

Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Obsolete
Programmable Type	EE PLD
Delay Time tpd(1) Max	15 ns
Voltage Supply - Internal	4.75V ~ 5.25V
Number of Logic Elements/Blocks	4
Number of Macrocells	64
Number of Gates	1250
Number of I/O	36
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm7064lc44-15

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. MAX	Table 2. MAX 7000S Device Features									
Feature	EPM7032S	EPM7064S	EPM7128S	EPM7160S	EPM7192S	EPM7256S				
Usable gates	600	1,250	2,500	3,200	3,750	5,000				
Macrocells	32	64	128	160	192	256				
Logic array blocks	2	4	8	10	12	16				
Maximum user I/O pins	36	68	100	104	124	164				
t _{PD} (ns)	5	5	6	6	7.5	7.5				
t _{SU} (ns)	2.9	2.9	3.4	3.4	4.1	3.9				
t _{FSU} (ns)	2.5	2.5	2.5	2.5	3	3				
t _{CO1} (ns)	3.2	3.2	4	3.9	4.7	4.7				
f _{CNT} (MHz)	175.4	175.4	147.1	149.3	125.0	128.2				

...and More Features

- Open-drain output option in MAX 7000S devices
- Programmable macrocell flipflops with individual clear, preset, clock, and clock enable controls
- Programmable power-saving mode for a reduction of over 50% in each macrocell
- Configurable expander product-term distribution, allowing up to 32 product terms per macrocell
- 44 to 208 pins available in plastic J-lead chip carrier (PLCC), ceramic pin-grid array (PGA), plastic quad flat pack (PQFP), power quad flat pack (RQFP), and 1.0-mm thin quad flat pack (TQFP) packages
- Programmable security bit for protection of proprietary designs
- 3.3-V or 5.0-V operation
 - MultiVoltTM I/O interface operation, allowing devices to interface with 3.3-V or 5.0-V devices (MultiVolt I/O operation is not available in 44-pin packages)
 - Pin compatible with low-voltage MAX 7000A and MAX 7000B devices
- Enhanced features available in MAX 7000E and MAX 7000S devices
 - Six pin- or logic-driven output enable signals
 - Two global clock signals with optional inversion
 - Enhanced interconnect resources for improved routability
 - Fast input setup times provided by a dedicated path from I/O pin to macrocell registers
 - Programmable output slew-rate control
- Software design support and automatic place-and-route provided by Altera's development system for Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 workstations

The MAX 7000E devices—including the EPM7128E, EPM7160E, EPM7192E, and EPM7256E devices—have several enhanced features: additional global clocking, additional output enable controls, enhanced interconnect resources, fast input registers, and a programmable slew rate.

In-system programmable MAX 7000 devices—called MAX 7000S devices—include the EPM7032S, EPM7064S, EPM7128S, EPM7160S, EPM7192S, and EPM7256S devices. MAX 7000S devices have the enhanced features of MAX 7000E devices as well as JTAG BST circuitry in devices with 128 or more macrocells, ISP, and an open-drain output option. See Table 4.

Table 4. MAX 7000 Device Features							
Feature	EPM7032 EPM7064 EPM7096	All MAX 7000E Devices	All MAX 7000S Devices				
ISP via JTAG interface			✓				
JTAG BST circuitry			√ (1)				
Open-drain output option			✓				
Fast input registers		✓	✓				
Six global output enables		✓	✓				
Two global clocks		✓	✓				
Slew-rate control		✓	✓				
MultiVolt interface (2)	✓	✓	✓				
Programmable register	✓	✓	✓				
Parallel expanders	✓	✓	✓				
Shared expanders	✓	✓	✓				
Power-saving mode	✓	✓	✓				
Security bit	✓	✓	✓				
PCI-compliant devices available	✓	✓	✓				

Notes:

- (1) Available only in EPM7128S, EPM7160S, EPM7192S, and EPM7256S devices only.
- (2) The MultiVolt I/O interface is not available in 44-pin packages.

