Welcome to **E-XFL.COM** **Understanding Embedded - CPLDs (Complex Programmable Logic Devices)** Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware. # **Applications of Embedded - CPLDs** | Details | | |---------------------------------|---| | Product Status | Obsolete | | Programmable Type | EE PLD | | Delay Time tpd(1) Max | 15 ns | | Voltage Supply - Internal | 4.75V ~ 5.25V | | Number of Logic Elements/Blocks | 4 | | Number of Macrocells | 64 | | Number of Gates | 1250 | | Number of I/O | 52 | | Operating Temperature | 0°C ~ 70°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 68-LCC (J-Lead) | | Supplier Device Package | 68-PLCC (24x24) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epm7064lc68-15 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong MAX 7000 devices contain from 32 to 256 macrocells that are combined into groups of 16 macrocells, called logic array blocks (LABs). Each macrocell has a programmable-AND/fixed-OR array and a configurable register with independently programmable clock, clock enable, clear, and preset functions. To build complex logic functions, each macrocell can be supplemented with both shareable expander product terms and high-speed parallel expander product terms to provide up to 32 product terms per macrocell. The MAX 7000 family provides programmable speed/power optimization. Speed-critical portions of a design can run at high speed/full power, while the remaining portions run at reduced speed/low power. This speed/power optimization feature enables the designer to configure one or more macrocells to operate at 50% or lower power while adding only a nominal timing delay. MAX 7000E and MAX 7000S devices also provide an option that reduces the slew rate of the output buffers, minimizing noise transients when non-speed-critical signals are switching. The output drivers of all MAX 7000 devices (except 44-pin devices) can be set for either 3.3-V or 5.0-V operation, allowing MAX 7000 devices to be used in mixed-voltage systems. The MAX 7000 family is supported by Altera development systems, which are integrated packages that offer schematic, text—including VHDL, Verilog HDL, and the Altera Hardware Description Language (AHDL)—and waveform design entry, compilation and logic synthesis, simulation and timing analysis, and device programming. The software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry-standard PC- and UNIX-workstation-based EDA tools. The software runs on Windows-based PCs, as well as Sun SPARCstation, and HP 9000 Series 700/800 workstations. For more information on development tools, see the MAX+PLUS II Programmable Logic Development System & Software Data Sheet and the Quartus Programmable Logic Development System & Software Data Sheet. # Functional Description The MAX 7000 architecture includes the following elements: - Logic array blocks - Macrocells - Expander product terms (shareable and parallel) - Programmable interconnect array - I/O control blocks Each LAB is fed by the following signals: - 36 signals from the PIA that are used for general logic inputs - Global controls that are used for secondary register functions - Direct input paths from I/O pins to the registers that are used for fast setup times for MAX 7000E and MAX 7000S devices # **Macrocells** The MAX 7000 macrocell can be individually configured for either sequential or combinatorial logic operation. The macrocell consists of three functional blocks: the logic array, the product-term select matrix, and the programmable register. The macrocell of EPM7032, EPM7064, and EPM7096 devices is shown in Figure 3. Figure 3. EPM7032, EPM7064 & EPM7096 Device Macrocell Each programmable register can be clocked in three different modes: - By a global clock signal. This mode achieves the fastest clock-tooutput performance. - By a global clock signal and enabled by an active-high clock enable. This mode provides an enable on each flipflop while still achieving the fast clock-to-output performance of the global clock. - By an array clock implemented with a product term. In this mode, the