technology, the EEPROM-based MAX 7000 family provides 600 to 5,000 usable gates, ISP, pin-to-pin delays as fast as 5 ns, and counter speeds of up to 175.4 MHz. MAX 7000S devices in the -5, -6, -7, and -10 speed grades as well as MAX 7000 and MAX 7000E devices in -5, -6, -7, -10P, and -12P speed grades comply with the PCI Special Interest Group (PCI SIG) <i>PCI Local Bus Specification, Revision 2.2.</i> See Table 3 for available speed grades.

Device	Speed Grade										
	-5	-6	-7	-10P	-10	-12P	-12	-15	-15T	-20	
EPM7032		>	~		>		>	~	 		
EPM7032S	\checkmark	\checkmark	~		 Image: A start of the start of						
EPM7064		~	~		>		>	~			
EPM7064S	\checkmark	\checkmark	~		 Image: A start of the start of						
EPM7096			\checkmark		\checkmark		>	\checkmark			
EPM7128E			~	\checkmark	 Image: A start of the start of		>	~		~	
EPM7128S		\checkmark	~		 Image: A start of the start of			~			
EPM7160E				~	~		\checkmark	~		\checkmark	
EPM7160S		\checkmark	~		 Image: A start of the start of			~			
EPM7192E						~	>	~		>	
EPM7192S			~	1	~	Ī		~			
EPM7256E						~	>	~		>	
EPM7256S			\checkmark		\checkmark			\checkmark			

The MAX 7000 architecture includes four dedicated inputs that can be used as general-purpose inputs or as high-speed, global control signals (clock, clear, and two output enable signals) for each macrocell and I/O pin. Figure 1 shows the architecture of EPM7032, EPM7064, and EPM7096 devices.

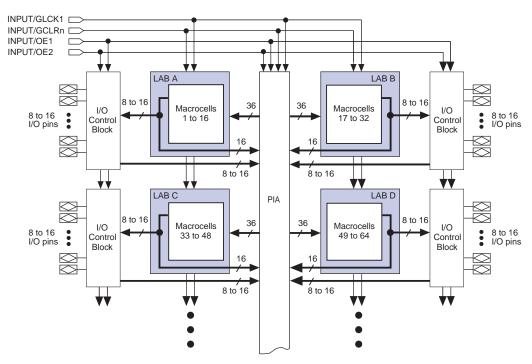
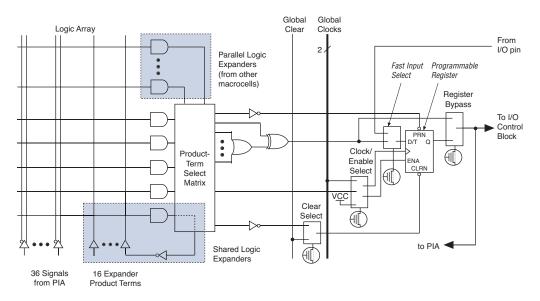


Figure 1. EPM7032, EPM7064 & EPM7096 Device Block Diagram


Each LAB is fed by the following signals:

- **3**6 signals from the PIA that are used for general logic inputs
- Global controls that are used for secondary register functions
- Direct input paths from I/O pins to the registers that are used for fast setup times for MAX 7000E and MAX 7000S devices

Macrocells

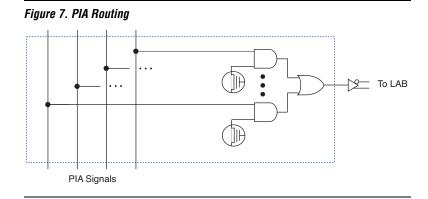
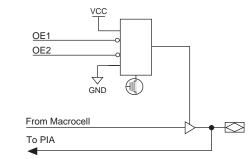

The MAX 7000 macrocell can be individually configured for either sequential or combinatorial logic operation. The macrocell consists of three functional blocks: the logic array, the product-term select matrix, and the programmable register. The macrocell of EPM7032, EPM7064, and EPM7096 devices is shown in Figure 3.