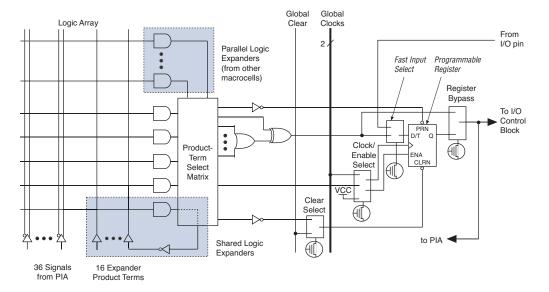
The MAX 7000 architecture supports 100% TTL emulation and high-density integration of SSI, MSI, and LSI logic functions. The MAX 7000 architecture easily integrates multiple devices ranging from PALs, GALs, and 22V10s to MACH and pLSI devices. MAX 7000 devices are available in a wide range of packages, including PLCC, PGA, PQFP, RQFP, and TQFP packages. See Table 5.

Table 5. M.	Table 5. MAX 7000 Maximum User I/O Pins Note (1)											
Device	44- Pin PLCC	44- Pin PQFP	44- Pin TQFP	68- Pin PLCC	84- Pin PLCC	100- Pin PQFP	100- Pin TQFP	160- Pin PQFP	160- Pin PGA	192- Pin PGA	208- Pin PQFP	208- Pin RQFP
EPM7032	36	36	36									
EPM7032S	36		36									
EPM7064	36		36	52	68	68						
EPM7064S	36		36		68		68					
EPM7096				52	64	76						
EPM7128E					68	84		100				
EPM7128S					68	84	84 (2)	100				
EPM7160E					64	84		104				
EPM7160S					64		84 (2)	104				
EPM7192E								124	124			
EPM7192S								124				
EPM7256E								132 (2)		164		164
EPM7256S											164 (2)	164

Notes:

- When the JTAG interface in MAX 7000S devices is used for either boundary-scan testing or for ISP, four I/O pins become JTAG pins.
- (2) Perform a complete thermal analysis before committing a design to this device package. For more information, see the Operating Requirements for Altera Devices Data Sheet.

MAX 7000 devices use CMOS EEPROM cells to implement logic functions. The user-configurable MAX 7000 architecture accommodates a variety of independent combinatorial and sequential logic functions. The devices can be reprogrammed for quick and efficient iterations during design development and debug cycles, and can be programmed and erased up to 100 times.


Each LAB is fed by the following signals:

- 36 signals from the PIA that are used for general logic inputs
- Global controls that are used for secondary register functions
- Direct input paths from I/O pins to the registers that are used for fast setup times for MAX 7000E and MAX 7000S devices

Macrocells

The MAX 7000 macrocell can be individually configured for either sequential or combinatorial logic operation. The macrocell consists of three functional blocks: the logic array, the product-term select matrix, and the programmable register. The macrocell of EPM7032, EPM7064, and EPM7096 devices is shown in Figure 3.

Figure 3. EPM7032, EPM7064 & EPM7096 Device Macrocell

For more information on using the Jam language, refer to AN 122: Using Jam STAPL for ISP & ICR via an Embedded Processor.

The ISP circuitry in MAX 7000S devices is compatible with IEEE Std. 1532 specification. The IEEE Std. 1532 is a standard developed to allow concurrent ISP between multiple PLD vendors.

Programming Sequence

During in-system programming, instructions, addresses, and data are shifted into the MAX 7000S device through the TDI input pin. Data is shifted out through the TDO output pin and compared against the expected data.

Programming a pattern into the device requires the following six ISP stages. A stand-alone verification of a programmed pattern involves only stages 1, 2, 5, and 6.

- Enter ISP. The enter ISP stage ensures that the I/O pins transition smoothly from user mode to ISP mode. The enter ISP stage requires 1 ms.
- 2. *Check ID*. Before any program or verify process, the silicon ID is checked. The time required to read this silicon ID is relatively small compared to the overall programming time.
- 3. *Bulk Erase*. Erasing the device in-system involves shifting in the instructions to erase the device and applying one erase pulse of 100 ms.
- Program. Programming the device in-system involves shifting in the address and data and then applying the programming pulse to program the EEPROM cells. This process is repeated for each EEPROM address.
- Verify. Verifying an Altera device in-system involves shifting in addresses, applying the read pulse to verify the EEPROM cells, and shifting out the data for comparison. This process is repeated for each EEPROM address.
- 6. Exit ISP. An exit ISP stage ensures that the I/O pins transition smoothly from ISP mode to user mode. The exit ISP stage requires 1 ms.