flipflop can be clocked by signals from buried macrocells or I/O pins. In EPM7032, EPM7064, and EPM7096 devices, the global clock signal is available from a dedicated clock pin, GCLK1, as shown in Figure 1. In MAX 7000E and MAX 7000S devices, two global clock signals are available. As shown in Figure 2, these global clock signals can be the true or the complement of either of the global clock pins, GCLK1 or GCLK2. Each register also supports asynchronous preset and clear functions. As shown in Figures 3 and 4, the product-term select matrix allocates product terms to control these operations. Although the product-term-driven preset and clear of the register are active high, active-low control can be obtained by inverting the signal within the logic array. In addition, each register clear function can be individually driven by the active-low dedicated global clear pin (GCLRn). Upon power-up, each register in the device will be set to a low state. All MAX 7000E and MAX 7000S I/O pins have a fast input path to a macrocell register. This dedicated path allows a signal to bypass the PIA and combinatorial logic and be driven to an input D flipflop with an extremely fast (2.5 ns) input setup time. # **Expander Product Terms** Although most logic functions can be implemented with the five product terms available in each macrocell, the more complex logic functions require additional product terms. Another macrocell can be used to supply the required logic resources; however, the MAX 7000 architecture also allows both shareable and parallel expander product terms ("expanders") that provide additional product terms directly to any macrocell in the same LAB. These expanders help ensure that logic is synthesized with the fewest possible logic resources to obtain the fastest possible speed. The compiler can allocate up to three sets of up to five parallel expanders automatically to the macrocells that require additional product terms. Each set of five parallel expanders incurs a small, incremental timing delay (t_{PEXP}). For example, if a macrocell requires 14 product terms, the Compiler uses the five dedicated product terms within the macrocell and allocates two sets of parallel expanders; the first set includes five product terms and the second set includes four product terms, increasing the total delay by $2 \times t_{PEXP}$. Two groups of 8 macrocells within each LAB (e.g., macrocells 1 through 8 and 9 through 16) form two chains to lend or borrow parallel expanders. A macrocell borrows parallel expanders from lower-numbered macrocells. For example, macrocell 8 can borrow parallel expanders from macrocell 7, from macrocells 7 and 6, or from macrocells 7, 6, and 5. Within each group of 8, the lowest-numbered macrocell can only lend parallel expanders and the highest-numbered macrocell can only borrow them. Figure 6 shows how parallel expanders can be borrowed from a neighboring macrocell. Figure 6. Parallel Expanders Unused product terms in a macrocell can be allocated to a neighboring macrocell. The instruction register length of MAX 7000S devices is 10 bits. Tables 10 and 11 show the boundary-scan register length and device IDCODE information for MAX 7000S devices. | Table 10. MAX 7000S Boundary-Sca | Table 10. MAX 7000S Boundary-Scan Register Length | | | | | | | | | |----------------------------------|---|--|--|--|--|--|--|--|--| | Device | Boundary-Scan Register Length | | | | | | | | | | EPM7032S | 1 (1) | | | | | | | | | | EPM7064S | 1 (1) | | | | | | | | | | EPM7128S | 288 | | | | | | | | | | EPM7160S | 312 | | | | | | | | | | EPM7192S | 360 | | | | | | | | | | EPM7256S | 480 | | | | | | | | | ### Note: (1) This device does not support JTAG boundary-scan testing. Selecting either the EXTEST or SAMPLE/PRELOAD instruction will select the one-bit bypass register. | Table 11. 32 | Table 11. 32-Bit MAX 7000 Device IDCODE Note (1) | | | | | | | | | | | | |--------------|--|-----------------------|--------------------------------------|------------------|--|--|--|--|--|--|--|--| | Device | | IDCODE (32 B | Bits) | | | | | | | | | | | | Version
