Intel - EPM7064LC68-7 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Product Status	Obsolete
Programmable Type	EE PLD
Delay Time tpd(1) Max	7.5 ns
Voltage Supply - Internal	4.75V ~ 5.25V
Number of Logic Elements/Blocks	4
Number of Macrocells	64
Number of Gates	1250
Number of I/O	52
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	68-LCC (J-Lead)
Supplier Device Package	68-PLCC (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm7064lc68-7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	 Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, and VeriBest Programming support Altera's Master Programming Unit (MPU) and programming hardware from third-party manufacturers program all MAX 7000 devices The BitBlasterTM serial download cable, ByteBlasterMVTM parallel port download cable, and MasterBlasterTM serial/universal serial bus (USB) download cable program MAX 7000S devices
General Description	The MAX 7000 family of high-density, high-performance PLDs is based on Altera's second-generation MAX architecture. Fabricated with advanced CMOS technology, the EEPROM-based MAX 7000 family provides 600 to 5,000 usable gates, ISP, pin-to-pin delays as fast as 5 ns, and counter speeds of up to 175.4 MHz. MAX 7000S devices in the -5, -6, -7, and -10 speed grades as well as MAX 7000 and MAX 7000E devices in -5, -6, -7, -10P, and -12P speed grades comply with the PCI Special Interest Group (PCI SIG) <i>PCI Local Bus Specification, Revision 2.2.</i> See Table 3 for available speed grades.

Device					Speed	Grade				
	-5	-6	-7	-10P	-10	-12P	-12	-15	-15T	-20
EPM7032		>	~		>		>	~	 	
EPM7032S	\checkmark	\checkmark	~		 Image: A start of the start of					
EPM7064		>	~		>		>	~		
EPM7064S	\checkmark	\checkmark	~		 Image: A start of the start of					
EPM7096			\checkmark		\checkmark		>	\checkmark		
EPM7128E			~	\checkmark	 Image: A start of the start of		>	~		~
EPM7128S		\checkmark	~		 Image: A start of the start of			~		
EPM7160E				~	~		\checkmark	~		\checkmark
EPM7160S		\checkmark	~		 Image: A start of the start of			~		
EPM7192E						~	>	~		>
EPM7192S			~	1	~	Ī		~		
EPM7256E						~	>	~		>
EPM7256S			\checkmark		\checkmark			\checkmark		

Combinatorial logic is implemented in the logic array, which provides five product terms per macrocell. The product-term select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as secondary inputs to the macrocell's register clear, preset, clock, and clock enable control functions. Two kinds of expander product terms ("expanders") are available to supplement macrocell logic resources:

- Shareable expanders, which are inverted product terms that are fed back into the logic array
- Parallel expanders, which are product terms borrowed from adjacent macrocells

The Altera development system automatically optimizes product-term allocation according to the logic requirements of the design.

For registered functions, each macrocell flipflop can be individually programmed to implement D, T, JK, or SR operation with programmable clock control. The flipflop can be bypassed for combinatorial operation. During design entry, the designer specifies the desired flipflop type; the Altera development software then selects the most efficient flipflop operation for each registered function to optimize resource utilization. Each programmable register can be clocked in three different modes:

- By a global clock signal. This mode achieves the fastest clock-tooutput performance.
- By a global clock signal and enabled by an active-high clock enable. This mode provides an enable on each flipflop while still achieving the fast clock-to-output performance of the global clock.
- By an array clock implemented with a product term. In this mode, the flipflop can be clocked by signals from buried macrocells or I/O pins.

In EPM7032, EPM7064, and EPM7096 devices, the global clock signal is available from a dedicated clock pin, GCLK1, as shown in Figure 1. In MAX 7000E and MAX 7000S devices, two global clock signals are available. As shown in Figure 2, these global clock signals can be the true or the complement of either of the global clock pins, GCLK1 or GCLK2.

Each register also supports asynchronous preset and clear functions. As shown in Figures 3 and 4, the product-term select matrix allocates product terms to control these operations. Although the product-term-driven preset and clear of the register are active high, active-low control can be obtained by inverting the signal within the logic array. In addition, each register clear function can be individually driven by the active-low dedicated global clear pin (GCLRn). Upon power-up, each register in the device will be set to a low state.

All MAX 7000E and MAX 7000S I/O pins have a fast input path to a macrocell register. This dedicated path allows a signal to bypass the PIA and combinatorial logic and be driven to an input D flipflop with an extremely fast (2.5 ns) input setup time.

Expander Product Terms

Although most logic functions can be implemented with the five product terms available in each macrocell, the more complex logic functions require additional product terms. Another macrocell can be used to supply the required logic resources; however, the MAX 7000 architecture also allows both shareable and parallel expander product terms ("expanders") that provide additional product terms directly to any macrocell in the same LAB. These expanders help ensure that logic is synthesized with the fewest possible logic resources to obtain the fastest possible speed.