Programming Times

The time required to implement each of the six programming stages can be broken into the following two elements:

- A pulse time to erase, program, or read the EEPROM cells.
- A shifting time based on the test clock (TCK) frequency and the number of TCK cycles to shift instructions, address, and data into the device.

By combining the pulse and shift times for each of the programming stages, the program or verify time can be derived as a function of the TCK frequency, the number of devices, and specific target device(s). Because different ISP-capable devices have a different number of EEPROM cells, both the total fixed and total variable times are unique for a single device.

Programming a Single MAX 7000S Device

The time required to program a single MAX 7000S device in-system can be calculated from the following formula:

$$t_{PROG} = t_{PPULSE} + \frac{Cycle_{PTCK}}{f_{TCK}}$$

where: t_{PROG} = Programming time t_{PPULSE} = Sum of the fixed times to erase, program, and

verify the EEPROM cells

 $Cycle_{PTCK}$ = Number of TCK cycles to program a device

= TCK frequency

The ISP times for a stand-alone verification of a single MAX 7000S device can be calculated from the following formula:

$$t_{VER} = t_{VPULSE} + \frac{Cycle_{VTCK}}{f_{TCK}}$$

where: t_{VER} = Verify time

 t_{VPULSE} = Sum of the fixed times to verify the EEPROM cells

 $Cycle_{VTCK}$ = Number of TCK cycles to verify a device

Programmable Speed/Power Control

MAX 7000 devices offer a power-saving mode that supports low-power operation across user-defined signal paths or the entire device. This feature allows total power dissipation to be reduced by 50% or more, because most logic applications require only a small fraction of all gates to operate at maximum frequency.

The designer can program each individual macrocell in a MAX 7000 device for either high-speed (i.e., with the Turbo BitTM option turned on) or low-power (i.e., with the Turbo Bit option turned off) operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths can operate at reduced power. Macrocells that run at low power incur a nominal timing delay adder (t_{LPA}) for the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , and t_{SEXP} , t_{ACL} , and t_{CPPW} parameters.

Output Configuration

MAX 7000 device outputs can be programmed to meet a variety of system-level requirements.

MultiVolt I/O Interface

MAX 7000 devices—except 44-pin devices—support the MultiVolt I/O interface feature, which allows MAX 7000 devices to interface with systems that have differing supply voltages. The 5.0-V devices in all packages can be set for 3.3-V or 5.0-V I/O pin operation. These devices have one set of VCC pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

The VCCINT pins must always be connected to a 5.0-V power supply. With a 5.0-V $V_{\rm CCINT}$ level, input voltage thresholds are at TTL levels, and are therefore compatible with both 3.3-V and 5.0-V inputs.

The VCCIO pins can be connected to either a 3.3-V or a 5.0-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 5.0-V supply, the output levels are compatible with 5.0-V systems. When $V_{\rm CCIO}$ is connected to a 3.3-V supply, the output high is 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with $V_{\rm CCIO}$ levels lower than 4.75 V incur a nominally greater timing delay of $t_{\rm OD2}$ instead of $t_{\rm OD1}$.

Open-Drain Output Option (MAX 7000S Devices Only)

MAX 7000S devices provide an optional open-drain (functionally equivalent to open-collector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. It can also provide an additional wired-OR plane.

IEEE Std. 1149.1 (JTAG) Boundary-Scan Support

MAX 7000 devices support JTAG BST circuitry as specified by IEEE Std. 1149.1-1990. Table 9 describes the JTAG instructions supported by the MAX 7000 family. The pin-out tables (see the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information) show the location of the JTAG control pins for each device. If the JTAG interface is not required, the JTAG pins are available as user I/O pins.