(4 Bits) | Part Number (16 Bits) | Manufacturer's
Identity (11 Bits) | 1 (1 Bit)
(2) | | | | | | | | | | EPM7032S | 0000 | 0111 0000 0011 0010 | 00001101110 | 1 | | | | | | | | | | EPM7064S | 0000 | 0111 0000 0110 0100 | 00001101110 | 1 | | | | | | | | | | EPM7128S | 0000 | 0111 0001 0010 1000 | 00001101110 | 1 | | | | | | | | | | EPM7160S | 0000 | 0111 0001 0110 0000 | 00001101110 | 1 | | | | | | | | | | EPM7192S | 0000 | 0111 0001 1001 0010 | 00001101110 | 1 | | | | | | | | | | EPM7256S | 0000 | 0111 0010 0101 0110 | 00001101110 | 1 | | | | | | | | | #### Notes: - (1) The most significant bit (MSB) is on the left. - (2) The least significant bit (LSB) for all JTAG IDCODEs is 1. # Operating Conditions Tables 13 through 18 provide information about absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for 5.0-V MAX 7000 devices. | Table 1 | 3. MAX 7000 5.0-V Device Abso | plute Maximum Ratings Note (1) | | | | |------------------|-------------------------------|------------------------------------|------|-----|------| | Symbol | Parameter | Conditions | Min | Max | Unit | | V _{CC} | Supply voltage | With respect to ground (2) | -2.0 | 7.0 | V | | VI | DC input voltage | | -2.0 | 7.0 | V | | I _{OUT} | DC output current, per pin | | -25 | 25 | mA | | T _{STG} | Storage temperature | No bias | -65 | 150 | ° C | | T _{AMB} | Ambient temperature | Under bias | -65 | 135 | ° C | | TJ | Junction temperature | Ceramic packages, under bias | | 150 | °C | | | | PQFP and RQFP packages, under bias | | 135 | °C | | Symbol | Parameter | Conditions | Min | Max | Unit | |--------------------|---|--------------------|----------------|--------------------------|------| | V _{CCINT} | Supply voltage for internal logic and input buffers | (3), (4), (5) | 4.75
(4.50) | 5.25
(5.50) | V | | V _{CCIO} | Supply voltage for output drivers, 5.0-V operation | (3), (4) | 4.75
(4.50) | 5.25
(5.50) | V | | 3 | Supply voltage for output drivers, 3.3-V operation | (3), (4), (6) | 3.00
(3.00) | 3.60
(3.60) | V | | V _{CCISP} | Supply voltage during ISP | (7) | 4.75 | 5.25 | V | | V _I | Input voltage | | -0.5 (8) | V _{CCINT} + 0.5 | V | | Vo | Output voltage | | 0 | V _{CCIO} | V | | T _A | Ambient temperature | For commercial use | 0 | 70 | °C | | | | For industrial use | -40 | 85 | °C | | TJ | Junction temperature | For commercial use | 0 | 90 | °C | | | | For industrial use | -40 | 105 | ° C | | t _R | Input rise time | | | 40 | ns | | t _F | Input fall time | | | 40 | ns | Tables 19 through 26 show the MAX 7000 and MAX 7000E AC operating conditions. | Symbol | Parameter | Conditions | -6 Speed Grade | | -7 Spee | d Grade | Unit | |-------------------|--|----------------|----------------|-----|---------|---------|------| | | | | Min | Max | Min | Max | | | t _{PD1} | Input to non-registered output | C1 = 35 pF | | 6.0 | | 7.5 | ns | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF | | 6.0 | | 7.5 | ns | | t _{SU} | Global clock setup time | | 5.0 | | 6.0 | | ns | | t _H | Global clock hold time | | 0.0 | | 0.0 | | ns | | t _{FSU} | Global clock setup time of fast input | (2) | 2.5 | | 3.0 | | ns | | t _{FH} | Global clock hold time of fast input | (2) | 0.5 | | 0.5 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 4.0 | | 4.5 | ns | | t _{CH} | Global clock high time | | 2.5 | | 3.0 | | ns | | t _{CL} | Global clock low time | | 2.5 | | 3.0 | | ns | | t _{ASU} | Array clock setup time | | 2.5 | | 3.0 | | ns | | t _{AH} | Array clock hold time | | 2.0 | | 2.0 | | ns | | t _{ACO1} | Array clock to output delay | C1 = 35 pF | | 6.5 | | 7.5 | ns | | t _{ACH} | Array clock high time | | 3.0 | | 3.0 | | ns | | t _{ACL} | Array clock low time | | 3.0 | | 3.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | (3) | 3.0 | | 3.0 | | ns | | t _{ODH} | Output data hold time after clock | C1 = 35 pF (4) | 1.0 | | 1.0 | | ns | | t _{CNT} | Minimum global clock period | | | 6.6 | | 8.0 | ns | | f _{CNT} | Maximum internal global clock frequency | (5) | 151.5 | | 125.0 | | MHz | | t _{ACNT} | Minimum array clock period | | | 6.6 | | 8.0 | ns | | f _{ACNT} | Maximum internal array clock frequency | (5) | 151.5 | | 125.0 | | MHz | | f _{MAX} | Maximum clock frequency | (6) | 200 | | 166.7 | | MHz | | Table 2 | 21. MAX 7000 & MAX 7000E Ext | ernal Timing Param | eters Note | (1) | | | | |-------------------|--|--------------------|------------|-----------|-------|------------------------|------| | Symbol | Parameter | Conditions | | Speed (| Grade | | Unit | | | | | MAX 700 | 0E (-10P) | | 000 (-10)