Shareable Expanders

Each LAB has 16 shareable expanders that can be viewed as a pool of uncommitted single product terms (one from each macrocell) with inverted outputs that feed back into the logic array. Each shareable expander can be used and shared by any or all macrocells in the LAB to build complex logic functions. A small delay (t_{SEXP}) is incurred when shareable expanders are used. Figure 5 shows how shareable expanders can feed multiple macrocells.

Figure 5. Shareable Expanders

Shareable expanders can be shared by any or all macrocells in an LAB.

Parallel Expanders

Parallel expanders are unused product terms that can be allocated to a neighboring macrocell to implement fast, complex logic functions. Parallel expanders allow up to 20 product terms to directly feed the macrocell OR logic, with five product terms provided by the macrocell and 15 parallel expanders provided by neighboring macrocells in the LAB.

For more information on using the Jam language, refer to AN 122: Using Jam STAPL for ISP & ICR via an Embedded Processor.

The ISP circuitry in MAX 7000S devices is compatible with IEEE Std. 1532 specification. The IEEE Std. 1532 is a standard developed to allow concurrent ISP between multiple PLD vendors.

Programming Sequence

During in-system programming, instructions, addresses, and data are shifted into the MAX 7000S device through the TDI input pin. Data is shifted out through the TDO output pin and compared against the expected data.

Programming a pattern into the device requires the following six ISP stages. A stand-alone verification of a programmed pattern involves only stages 1, 2, 5, and 6.

- 1. *Enter ISP*. The enter ISP stage ensures that the I/O pins transition smoothly from user mode to ISP mode. The enter ISP stage requires 1 ms.
- 2. *Check ID*. Before any program or verify process, the silicon ID is checked. The time required to read this silicon ID is relatively small compared to the overall programming time.
- 3. *Bulk Erase.* Erasing the device in-system involves shifting in the instructions to erase the device and applying one erase pulse of 100 ms.
- 4. *Program*. Programming the device in-system involves shifting in the address and data and then applying the programming pulse to program the EEPROM cells. This process is repeated for each EEPROM address.
- 5. *Verify.* Verifying an Altera device in-system involves shifting in addresses, applying the read pulse to verify the EEPROM cells, and shifting out the data for comparison. This process is repeated for each EEPROM address.
- 6. *Exit ISP*. An exit ISP stage ensures that the I/O pins transition smoothly from ISP mode to user mode. The exit ISP stage requires 1 ms.

By using an external 5.0-V pull-up resistor, output pins on MAX 7000S devices can be set to meet 5.0-V CMOS input voltages. When V_{CCIO} is 3.3 V, setting the open drain option will turn off the output pull-up transistor, allowing the external pull-up resistor to pull the output high enough to meet 5.0-V CMOS input voltages. When V_{CCIO} is 5.0 V, setting the output drain option is not necessary because the pull-up transistor will already turn off when the pin exceeds approximately 3.8 V, allowing the external pull-up resistor to pull the output high enough to meet 5.0-V CMOS input voltages.

Slew-Rate Control

The output buffer for each MAX 7000E and MAX 7000S I/O pin has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A faster slew rate provides high-speed transitions for high-performance systems. However, these fast transitions may introduce noise transients into the system. A slow slew rate reduces system noise, but adds a nominal delay of 4 to 5 ns. In MAX 7000E devices, when the Turbo Bit is turned off, the slew rate is set for low noise performance. For MAX 7000S devices, each I/O pin has an individual EEPROM bit that controls the slew rate, allowing designers to specify the slew rate on a pin-by-pin basis.

MAX 7000 devices can be programmed on Windows-based PCs with the Altera Logic Programmer card, the Master Programming Unit (MPU), and the appropriate device adapter. The MPU performs a continuity check to ensure adequate electrical contact between the adapter and the device.

For more information, see the *Altera Programming Hardware Data Sheet*.

The Altera development system can use text- or waveform-format test vectors created with the Text Editor or Waveform Editor to test the programmed device. For added design verification, designers can perform functional testing to compare the functional behavior of a MAX 7000 device with the results of simulation. Moreover, Data I/O, BP Microsystems, and other programming hardware manufacturers also provide programming support for Altera devices.

For more information, see the Programming Hardware Manufacturers.

Programming with External Hardware

Design Security All MAX 7000 devices contain a programmable security bit that controls access to the data programmed into the device. When this bit is programmed, a proprietary design implemented in the device cannot be copied or retrieved. This feature provides a high level of design security because programmed data within EEPROM cells is invisible. The security bit that controls this function, as well as all other programmed data, is reset only when the device is reprogrammed.