Table 9. MAX 7000 J	ITAG Instruction	s
JTAG Instruction	Devices	Description
SAMPLE/PRELOAD	EPM7128S EPM7160S EPM7192S	Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern output at the device pins.
	EPM7256S	pattern output at the device pins.
EXTEST	EPM7128S EPM7160S EPM7192S EPM7256S	Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins.
BYPASS	EPM7032S EPM7064S EPM7128S EPM7160S EPM7192S EPM7256S	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through a selected device to adjacent devices during normal device operation.
IDCODE	EPM7032S EPM7064S EPM7128S EPM7160S EPM7192S EPM7256S	Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be serially shifted out of TDO.
ISP Instructions	EPM7032S EPM7064S EPM7128S EPM7160S EPM7192S EPM7256S	These instructions are used when programming MAX 7000S devices via the JTAG ports with the MasterBlaster, ByteBlasterMV, BitBlaster download cable, or using a Jam File (.jam), Jam Byte-Code file (.jbc), or Serial Vector Format file (.svf) via an embedded processor or test equipment.

Operating Conditions

Tables 13 through 18 provide information about absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for 5.0-V MAX 7000 devices.

Table 1	Table 13. MAX 7000 5.0-V Device Absolute Maximum Ratings Note (1)										
Symbol	Parameter	Conditions	Min	Max	Unit						
V _{CC}	Supply voltage	With respect to ground (2)	-2.0	7.0	V						
VI	DC input voltage		-2.0	7.0	V						
I _{OUT}	DC output current, per pin		-25	25	mA						
T _{STG}	Storage temperature	No bias	-65	150	° C						
T _{AMB}	Ambient temperature	Under bias	-65	135	° C						
TJ	Junction temperature	Ceramic packages, under bias		150	°C						
		PQFP and RQFP packages, under bias		135	°C						

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4), (5)	4.75 (4.50)	5.25 (5.50)	V
V _{CCIO}	Supply voltage for output drivers, 5.0-V operation	(3), (4)	4.75 (4.50)	5.25 (5.50)	V
	Supply voltage for output drivers, 3.3-V operation	(3), (4), (6)	3.00 (3.00)	3.60 (3.60)	V
V _{CCISP}	Supply voltage during ISP	(7)	4.75	5.25	V
V _I	Input voltage		-0.5 (8)	V _{CCINT} + 0.5	V
Vo	Output voltage		0	V _{CCIO}	V
T _A	Ambient temperature	For commercial use	0	70	°C
		For industrial use	-40	85	°C
TJ	Junction temperature	For commercial use	0	90	°C
		For industrial use	-40	105	° C
t _R	Input rise time			40	ns
t _F	Input fall time			40	ns

Symbol	Parameter	Conditions	Min	Max	Unit
V _{IH}	High-level input voltage		2.0	V _{CCINT} + 0.5	V
V _{IL}	Low-level input voltage		-0.5 (8)	0.8	V
V _{OH}	5.0-V high-level TTL output voltage	I _{OH} = -4 mA DC, V _{CCIO} = 4.75 V (10)	2.4		V
	3.3-V high-level TTL output voltage	I _{OH} = -4 mA DC, V _{CCIO} = 3.00 V (10)	2.4		V
	3.3-V high-level CMOS output voltage	$I_{OH} = -0.1 \text{ mA DC}, V_{CCIO} = 3.0 \text{ V} (10)$	V _{CCIO} - 0.2		V
V _{OL}	5.0-V low-level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 4.75 V (11)		0.45	V
	3.3-V low-level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 3.00 V (11)		0.45	V
	3.3-V low-level CMOS output voltage	$I_{OL} = 0.1 \text{ mA DC}, V_{CCIO} = 3.0 \text{ V}(11)$		0.2	V
lı	Leakage current of dedicated input pins	$V_I = -0.5 \text{ to } 5.5 \text{ V } (11)$	-10	10	μА
l _{OZ}	I/O pin tri-state output off-state current	$V_I = -0.5 \text{ to } 5.5 \text{ V } (11), (12)$	-40	40	μА

Table 1	Table 16. MAX 7000 5.0-V Device Capacitance: EPM7032, EPM7064 & EPM7096 Devices						
Symbol	Parameter	Conditions	Min	Max	Unit		
C _{IN}	Input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		12	pF		
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		12	pF		

Table 1	Table 17. MAX 7000 5.0-V Device Capacitance: MAX 7000E Devices Note (13)								
Symbol	Parameter	Conditions	Min	Max	Unit				
C _{IN}	Input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		15	pF				
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		15	pF				