Figure 3. EPM7032, EPM7064 & EPM7096 Device Macrocell

Programmable Interconnect Array

Logic is routed between LABs via the programmable interconnect array (PIA). This global bus is a programmable path that connects any signal source to any destination on the device. All MAX 7000 dedicated inputs, I/O pins, and macrocell outputs feed the PIA, which makes the signals available throughout the entire device. Only the signals required by each LAB are actually routed from the PIA into the LAB. Figure 7 shows how the PIA signals are routed into the LAB. An EEPROM cell controls one input to a 2-input AND gate, which selects a PIA signal to drive into the LAB.


While the routing delays of channel-based routing schemes in masked or FPGAs are cumulative, variable, and path-dependent, the MAX 7000 PIA has a fixed delay. The PIA thus eliminates skew between signals and makes timing performance easy to predict.

I/O Control Blocks

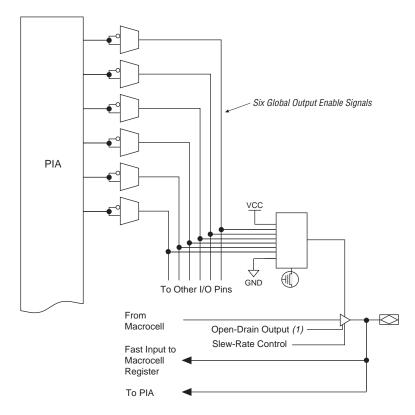

The I/O control block allows each I/O pin to be individually configured for input, output, or bidirectional operation. All I/O pins have a tri-state buffer that is individually controlled by one of the global output enable signals or directly connected to ground or V_{CC} . Figure 8 shows the I/O control block for the MAX 7000 family. The I/O control block of EPM7032, EPM7064, and EPM7096 devices has two global output enable signals that are driven by two dedicated active-low output enable pins (OE1 and OE2). The I/O control block of MAX 7000E and MAX 7000S devices has six global output enable signals that are driven by the true or complement of two output enable signals, a subset of the I/O pins, or a subset of the I/O macrocells.

Figure 8. I/O Control Block of MAX 7000 Devices

EPM7032, EPM7064 & EPM7096 Devices

Note:

(1) The open-drain output option is available only in MAX 7000S devices.

Programming Times

The time required to implement each of the six programming stages can be broken into the following two elements:

- A pulse time to erase, program, or read the EEPROM cells.
- A shifting time based on the test clock (TCK) frequency and the number of TCK cycles to shift instructions, address, and data into the device.

By combining the pulse and shift times for each of the programming stages, the program or verify time can be derived as a function of the TCK frequency, the number of devices, and specific target device(s). Because different ISP-capable devices have a different number of EEPROM cells, both the total fixed and total variable times are unique for a single device.

Programming a Single MAX 7000S Device

The time required to program a single MAX 7000S device in-system can be calculated from the following formula:

$$t_{PROG} = t_{PPULSE} + \frac{Cycle_{PTCK}}{f_{TCK}}$$
where: t_{PROG} = Programming time
 t_{PPULSE} = Sum of the fixed times to erase, program, and
verify the EEPROM cells
 $Cycle_{PTCK}$ = Number of TCK cycles to program a device
 f_{TCK} = TCK frequency

The ISP times for a stand-alone verification of a single MAX 7000S device can be calculated from the following formula:

$$t_{VER} = t_{VPULSE} + \frac{Cycle_{VTCK}}{f_{TCK}}$$
where: t_{VER} = Verify time
 t_{VPULSE} = Sum of the fixed times to verify the EEPROM cells
 $Cycle_{VTCK}$ = Number of TCK cycles to verify a device

The programming times described in Tables 6 through 8 are associated

Device	Progra	mming	Stand-Alone Verification		
	t _{PPULSE} (s)	Cycle _{PTCK}	t _{VPULSE} (s)	Cycle _{VTCK}	
EPM7032S	4.02	342,000	0.03	200,000	
EPM7064S	4.50	504,000	0.03	308,000	
EPM7128S	5.11	832,000	0.03	528,000	
EPM7160S	5.35	1,001,000	0.03	640,000	
EPM7192S	5.71	1,192,000	0.03	764,000	
EPM7256S	6.43	1,603,000	0.03	1,024,000	

with the worst-case method using the enhanced ISP algorithm.

Tables 7 and 8 show the in-system programming and stand alone verification times for several common test clock frequencies.