00E (-10) | | | | | | Min | Max | Min | Max | | | t _{PD1} | Input to non-registered output | C1 = 35 pF | | 10.0 | | 10.0 | ns | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF | | 10.0 | | 10.0 | ns | | t _{SU} | Global clock setup time | | 7.0 | | 8.0 | | ns | | t _H | Global clock hold time | | 0.0 | | 0.0 | | ns | | t _{FSU} | Global clock setup time of fast input | (2) | 3.0 | | 3.0 | | ns | | t _{FH} | Global clock hold time of fast input | (2) | 0.5 | | 0.5 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 5.0 | | 5 | ns | | t _{CH} | Global clock high time | | 4.0 | | 4.0 | | ns | | t _{CL} | Global clock low time | | 4.0 | | 4.0 | | ns | | t _{ASU} | Array clock setup time | | 2.0 | | 3.0 | | ns | | t _{AH} | Array clock hold time | | 3.0 | | 3.0 | | ns | | t _{ACO1} | Array clock to output delay | C1 = 35 pF | | 10.0 | | 10.0 | ns | | t _{ACH} | Array clock high time | | 4.0 | | 4.0 | | ns | | t _{ACL} | Array clock low time | | 4.0 | | 4.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | (3) | 4.0 | | 4.0 | | ns | | t _{ODH} | Output data hold time after clock | C1 = 35 pF (4) | 1.0 | | 1.0 | | ns | | t _{CNT} | Minimum global clock period | | | 10.0 | | 10.0 | ns | | f _{CNT} | Maximum internal global clock frequency | (5) | 100.0 | | 100.0 | | MHz | | t _{ACNT} | Minimum array clock period | | | 10.0 | | 10.0 | ns | | f _{ACNT} | Maximum internal array clock frequency | (5) | 100.0 | | 100.0 | | MHz | | f _{MAX} | Maximum clock frequency | (6) | 125.0 | | 125.0 | | MHz | | Symbol | Parameter | Conditions | | Speed | Grade | | Unit | |-------------------|--|----------------|---------|-----------|-------|-----------------------|------| | | | | MAX 700 | OE (-10P) | | 00 (-10)
DOE (-10) | | | | | | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.5 | | 1.0 | ns | | t _{IO} | I/O input pad and buffer delay | | | 0.5 | | 1.0 | ns | | t _{FIN} | Fast input delay | (2) | | 1.0 | | 1.0 | ns | | t _{SEXP} | Shared expander delay | | | 5.0 | | 5.0 | ns | | t _{PEXP} | Parallel expander delay | | | 0.8 | | 0.8 | ns | | t_{LAD} | Logic array delay | | | 5.0 | | 5.0 | ns | | t _{LAC} | Logic control array delay | | | 5.0 | | 5.0 | ns | | t _{IOE} | Internal output enable delay | (2) | | 2.0 | | 2.0 | ns | | t _{OD1} | Output buffer and pad delay
Slow slew rate = off
V _{CCIO} = 5.0 V | C1 = 35 pF | | 1.5 | | 2.0 | ns | | t _{OD2} | Output buffer and pad delay
Slow slew rate = off
V _{CCIO} = 3.3 V | C1 = 35 pF (7) | | 2.0 | | 2.5 | ns | | t _{OD3} | Output buffer and pad delay
Slow slew rate = on
V _{CCIO} = 5.0 V or 3.3 V | C1 = 35 pF (2) | | 5.5 | | 6.0 | ns | | t _{ZX1} | Output buffer enable delay
Slow slew rate = off
V _{CCIO} = 5.0 V | C1 = 35 pF | | 5.0 | | 5.0 | ns | | t _{ZX2} | Output buffer enable delay
Slow slew rate = off
V _{CCIO} = 3.3 V | C1 = 35 pF (7) | | 5.5 | | 5.5 | ns | | t _{ZX3} | Output buffer enable delay
Slow slew rate = on
V _{CCIO} = 5.0 V or 3.3 V | C1 = 35 pF (2) | | 9.0 | | 9.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 5.0 | | 5.0 | ns | | t_{SU} | Register setup time | | 2.0 | | 3.0 | | ns | | t_H | Register hold time | | 3.0 | | 3.0 | | ns | | t _{FSU} | Register setup time of fast input | (2) | 3.0 | | 3.0 | | ns | | t_{FH} | Register hold time of fast input | (2) | 0.5 | | 0.5 | | ns | | t _{RD} | Register delay | | | 2.0 | | 1.0 | ns | | t _{COMB} | Combinatorial delay | | | 2.0 | | 1.0 | ns | | t _{IC} | Array clock delay | | | 5.0 | | 5.0 | ns | | t_{EN} | Register enable time | | | 5.0 | | 5.0 | ns | | t _{GLOB} | Global control delay | | | 1.0 | | 1.0 | ns | | t _{PRE} | Register preset time | | | 3.0 | | 3.0 | ns | | t _{CLR} | Register clear time | | | 3.0 | | 3.0 | ns | | t _{PIA} | PIA delay | | | 1.0 | | 1.0 | ns | | t _{LPA} | Low-power adder | (8) | | 11.0 | | 11.0 | ns | | Table 24 | 4. MAX 7000 & MAX 7000E Int | ernal Timing Parame | eters Note | e (1) | | | | |-------------------|--|---------------------|------------|-----------|-------|------------------------|------| | Symbol | Parameter | Conditions | | Speed | Grade | | Unit | | | | | MAX 700 | OE (-12P) | | 000 (-12)