Table 1	Table 18. MAX 7000 5.0-V Device Capacitance: MAX 7000S DevicesNote (13)								
Symbol	Parameter	Conditions	Min	Max	Unit				
C _{IN}	Dedicated input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF				
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		10	pF				

Table 2	Table 21. MAX 7000 & MAX 7000E External Timing Parameters Note (1)										
Symbol	Parameter	Conditions		Speed Grade							
			MAX 700	0E (-10P)	MAX 7000 (-10) MAX 7000E (-10)						
			Min	Max	Min	Max					
t _{PD1}	Input to non-registered output	C1 = 35 pF		10.0		10.0	ns				
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		10.0		10.0	ns				
t _{SU}	Global clock setup time		7.0		8.0		ns				
t _H	Global clock hold time		0.0		0.0		ns				
t _{FSU}	Global clock setup time of fast input	(2)	3.0		3.0		ns				
t _{FH}	Global clock hold time of fast input	(2)	0.5		0.5		ns				
t _{CO1}	Global clock to output delay	C1 = 35 pF		5.0		5	ns				
t _{CH}	Global clock high time		4.0		4.0		ns				
t _{CL}	Global clock low time		4.0		4.0		ns				
t _{ASU}	Array clock setup time		2.0		3.0		ns				
t _{AH}	Array clock hold time		3.0		3.0		ns				
t _{ACO1}	Array clock to output delay	C1 = 35 pF		10.0		10.0	ns				
t _{ACH}	Array clock high time		4.0		4.0		ns				
t _{ACL}	Array clock low time		4.0		4.0		ns				
t _{CPPW}	Minimum pulse width for clear and preset	(3)	4.0		4.0		ns				
t _{ODH}	Output data hold time after clock	C1 = 35 pF (4)	1.0		1.0		ns				
t _{CNT}	Minimum global clock period			10.0		10.0	ns				
f _{CNT}	Maximum internal global clock frequency	(5)	100.0		100.0		MHz				
t _{ACNT}	Minimum array clock period			10.0		10.0	ns				
f _{ACNT}	Maximum internal array clock frequency	(5)	100.0		100.0		MHz				
f _{MAX}	Maximum clock frequency	(6)	125.0		125.0		MHz				

Table 2	5. MAX 7000 & MAX 7000E	External Timing I	Paramete	ers /	lote (1)					
Symbol	Parameter	Conditions	Speed Grade							
			-15		-15T		-20		-	
			Min	Max	Min	Max	Min	Max		
t _{PD1}	Input to non-registered output	C1 = 35 pF		15.0		15.0		20.0	ns	
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		15.0		15.0		20.0	ns	
t _{SU}	Global clock setup time		11.0		11.0		12.0		ns	
t _H	Global clock hold time		0.0		0.0		0.0		ns	
t _{FSU}	Global clock setup time of fast input	(2)	3.0		-		5.0		ns	
t _{FH}	Global clock hold time of fast input	(2)	0.0		-		0.0		ns	
t _{CO1}	Global clock to output delay	C1 = 35 pF		8.0		8.0		12.0	ns	
t _{CH}	Global clock high time		5.0		6.0		6.0		ns	
t _{CL}	Global clock low time		5.0		6.0		6.0		ns	
t _{ASU}	Array clock setup time		4.0		4.0		5.0		ns	
t _{AH}	Array clock hold time		4.0		4.0		5.0		ns	
t _{ACO1}	Array clock to output delay	C1 = 35 pF		15.0		15.0		20.0	ns	
t _{ACH}	Array clock high time		6.0		6.5		8.0		ns	
t _{ACL}	Array clock low time		6.0		6.5		8.0		ns	
t _{CPPW}	Minimum pulse width for clear and preset	(3)	6.0		6.5		8.0		ns	
t _{ODH}	Output data hold time after clock	C1 = 35 pF (4)	1.0		1.0		1.0		ns	
t _{CNT}	Minimum global clock period			13.0		13.0		16.0	ns	
f _{CNT}	Maximum internal global clock frequency	(5)	76.9		76.9		62.5		MHz	
t _{ACNT}	Minimum array clock period			13.0		13.0		16.0	ns	
f _{ACNT}	Maximum internal array clock frequency	(5)	76.9		76.9		62.5		MHz	
f _{MAX}	Maximum clock frequency	(6)	100		83.3	_	83.3	_	MHz	