Device		f _{TCK}										
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz]			
EPM7032S	4.06	4.09	4.19	4.36	4.71	5.73	7.44	10.86	s			
EPM7064S	4.55	4.60	4.76	5.01	5.51	7.02	9.54	14.58	S			
EPM7128S	5.19	5.27	5.52	5.94	6.77	9.27	13.43	21.75	S			
EPM7160S	5.45	5.55	5.85	6.35	7.35	10.35	15.36	25.37	S			
EPM7192S	5.83	5.95	6.30	6.90	8.09	11.67	17.63	29.55	S			
EPM7256S	6.59	6.75	7.23	8.03	9.64	14.45	22.46	38.49	S			

Table 8. MAX 7000S Stand-Alone Verification Times for Different Test Clock Frequencies

Device		f _{TCK}									
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz			
EPM7032S	0.05	0.07	0.13	0.23	0.43	1.03	2.03	4.03	S		
EPM7064S	0.06	0.09	0.18	0.34	0.64	1.57	3.11	6.19	S		
EPM7128S	0.08	0.14	0.29	0.56	1.09	2.67	5.31	10.59	S		
EPM7160S	0.09	0.16	0.35	0.67	1.31	3.23	6.43	12.83	S		
EPM7192S	0.11	0.18	0.41	0.79	1.56	3.85	7.67	15.31	S		
EPM7256S	0.13	0.24	0.54	1.06	2.08	5.15	10.27	20.51	S		

The instruction register length of MAX 7000S devices is 10 bits. Tables 10 and 11 show the boundary-scan register length and device IDCODE information for MAX 7000S devices.

Table 10. MAX 7000S Boundary-Scan Register Length					
Device	Boundary-Scan Register Length				
EPM7032S	1 (1)				
EPM7064S	1 (1)				
EPM7128S	288				
EPM7160S	312				
EPM7192S	360				
EPM7256S	480				

Note:

 This device does not support JTAG boundary-scan testing. Selecting either the EXTEST or SAMPLE/PRELOAD instruction will select the one-bit bypass register.

Table 11. 32	Table 11. 32-Bit MAX 7000 Device IDCODE Note (1)										
Device	IDCODE (32 Bits)										
	Version (4 Bits)	Part Number (16 Bits)	Manufacturer's Identity (11 Bits)	1 (1 Bit) (2)							
EPM7032S	0000	0111 0000 0011 0010	00001101110	1							
EPM7064S	0000	0111 0000 0110 0100	00001101110	1							
EPM7128S	0000	0111 0001 0010 1000	00001101110	1							
EPM7160S	0000	0111 0001 0110 0000	00001101110	1							
EPM7192S	0000	0111 0001 1001 0010	00001101110	1							
EPM7256S	0000	0111 0010 0101 0110	00001101110	1							

Notes:

(1) The most significant bit (MSB) is on the left.

(2) The least significant bit (LSB) for all JTAG IDCODEs is 1.

Operating Conditions

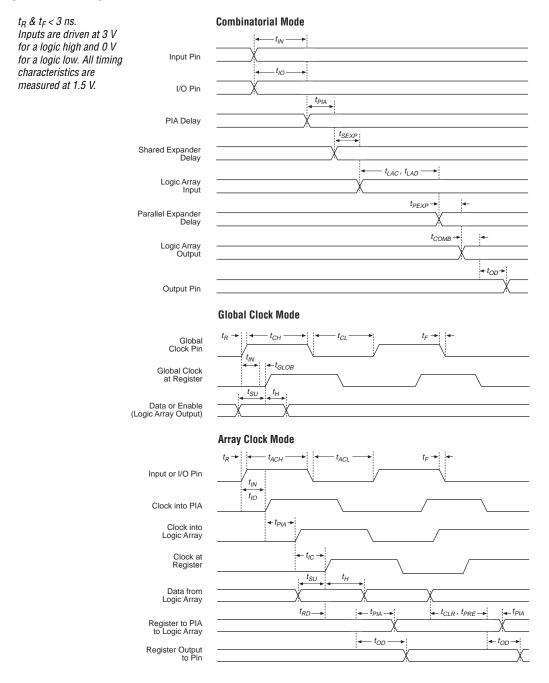

Tables 13 through 18 provide information about absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for 5.0-V MAX 7000 devices.