00E (-12) | | | | | | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 1.0 | | 2.0 | ns | | t _{IO} | I/O input pad and buffer delay | | | 1.0 | | 2.0 | ns | | t _{FIN} | Fast input delay | (2) | | 1.0 | | 1.0 | ns | | t _{SEXP} | Shared expander delay | | | 7.0 | | 7.0 | ns | | t _{PEXP} | Parallel expander delay | | | 1.0 | | 1.0 | ns | | t _{LAD} | Logic array delay | | | 7.0 | | 5.0 | ns | | t _{LAC} | Logic control array delay | | | 5.0 | | 5.0 | ns | | t _{IOE} | Internal output enable delay | (2) | | 2.0 | | 2.0 | ns | | t _{OD1} | Output buffer and pad delay
Slow slew rate = off
V _{CCIO} = 5.0 V | C1 = 35 pF | | 1.0 | | 3.0 | ns | | t _{OD2} | Output buffer and pad delay
Slow slew rate = off
V _{CCIO} = 3.3 V | C1 = 35 pF (7) | | 2.0 | | 4.0 | ns | | t _{OD3} | Output buffer and pad delay
Slow slew rate = on
V _{CCIO} = 5.0 V or 3.3 V | C1 = 35 pF (2) | | 5.0 | | 7.0 | ns | | t _{ZX1} | Output buffer enable delay
Slow slew rate = off
V _{CCIO} = 5.0 V | C1 = 35 pF | | 6.0 | | 6.0 | ns | | t _{ZX2} | Output buffer enable delay
Slow slew rate = off
V _{CCIO} = 3.3 V | C1 = 35 pF (7) | | 7.0 | | 7.0 | ns | | t _{ZX3} | Output buffer enable delay
Slow slew rate = on
V _{CCIO} = 5.0 V or 3.3 V | C1 = 35 pF (2) | | 10.0 | | 10.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 6.0 | | 6.0 | ns | | t _{SU} | Register setup time | | 1.0 | | 4.0 | | ns | | t _H | Register hold time | | 6.0 | | 4.0 | | ns | | t _{FSU} | Register setup time of fast input | (2) | 4.0 | | 2.0 | | ns | | t _{FH} | Register hold time of fast input | (2) | 0.0 | | 2.0 | | ns | | t _{RD} | Register delay | | | 2.0 | | 1.0 | ns | | t _{COMB} | Combinatorial delay | | | 2.0 | | 1.0 | ns | | t _{IC} | Array clock delay | | | 5.0 | | 5.0 | ns | | t _{EN} | Register enable time | | | 7.0 | | 5.0 | ns | | t _{GLOB} | Global control delay | | | 2.0 | | 0.0 | ns | | t _{PRE} | Register preset time | | | 4.0 | | 3.0 | ns | | t _{CLR} | Register clear time | | | 4.0 | | 3.0 | ns | | t _{PIA} | PIA delay | | | 1.0 | | 1.0 | ns | | t _{LPA} | Low-power adder | (8) | | 12.0 | | 12.0 | ns | | Table 2 | 8. EPM7032S Internal Tim | ing Parameter | rs / | lote (1) | | | | | | | | |------------------|--------------------------|---------------|------|----------|-----|-------|-------|------|-----|------|------| | Symbol | Parameter | Conditions | | | | Speed | Grade | | | | Unit | | | | | - | -5 -6 | | - | 7 | -1 | 0 | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{PIA} | PIA delay | (7) | | 1.1 | | 1.1 | | 1.4 | | 1.0 | ns | | t_{LPA} | Low-power adder | (8) | | 12.0 | | 10.0 | | 10.0 | | 11.0 | ns | #### Notes to tables: - These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms. - (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path. - (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking. - (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (5) The f_{MAX} values represent the highest frequency for pipelined data. - (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use. - (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value. - (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode. Tables 29 and 30 show the EPM7064S AC operating conditions. | Table 2 | 9. EPM7064S External Timi | ing Parameters | (Part | 1 of 2) | No | nte (1) | | | | | | | |------------------|---------------------------------------|----------------|-------------|---------|-----|---------|-----|-----|-----|------|----|--| | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | | | | | | | - | 5 | - | 6 | -7 | | -10 | | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | | t _{PD1} | Input to non-registered output | C1 = 35 pF | | 5.0 | | 6.0 | | 7.5 | | 10.0 | ns | | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF | | 5.0 | | 6.0 | | 7.5 | | 10.0 | ns | | | t _{SU} | Global clock setup time | | 2.9 | | 3.6 | | 6.0 | | 7.0 | | ns | | | t _H | Global clock hold time | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{FSU} | Global clock setup time of fast input | | 2.5 | | 2.5 | | 3.0 | | 3.0 | | ns | | | t _{FH} | Global clock hold time of fast input | | 0.0 | | 0.0 | | 0.5 | | 0.5 | | ns | | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 3.2 | | 4.0 | | 4.5 | | 5.0 | ns | | | t _{CH} | Global clock high time | | 2.0 | | 2.5 | | 3.0 | | 4.0 | | ns | | | t _{CL} | Global clock low time | | 2.0 | | 2.5 | | 3.0 | | 4.0 | | ns | | | t _{ASU} | Array clock setup time | | 0.7 | | 0.9 | | 3.0 | | 2.0 | | ns | | | t _{AH} | Array clock hold time | | 1.8 | | 2.1 | | 2.0 | | 3.0 | | ns | | | Table 2 | 9. EPM7064\$ External Timi | ing Parameters | (Part 2 | 2 of 2) | No | te (1) | | | | | | | |-------------------|--|----------------|-------------|---------|-------|--------|-------|-----|-------|------|-----|--| | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | | | | | | | - | 5 | - | 6 | -7 | | -10 | | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | | t _{ACO1} | Array clock to output delay | C1 = 35 pF | | 5.4 | | 6.7 | | 7.5 | | 10.0 | ns | | | t _{ACH} | Array clock high time | | 2.5 | | 2.5 | | 3.0 | | 4.0 | | ns | | | t _{ACL} | Array clock low time | | 2.5 | | 2.5 | | 3.0 | | 4.0 | | ns | | | t _{CPPW} | Minimum pulse width for clear and preset | (2) | 2.5 | | 2.5 | | 3.0 | | 4.0 | | ns | | | t _{ODH} | Output data hold time after clock | C1 = 35 pF (3) | 1.0 | | 1.0 | | 1.0 | | 1.0 | | ns | | | t _{CNT} | Minimum global clock period | | | 5.7 | | 7.1 | | 8.0 | | 10.0 | ns | | | f _{CNT} | Maximum internal global clock frequency | (4) | 175.4 | | 140.8 | | 125.0 | | 100.0 | | MHz | | | t _{ACNT} | Minimum array clock period | | | 5.7 | | 7.1 | | 8.0 | | 10.0 | ns | | | f _{ACNT} | Maximum internal array clock frequency | (4) | 175.4 | | 140.8 | | 125.0 | | 100.0 | | MHz | | | f _{MAX} | Maximum clock frequency | (5) | 250.0 | | 200.0 | | 166.7 | | 125.0 | | MHz | | | Table 30. EPM7064S Internal Timing Parameters (Part 1 of 2) Note (1) | | | | | | | | | | | | |--|--------------------------------|----------------|-----|-----|-----|-------|-------|-----|-----|-----|------| | Symbol | Parameter | Conditions | | | | Speed | Grade | | | | Unit | | | | | -5 | | -6 | | -7 | | -10 | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.2 | | 0.2 | | 0.5 | | 0.5 | ns | | t _{IO} | I/O input pad and buffer delay | | | 0.2 | | 0.2 | | 0.5 | | 0.5 | ns | | t _{FIN} | Fast input delay | | | 2.2 | | 2.6 | | 1.0 | | 1.0 | ns | | t _{SEXP} | Shared expander delay | | | 3.1 | | 3.8 | | 4.0 | | 5.0 | ns | | t _{PEXP} | Parallel expander delay | | | 0.9 | | 1.1 | | 0.8 | | 0.8 | ns | | t_{LAD} | Logic array delay | | | 2.6 | | 3.2 | | 3.0 | | 5.0 | ns | | t _{LAC} | Logic control array delay | | | 2.5 | | 3.2 | | 3.0 | | 5.0 | ns | | t _{IOE} | Internal output enable delay | | | 0.7 | | 0.8 | | 2.0 | | 2.0 | ns | | t _{OD1} | Output buffer and pad delay | C1 = 35 pF | | 0.2 | | 0.3 | | 2.0 | | 1.5 | ns | | t _{OD2} | Output buffer and pad delay | C1 = 35 pF (6) | | 0.7 | | 0.8 | | 2.5 | | 2.0 | ns | | t _{OD3} | Output buffer and pad delay | C1 = 35 pF | | 5.2 | | 5.3 | | 7.0 | | 5.5 | ns | | t_{ZX1} | Output buffer enable delay | C1 = 35 pF | | 4.0 | | 4.0 | | 4.0 | | 5.0 | ns | | t _{ZX2} | Output buffer enable delay | C1 = 35 pF (6) | | 4.5 | | 4.5 | | 4.5 | | 5.5 | ns | | t _{ZX3} | Output buffer enable delay | C1 = 35 pF | | 9.0 | | 9.0 | | 9.0 | | 9.