Table 27. EPM7032S External Timing Parameters (Part 2 of 2) Note (1)												
Symbol	Parameter	Conditions	Speed Grade									
			-	5	-6		-7		-10			
			Min	Max	Min	Max	Min	Max	Min	Max		
f _{ACNT}	Maximum internal array clock frequency	(4)	175.4		142.9		116.3		100.0		MHz	
f _{MAX}	Maximum clock frequency	(5)	250.0		200.0		166.7		125.0		MHz	

Table 2	8. EPM7032S Internal Tim	ing Parameter	s /	Note (1)							
Symbol	Parameter	Conditions	Speed Grade								
			-5		-	6	-7		-10		
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.2		0.2		0.3		0.5	ns
t _{IO}	I/O input pad and buffer delay			0.2		0.2		0.3		0.5	ns
t _{FIN}	Fast input delay			2.2		2.1		2.5		1.0	ns
t _{SEXP}	Shared expander delay			3.1		3.8		4.6		5.0	ns
t _{PEXP}	Parallel expander delay			0.9		1.1		1.4		0.8	ns
t _{LAD}	Logic array delay			2.6		3.3		4.0		5.0	ns
t _{LAC}	Logic control array delay			2.5		3.3		4.0		5.0	ns
t _{IOE}	Internal output enable delay			0.7		0.8		1.0		2.0	ns
t _{OD1}	Output buffer and pad delay	C1 = 35 pF		0.2		0.3		0.4		1.5	ns
t _{OD2}	Output buffer and pad delay	C1 = 35 pF (6)		0.7		0.8		0.9		2.0	ns
t _{OD3}	Output buffer and pad delay	C1 = 35 pF		5.2		5.3		5.4		5.5	ns
t _{ZX1}	Output buffer enable delay	C1 = 35 pF		4.0		4.0		4.0		5.0	ns
t _{ZX2}	Output buffer enable delay	C1 = 35 pF (6)		4.5		4.5		4.5		5.5	ns
t _{ZX3}	Output buffer enable delay	C1 = 35 pF		9.0		9.0		9.0		9.0	ns
t _{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		4.0		5.0	ns
t _{SU}	Register setup time		0.8		1.0		1.3		2.0		ns
t _H	Register hold time		1.7		2.0		2.5		3.0		ns
t _{FSU}	Register setup time of fast input		1.9		1.8		1.7		3.0		ns
t _{FH}	Register hold time of fast input		0.6		0.7		0.8		0.5		ns
t _{RD}	Register delay			1.2		1.6		1.9		2.0	ns
t _{COMB}	Combinatorial delay			0.9		1.1		1.4		2.0	ns
t _{IC}	Array clock delay			2.7		3.4		4.2		5.0	ns
t _{EN}	Register enable time			2.6		3.3		4.0		5.0	ns
t _{GLOB}	Global control delay			1.6		1.4		1.7		1.0	ns
t _{PRE}	Register preset time			2.0		2.4		3.0		3.0	ns
t _{CLR}	Register clear time			2.0		2.4		3.0		3.0	ns

Symbol	Parameter	Conditions	Speed Grade								
			-5		-6		-7		-10		
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{FSU}	Register setup time of fast input		1.9		1.8		3.0		3.0		ns
t _{FH}	Register hold time of fast input		0.6		0.7		0.5		0.5		ns
t _{RD}	Register delay			1.2		1.6		1.0		2.0	ns
t _{COMB}	Combinatorial delay			0.9		1.0		1.0		2.0	ns
t _{IC}	Array clock delay			2.7		3.3		3.0		5.0	ns
t _{EN}	Register enable time			2.6		3.2		3.0		5.0	ns
t_{GLOB}	Global control delay			1.6		1.9		1.0		1.0	ns
t _{PRE}	Register preset time			2.0		2.4		2.0		3.0	ns
t _{CLR}	Register clear time			2.0		2.4		2.0		3.0	ns
t _{PIA}	PIA delay	(7)		1.1		1.3		1.0		1.0	ns
t_{LPA}	Low-power adder	(8)		12.0		11.0		10.0		11.0	ns

Notes to tables:

- (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode.