Table 13. MAX 7000 5.0-V Device Absolute Maximum Ratings Note (1)

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	Supply voltage	With respect to ground (2)	-2.0	7.0	V
VI	DC input voltage		-2.0	7.0	V
I _{OUT}	DC output current, per pin		-25	25	mA
T _{STG}	Storage temperature	No bias	-65	150	°C
T _{AMB}	Ambient temperature	Under bias	-65	135	°C
TJ	Junction temperature	Ceramic packages, under bias		150	°C
		PQFP and RQFP packages, under bias		135	°C

Table 1	4. MAX 7000 5.0-V Device Reco	ommended Operating Conditions			
Symbol	Parameter	Conditions	Min	Мах	Unit
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4), (5)	4.75 (4.50)	5.25 (5.50)	V
V _{CCIO}	Supply voltage for output drivers, 5.0-V operation	(3), (4)	4.75 (4.50)	5.25 (5.50)	V
	Supply voltage for output drivers, 3.3-V operation	(3), (4), (6)	3.00 (3.00)	3.60 (3.60)	V
V _{CCISP}	Supply voltage during ISP	(7)	4.75	5.25	V
VI	Input voltage		-0.5 (8)	V _{CCINT} + 0.5	V
Vo	Output voltage		0	V _{CCIO}	V
T _A	Ambient temperature	For commercial use	0	70	°C
		For industrial use	-40	85	°C
TJ	Junction temperature	For commercial use	0	90	°C
		For industrial use	-40	105	°C
t _R	Input rise time			40	ns
t _F	Input fall time			40	ns

Figure 13. Switching Waveforms

Table 2	21. MAX 7000 & MAX 7000E Ext	ernal Timing Parame	eters Note	(1)					
Symbol	Parameter	Conditions		Speed Grade					
			MAX 700	MAX 7000E (-10P)		00 (-10) Doe (-10)			
			Min	Max	Min	Max			
t _{PD1}	Input to non-registered output	C1 = 35 pF		10.0		10.0	ns		
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		10.0		10.0	ns		
t _{SU}	Global clock setup time		7.0		8.0		ns		
t _H	Global clock hold time		0.0		0.0		ns		
t _{FSU}	Global clock setup time of fast input	(2)	3.0		3.0		ns		
t _{FH}	Global clock hold time of fast input	(2)	0.5		0.5		ns		
t _{CO1}	Global clock to output delay	C1 = 35 pF		5.0		5	ns		
t _{CH}	Global clock high time		4.0		4.0		ns		
t _{CL}	Global clock low time		4.0		4.0		ns		
t _{ASU}	Array clock setup time		2.0		3.0		ns		
t _{AH}	Array clock hold time		3.0		3.0		ns		
t _{ACO1}	Array clock to output delay	C1 = 35 pF		10.0		10.0	ns		
t _{ACH}	Array clock high time		4.0		4.0		ns		
t _{ACL}	Array clock low time		4.0		4.0		ns		
t _{CPPW}	Minimum pulse width for clear and preset	(3)	4.0		4.0		ns		
t _{ODH}	Output data hold time after clock	C1 = 35 pF (4)	1.0		1.0		ns		
t _{CNT}	Minimum global clock period			10.0		10.0	ns		
f _{CNT}	Maximum internal global clock frequency	(5)	100.0		100.0		MHz		
t _{ACNT}	Minimum array clock period			10.0		10.0	ns		
f _{acnt}	Maximum internal array clock frequency	(5)	100.0		100.0		MHz		
f _{MAX}	Maximum clock frequency	(6)	125.0		125.0		MHz		

Table 3	0. EPM7064S Internal Tir	ning Parameters	s (Part à	2 of 2)	No	te (1)					
Symbol	Parameter	Parameter Conditions Speed Grade								Unit	
			-5		-6		-7		-10		
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{FSU}	Register setup time of fast input		1.9		1.8		3.0		3.0		ns
t _{FH}	Register hold time of fast input		0.6		0.7		0.5		0.5		ns
t _{RD}	Register delay			1.2		1.6		1.0		2.0	ns
t _{COMB}	Combinatorial delay			0.9		1.0		1.0		2.0	ns
t _{IC}	Array clock delay			2.7		3.3		3.0		5.0	ns
t _{EN}	Register enable time			2.6		3.2		3.0		5.0	ns
t _{GLOB}	Global control delay			1.6		1.9		1.0		1.0	ns
t _{PRE}	Register preset time			2.0		2.4		2.0		3.0	ns
t _{CLR}	Register clear time			2.0		2.4		2.0		3.0	ns
t _{PIA}	PIA delay	(7)		1.1		1.3		1.0		1.0	ns
t _{LPA}	Low-power adder	(8)		12.0		11.0		10.0		11.0	ns

Notes to tables:

- (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter (2) must be added to this minimum width if the clear or reset signal incorporates the t_{IAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- The f_{MAX} values represent the highest frequency for pipelined data. (5)
- Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use. (6)
- For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, (7) these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells (8) running in the low-power mode.