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 4.0 | | 4.0 | | 5.0 | ns | | t _{SU} | Register setup time | | 0.8 | | 1.0 | | 3.0 | | 2.0 | | ns | | t _H | Register hold time | | 1.7 | | 2.0 | | 2.0 | | 3.0 | | ns | Tables 31 and 32 show the EPM7128S AC operating conditions. | Table 3 | Table 31. EPM7128S External Timing Parameters Note (1) | | | | | | | | | | | |-------------------|--|----------------|-------------|-----|-------|-----|-------|------|-------|------|------| | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | Unit | | | | | -6 | | -7 | | -10 | | -15 | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{PD1} | Input to non-registered output | C1 = 35 pF | | 6.0 | | 7.5 | | 10.0 | | 15.0 | ns | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF | | 6.0 | | 7.5 | | 10.0 | | 15.0 | ns | | t _{SU} | Global clock setup time | | 3.4 | | 6.0 | | 7.0 | | 11.0 | | ns | | t _H | Global clock hold time | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{FSU} | Global clock setup time of fast input | | 2.5 | | 3.0 | | 3.0 | | 3.0 | | ns | | t _{FH} | Global clock hold time of fast input | | 0.0 | | 0.5 | | 0.5 | | 0.0 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 4.0 | | 4.5 | | 5.0 | | 8.0 | ns | | t _{CH} | Global clock high time | | 3.0 | | 3.0 | | 4.0 | | 5.0 | | ns | | t _{CL} | Global clock low time | | 3.0 | | 3.0 | | 4.0 | | 5.0 | | ns | | t _{ASU} | Array clock setup time | | 0.9 | | 3.0 | | 2.0 | | 4.0 | | ns | | t _{AH} | Array clock hold time | | 1.8 | | 2.0 | | 5.0 | | 4.0 | | ns | | t _{ACO1} | Array clock to output delay | C1 = 35 pF | | 6.5 | | 7.5 | | 10.0 | | 15.0 | ns | | t _{ACH} | Array clock high time | | 3.0 | | 3.0 | | 4.0 | | 6.0 | | ns | | t _{ACL} | Array clock low time | | 3.0 | | 3.0 | | 4.0 | | 6.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | (2) | 3.0 | | 3.0 | | 4.0 | | 6.0 | | ns | | t _{ODH} | Output data hold time after clock | C1 = 35 pF (3) | 1.0 | | 1.0 | | 1.0 | | 1.0 | | ns | | t _{CNT} | Minimum global clock period | | | 6.8 | | 8.0 | | 10.0 | | 13.0 | ns | | f _{CNT} | Maximum internal global clock frequency | (4) | 147.1 | | 125.0 | | 100.0 | | 76.9 | | MHz | | t _{ACNT} | Minimum array clock period | | | 6.8 | | 8.0 | | 10.0 | | 13.0 | ns | | f _{ACNT} | Maximum internal array clock frequency | (4) | 147.1 | | 125.0 | | 100.0 | | 76.9 | | MHz | | f _{MAX} | Maximum clock frequency | (5) | 166.7 | | 166.7 | | 125.0 | | 100.0 | | MHz | | Symbol | Parameter | Conditions | | | | Speed | Grade | ! | | | Unit | |-------------------|-----------------------------------|----------------|-----|------|-----|-------|-------|------|-----|------|------| | | | | - | 6 | - | 7 | -1 | 10 | -1 | 15 | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | - | | t _{IN} | Input pad and buffer delay | | | 0.2 | | 0.5 | | 0.5 | | 2.0 | ns | | t _{IO} | I/O input pad and buffer delay | | | 0.2 | | 0.5 | | 0.5 | | 2.0 | ns | | t _{FIN} | Fast input delay | | | 2.6 | | 1.0 | | 1.0 | | 2.0 | ns | | t _{SEXP} | Shared expander delay | | | 3.7 | | 4.0 | | 5.0 | | 8.0 | ns | | t _{PEXP} | Parallel expander delay | | | 1.1 | | 0.8 | | 0.8 | | 1.0 | ns | | t_{LAD} | Logic array delay | | | 3.0 | | 3.0 | | 5.0 | | 6.0 | ns | | t_{LAC} | Logic control array delay | | | 3.0 | | 3.0 | | 5.0 | | 6.0 | ns | | t _{IOE} | Internal output enable delay | | | 0.7 | | 2.0 | | 2.0 | | 3.0 | ns | | t _{OD1} | Output buffer and pad delay | C1 = 35 pF | | 0.4 | | 2.0 | | 1.5 | | 4.0 | ns | | t _{OD2} | Output buffer and pad delay | C1 = 35 pF (6) | | 0.9 | | 2.5 | | 2.0 | | 5.0 | ns | | t _{OD3} | Output buffer and pad delay | C1 = 35 pF | | 5.4 | | 7.0 | | 5.5 | | 8.0 | ns | | t _{ZX1} | Output buffer enable delay | C1 = 35 pF | | 4.0 | | 4.0 | | 5.0 | | 6.0 | ns | | t _{ZX2} | Output buffer enable delay | C1 = 35 pF (6) | | 4.5 | | 4.5 | | 5.5 | | 7.0 | ns | | t_{ZX3} | Output buffer enable delay | C1 = 35 pF | | 9.0 | | 9.0 | | 9.0 | | 10.