Tables 31 and 32 show the EPM7128S AC operating conditions.

Table 3	11. EPM7128\$ External Time	ing Parameters	: No	te (1)							
Symbol	Parameter	Conditions	Speed Grade								
			-6		-	7	-10		-15		1
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns
t _{SU}	Global clock setup time		3.4		6.0		7.0		11.0		ns
t _H	Global clock hold time		0.0		0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.5		0.5		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		4.0		4.5		5.0		8.0	ns
t _{CH}	Global clock high time		3.0		3.0		4.0		5.0		ns
t _{CL}	Global clock low time		3.0		3.0		4.0		5.0		ns
t _{ASU}	Array clock setup time		0.9		3.0		2.0		4.0		ns
t _{AH}	Array clock hold time		1.8		2.0		5.0		4.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		6.5		7.5		10.0		15.0	ns
t _{ACH}	Array clock high time		3.0		3.0		4.0		6.0		ns
t _{ACL}	Array clock low time		3.0		3.0		4.0		6.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(2)	3.0		3.0		4.0		6.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		1.0		ns
t _{CNT}	Minimum global clock period			6.8		8.0		10.0		13.0	ns
f _{CNT}	Maximum internal global clock frequency	(4)	147.1		125.0		100.0		76.9		MHz
t _{ACNT}	Minimum array clock period			6.8		8.0		10.0		13.0	ns
f _{ACNT}	Maximum internal array clock frequency	(4)	147.1		125.0		100.0		76.9		MHz
f _{MAX}	Maximum clock frequency	(5)	166.7		166.7		125.0		100.0		MHz

Notes to tables:

- These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode.

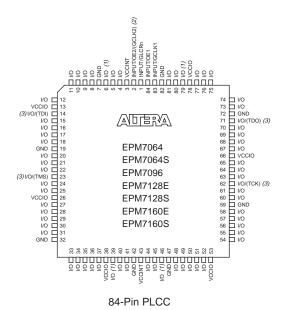
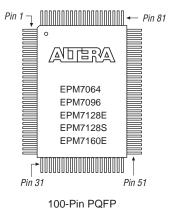

Tables 33 and 34 show the EPM7160S AC operating conditions.

Table 3	Table 33. EPM7160S External Timing Parameters (Part 1 of 2) Note (1)												
Symbol	Parameter	Conditions	Speed Grade										
			-6		-7		-10		-15				
			Min	Max	Min	Max	Min	Max	Min	Max			
t _{PD1}	Input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns		
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns		
t _{SU}	Global clock setup time		3.4		4.2		7.0		11.0		ns		
t _H	Global clock hold time		0.0		0.0		0.0		0.0		ns		
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		3.0		ns		
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.5		0.0		ns		
t _{CO1}	Global clock to output delay	C1 = 35 pF		3.9		4.8		5		8	ns		
t _{CH}	Global clock high time		3.0		3.0		4.0		5.0		ns		
t _{CL}	Global clock low time		3.0		3.0		4.0		5.0		ns		
t _{ASU}	Array clock setup time		0.9		1.1		2.0		4.0		ns		
t _{AH}	Array clock hold time		1.7		2.1		3.0		4.0		ns		
t _{ACO1}	Array clock to output delay	C1 = 35 pF		6.4		7.9		10.0		15.0	ns		
t _{ACH}	Array clock high time		3.0		3.0		4.0		6.0		ns		
t _{ACL}	Array clock low time		3.0		3.0		4.0		6.0		ns		
t _{CPPW}	Minimum pulse width for clear and preset	(2)	2.5		3.0		4.0		6.0		ns		
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		1.0		ns		
t _{CNT}	Minimum global clock period			6.7		8.2		10.0		13.0	ns		
f _{CNT}	Maximum internal global clock frequency	(4)	149.3		122.0		100.0		76.9		MHz		