Symbol	Parameter	Conditions	Speed Grade								Unit
			-	6 -7	-1	-10		5			
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns
t _{SU}	Global clock setup time		3.4		6.0		7.0		11.0		ns
t _H	Global clock hold time		0.0		0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.5		0.5		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		4.0		4.5		5.0		8.0	ns
t _{CH}	Global clock high time		3.0		3.0		4.0		5.0		ns
t _{CL}	Global clock low time		3.0		3.0		4.0		5.0		ns
t _{ASU}	Array clock setup time		0.9		3.0		2.0		4.0		ns
t _{AH}	Array clock hold time		1.8		2.0		5.0		4.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		6.5		7.5		10.0		15.0	ns
t _{ACH}	Array clock high time		3.0		3.0		4.0		6.0		ns
t _{ACL}	Array clock low time		3.0		3.0		4.0		6.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(2)	3.0		3.0		4.0		6.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		1.0		ns
t _{CNT}	Minimum global clock period			6.8		8.0		10.0		13.0	ns
fcnt	Maximum internal global clock frequency	(4)	147.1		125.0		100.0		76.9		MHz
t _{acnt}	Minimum array clock period			6.8		8.0		10.0		13.0	ns
f _{acnt}	Maximum internal array clock frequency	(4)	147.1		125.0		100.0		76.9		MHz
f _{MAX}	Maximum clock frequency	(5)	166.7		166.7		125.0		100.0		MHz

Tables 31 and 32 show the EPM7128S AC operating conditions.

٦

Г

Notes to tables:

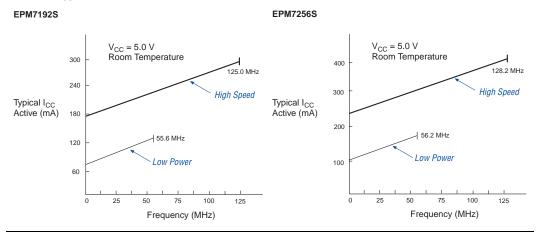
- (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells running in the low-power mode.

Tables 33 and 34 show the EPM7160S AC operating conditions.

Symbol	Parameter	Conditions	Speed Grade								Unit
			-6		-7		-10		-15		
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns
t _{SU}	Global clock setup time		3.4		4.2		7.0		11.0		ns
t _H	Global clock hold time		0.0		0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.5		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		3.9		4.8		5		8	ns
t _{CH}	Global clock high time		3.0		3.0		4.0		5.0		ns
t _{CL}	Global clock low time		3.0		3.0		4.0		5.0		ns
t _{ASU}	Array clock setup time		0.9		1.1		2.0		4.0		ns
t _{AH}	Array clock hold time		1.7		2.1		3.0		4.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		6.4		7.9		10.0		15.0	ns
t _{ACH}	Array clock high time		3.0		3.0		4.0		6.0		ns
t _{ACL}	Array clock low time		3.0		3.0		4.0		6.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(2)	2.5		3.0		4.0		6.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF <i>(3)</i>	1.0		1.0		1.0		1.0		ns
t _{CNT}	Minimum global clock period			6.7		8.2		10.0		13.0	ns
f _{сnт}	Maximum internal global clock frequency	(4)	149.3		122.0		100.0		76.9		MHz

Altera Corporation

Table 3	3. EPM7160S External Time	ing Parameters	(Part 2	2 of 2)	No	nte (1)					
Symbol	Parameter	Conditions	onditions Speed Grade L						Unit		
			-	6	-	7	-1	0	-1	5	
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{ACNT}	Minimum array clock period			6.7		8.2		10.0		13.0	ns
f _{acnt}	Maximum internal array clock frequency	(4)	149.3		122.0		100.0		76.9		MHz
f _{MAX}	Maximum clock frequency	(5)	166.7		166.7		125.0		100.0		MHz