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 4.0 | | 5.0 | | 6.0 | ns | | t _{SU} | Register setup time | | 1.0 | | 3.0 | | 2.0 | | 4.0 | | ns | | t _H | Register hold time | | 1.7 | | 2.0 | | 5.0 | | 4.0 | | ns | | t _{FSU} | Register setup time of fast input | | 1.9 | | 3.0 | | 3.0 | | 2.0 | | ns | | t _{FH} | Register hold time of fast input | | 0.6 | | 0.5 | | 0.5 | | 1.0 | | ns | | t_{RD} | Register delay | | | 1.4 | | 1.0 | | 2.0 | | 1.0 | ns | | t _{COMB} | Combinatorial delay | | | 1.0 | | 1.0 | | 2.0 | | 1.0 | ns | | t _{IC} | Array clock delay | | | 3.1 | | 3.0 | | 5.0 | | 6.0 | ns | | t _{EN} | Register enable time | | | 3.0 | | 3.0 | | 5.0 | | 6.0 | ns | | t_{GLOB} | Global control delay | | | 2.0 | | 1.0 | | 1.0 | | 1.0 | ns | | t _{PRE} | Register preset time | | | 2.4 | | 2.0 | | 3.0 | | 4.0 | ns | | t _{CLR} | Register clear time | | | 2.4 | | 2.0 | | 3.0 | | 4.0 | ns | | t_{PIA} | PIA delay | (7) | | 1.4 | | 1.0 | | 1.0 | | 2.0 | ns | | t_{LPA} | Low-power adder | (8) | | 11.0 | | 10.0 | | 11.0 | | 13.0 | ns | #### Notes to tables: - These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms. - (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path. - (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking. - (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (5) The f_{MAX} values represent the highest frequency for pipelined data. - (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use. - (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value. - (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode. # Power Consumption Supply power (P) versus frequency (f_{MAX} in MHz) for MAX 7000 devices is calculated with the following equation: $$P = P_{INT} + P_{IO} = I_{CCINT} \times V_{CC} + P_{IO}$$ The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note* 74 (*Evaluating Power for Altera Devices*). The I_{CCINT} value, which depends on the switching frequency and the application logic, is calculated with the following equation: $$I_{CCINT} =$$ $$A \times MC_{TON} + B \times (MC_{DEV} - MC_{TON}) + C \times MC_{USED} \times f_{MAX} \times tog_{USED}$$ The parameters in this equation are shown below: MC_{TON} = Number of macrocells with the Turbo Bit option turned on, as reported in the MAX+PLUS II Report File (.rpt) MC_{DEV} = Number of macrocells in the device MC_{USED} = Total number of macrocells in the design, as reported in the MAX+PLUS II Report File (.rpt) f_{MAX} = Highest clock frequency to the device tog_{LC} = Average ratio of logic cells toggling at each clock (typically 0.125) A, B, C = Constants, shown in Table 39 | Table 39. MAX 7000 I _{CC} Equation Constants | | | | | | | | | | |---|------|------|-------|--|--|--|--|--|--| | Device | Α | В | С | | | | | | | | EPM7032 | 1.87 | 0.52 | 0.144 | | | | | | | | EPM7064 | 1.63 | 0.74 | 0.144 | | | | | | | | EPM7096 | 1.63 | 0.74 | 0.144 | | | | | | | | EPM7128E | 1.17 | 0.54 | 0.096 | | | | | | | | EPM7160E | 1.17 | 0.54 | 0.096 | | | | | | | | EPM7192E | 1.17 | 0.54 | 0.096 | | | | | | | | EPM7256E | 1.17 | 0.54 | 0.096 | | | | | | | | EPM7032S | 0.93 | 0.40 | 0.040 | | | | | | | | EPM7064S | 0.93 | 0.40 | 0.040 | | | | | | | | EPM7128S | 0.93 | 0.40 | 0.040 | | | | | | | | EPM7160S | 0.93 | 0.40 | 0.040 | | | | | | | | EPM7192S | 0.93 | 0.40 | 0.040 | | | | | | | | EPM7256S | 0.93 | 0.40 | 0.040 | | | | | | | This calculation provides an I_{CC} estimate based on typical conditions using a pattern of a 16-bit, loadable, enabled, up/down counter in each LAB with no output load. Actual I_{CC} values should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions. Figure 15 shows typical supply current versus frequency for MAX 7000S devices. ### EPM7128S EPM7160S Figures 16 through 22 show the package pin-out diagrams for MAX 7000 devices. Figure 16. 44-Pin Package Pin-Out Diagram Package outlines not drawn to scale. ### Notes: - (1) The pin functions shown in parenthesis are only available in MAX 7000E and MAX 7000S devices. - (2) JTAG ports are available in MAX 7000S devices only. ## Figure 18. 84-Pin Package Pin-Out Diagram Package outline not drawn to scale. #### Notes: - (1) Pins 6, 39, 46, and 79 are no-connect (N.C.) pins on EPM7096, EPM7160E, and EPM7160S devices. - (2) The pin functions shown in parenthesis are only available in MAX 7000E and MAX 7000S devices. - (3) JTAG ports are available in MAX 7000S devices only. Figure 19. 100-Pin Package Pin-Out Diagram Package outline not drawn to scale. Figure 20. 160-Pin Package Pin-Out Diagram Package outline not drawn to scale.