Symbol	Parameter	Conditions	Speed Grade							
			-7		-10		-15			
			Min	Max	Min	Max	Min	Max		
t _{IN}	Input pad and buffer delay			0.3		0.5		2.0	ns	
t _{IO}	I/O input pad and buffer delay			0.3		0.5		2.0	ns	
t _{FIN}	Fast input delay			3.4		1.0		2.0	ns	
t _{SEXP}	Shared expander delay			3.9		5.0		8.0	ns	
t_{PEXP}	Parallel expander delay			1.1		0.8		1.0	ns	
t_{LAD}	Logic array delay			2.6		5.0		6.0	ns	
t _{LAC}	Logic control array delay			2.6		5.0		6.0	ns	
t _{IOE}	Internal output enable delay			0.8		2.0		3.0	ns	
t _{OD1}	Output buffer and pad delay	C1 = 35 pF		0.5		1.5		4.0	ns	
t _{OD2}	Output buffer and pad delay	C1 = 35 pF (6)		1.0		2.0		5.0	ns	
t _{OD3}	Output buffer and pad delay	C1 = 35 pF		5.5		5.5		8.0	ns	
t _{ZX1}	Output buffer enable delay	C1 = 35 pF		4.0		5.0		6.0	ns	
t _{ZX2}	Output buffer enable delay	C1 = 35 pF (6)		4.5		5.5		7.0	ns	
t _{ZX3}	Output buffer enable delay	C1 = 35 pF		9.0		9.0		10.0	ns	
t_{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		5.0		6.0	ns	
t _{SU}	Register setup time		1.1		2.0		4.0		ns	
t _H	Register hold time		1.6		3.0		4.0		ns	
t _{FSU}	Register setup time of fast input		2.4		3.0		2.0		ns	
t _{FH}	Register hold time of fast input		0.6		0.5		1.0		ns	
t_{RD}	Register delay			1.1		2.0		1.0	ns	
t _{COMB}	Combinatorial delay			1.1		2.0		1.0	ns	
t _{IC}	Array clock delay			2.9		5.0		6.0	ns	
t_{EN}	Register enable time			2.6		5.0		6.0	ns	
t _{GLOB}	Global control delay			2.8		1.0		1.0	ns	
t _{PRE}	Register preset time			2.7		3.0		4.0	ns	
t _{CLR}	Register clear time			2.7		3.0		4.0	ns	
t _{PIA}	PIA delay	(7)		3.0		1.0		2.0	ns	
t _{LPA}	Low-power adder	(8)		10.0	İ	11.0		13.0	ns	

Figure 18. 84-Pin Package Pin-Out Diagram

Package outline not drawn to scale.



Notes:

- (1) Pins 6, 39, 46, and 79 are no-connect (N.C.) pins on EPM7096, EPM7160E, and EPM7160S devices.
- (2) The pin functions shown in parenthesis are only available in MAX 7000E and MAX 7000S devices.
- (3) JTAG ports are available in MAX 7000S devices only.

Figure 19. 100-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

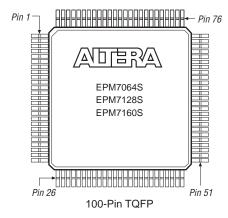
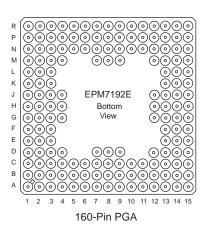
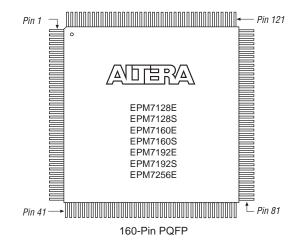




Figure 20. 160-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

Figure 21. 192-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

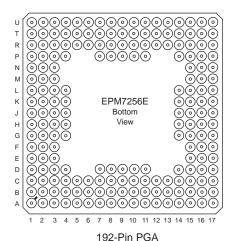
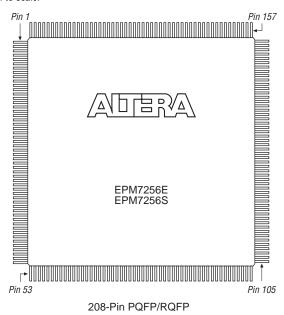



Figure 22. 208-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