Symbol	Parameter	Conditions				Speed	Grade				Unit
			-	6	-	7	-1	10	-1	15	-
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.2		0.3		0.5		2.0	ns
t _{IO}	I/O input pad and buffer delay			0.2		0.3		0.5		2.0	ns
t _{FIN}	Fast input delay			2.6		3.2		1.0		2.0	ns
t _{SEXP}	Shared expander delay			3.6		4.3		5.0		8.0	ns
t _{PEXP}	Parallel expander delay			1.0		1.3		0.8		1.0	ns
t _{LAD}	Logic array delay			2.8		3.4		5.0		6.0	ns
t _{LAC}	Logic control array delay			2.8		3.4		5.0		6.0	ns
t _{IOE}	Internal output enable delay			0.7		0.9		2.0		3.0	ns
t _{OD1}	Output buffer and pad delay	C1 = 35 pF		0.4		0.5		1.5		4.0	ns
t _{OD2}	Output buffer and pad delay	C1 = 35 pF (6)		0.9		1.0		2.0		5.0	ns
t _{OD3}	Output buffer and pad delay	C1 = 35 pF		5.4		5.5		5.5		8.0	ns
t _{ZX1}	Output buffer enable delay	C1 = 35 pF		4.0		4.0		5.0		6.0	ns
t _{ZX2}	Output buffer enable delay	C1 = 35 pF (6)		4.5		4.5		5.5		7.0	ns
t _{ZX3}	Output buffer enable delay	C1 = 35 pF		9.0		9.0		9.0		10.0	ns
t _{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		5.0		6.0	ns
t _{SU}	Register setup time		1.0		1.2		2.0		4.0		ns
t _H	Register hold time		1.6		2.0		3.0		4.0		ns
t _{FSU}	Register setup time of fast input		1.9		2.2		3.0		2.0		ns
t _{FH}	Register hold time of fast input		0.6		0.8		0.5		1.0		ns
t _{RD}	Register delay			1.3		1.6		2.0		1.0	ns
t _{COMB}	Combinatorial delay			1.0		1.3		2.0		1.0	ns
t _{IC}	Array clock delay			2.9		3.5		5.0		6.0	ns
t _{EN}	Register enable time			2.8		3.4		5.0		6.0	ns
t _{GLOB}	Global control delay			2.0		2.4		1.0		1.0	ns
t _{PRE}	Register preset time			2.4		3.0		3.0		4.0	ns

Г

-

Table 39. MAX 7000 I _{CC} Equation Constants								
Device	A	В	C					
EPM7032	1.87	0.52	0.144					
EPM7064	1.63	0.74	0.144					
EPM7096	1.63	0.74	0.144					
EPM7128E	1.17	0.54	0.096					
EPM7160E	1.17	0.54	0.096					
EPM7192E	1.17	0.54	0.096					
EPM7256E	1.17	0.54	0.096					
EPM7032S	0.93	0.40	0.040					
EPM7064S	0.93	0.40	0.040					
EPM7128S	0.93	0.40	0.040					
EPM7160S	0.93	0.40	0.040					
EPM7192S	0.93	0.40	0.040					
EPM7256S	0.93	0.40	0.040					

This calculation provides an I_{CC} estimate based on typical conditions using a pattern of a 16-bit, loadable, enabled, up/down counter in each LAB with no output load. Actual I_{CC} values should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions.

Figure 15. I_{CC} vs. Frequency for MAX 7000S Devices (Part 2 of 2)

Device Pin-Outs

See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information.

Figure 21. 192-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

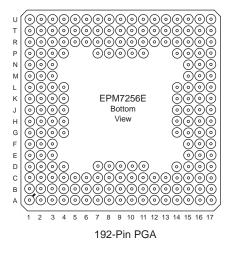
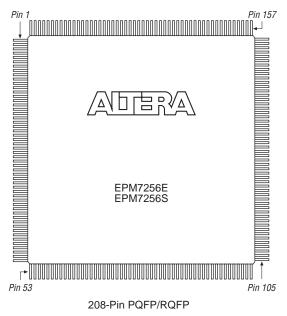



Figure 22. 208-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