Generic Testing

Each MAX 7000 device is functionally tested. Complete testing of each programmable EEPROM bit and all internal logic elements ensures 100% programming yield. AC test measurements are taken under conditions equivalent to those shown in Figure 10. Test patterns can be used and then erased during early stages of the production flow.

Figure 10. MAX 7000 AC Test Conditions

QFP Carrier & Development Socket

MAX 7000 and MAX 7000E devices in QFP packages with 100 or more pins are shipped in special plastic carriers to protect the QFP leads. The carrier is used with a prototype development socket and special programming hardware available from Altera. This carrier technology makes it possible to program, test, erase, and reprogram a device without exposing the leads to mechanical stress.

For detailed information and carrier dimensions, refer to the *QFP Carrier* & *Development Socket Data Sheet*.

MAX 7000S devices are not shipped in carriers.

MAX 7000 Programmable Logic Device Family Data Sheet

Notes to tables:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input voltage on I/O pins is -0.5 V and on 4 dedicated input pins is -0.3 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 7.0 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) Numbers in parentheses are for industrial-temperature-range devices.
- (4) V_{CC} must rise monotonically.
- (5) The POR time for all 7000S devices does not exceed 300 μs. The sufficient V_{CCINT} voltage level for POR is 4.5 V. The device is fully initialized within the POR time after V_{CCINT} reaches the sufficient POR voltage level.
- (6) 3.3-V I/O operation is not available for 44-pin packages.
- (7) The V_{CCISP} parameter applies only to MAX 7000S devices.
- (8) During in-system programming, the minimum DC input voltage is -0.3 V.
- (9) These values are specified under the MAX 7000 recommended operating conditions in Table 14 on page 26.
- (10) The parameter is measured with 50% of the outputs each sourcing the specified current. The I_{OH} parameter refers to high-level TTL or CMOS output current.
- (11) The parameter is measured with 50% of the outputs each sinking the specified current. The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current.
- (12) When the JTAG interface is enabled in MAX 7000S devices, the input leakage current on the JTAG pins is typically -60 μA.
- (13) Capacitance is measured at 25° C and is sample-tested only. The OE1 pin has a maximum capacitance of 20 pF.

Figure 11 shows the typical output drive characteristics of MAX 7000 devices.

Figure 11. Output Drive Characteristics of 5.0-V MAX 7000 Devices

Timing Model

MAX 7000 device timing can be analyzed with the Altera software, with a variety of popular industry-standard EDA simulators and timing analyzers, or with the timing model shown in Figure 12. MAX 7000 devices have fixed internal delays that enable the designer to determine the worst-case timing of any design. The Altera software provides timing simulation, point-to-point delay prediction, and detailed timing analysis for a device-wide performance evaluation.

Table 2	21. MAX 7000 & MAX 7000E Ext	ernal Timing Parame	eters Note	(1)			
Symbol	Parameter	Conditions		Speed (Grade		Unit
			MAX 700	0E (-10P)	MAX 70 Max 70		
			Min	Мах	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF		10.0		10.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		10.0		10.0	ns
t _{SU}	Global clock setup time		7.0		8.0		ns
t _H	Global clock hold time		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input	(2)	3.0		3.0		ns
t _{FH}	Global clock hold time of fast input	(2)	0.5		0.5		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		5.0		5	ns
t _{CH}	Global clock high time		4.0		4.0		ns
t _{CL}	Global clock low time		4.0		4.0		ns
t _{ASU}	Array clock setup time		2.0		3.0		ns
t _{AH}	Array clock hold time		3.0		3.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		10.0		10.0	ns
t _{ACH}	Array clock high time		4.0		4.0		ns
t _{ACL}	Array clock low time		4.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	4.0		4.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF (4)	1.0		1.0		ns
t _{CNT}	Minimum global clock period			10.0		10.0	ns
f _{CNT}	Maximum internal global clock frequency	(5)	100.0		100.0		MHz
t _{ACNT}	Minimum array clock period			10.0		10.0	ns
f _{acnt}	Maximum internal array clock frequency	(5)	100.0		100.0		MHz
f _{MAX}	Maximum clock frequency	(6)	125.0		125.0		MHz

Table 2	23. MAX 7000 & MAX 7000E Ext	ernal Timing Param	eters Note	e (1)			
Symbol	Parameter	Conditions		Speed	Grade		Unit
			MAX 700	0E (-12P)		00 (-12) Doe (-12)	
			Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF		12.0		12.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		12.0		12.0	ns
t _{SU}	Global clock setup time		7.0		10.0		ns
t _H	Global clock hold time		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input	(2)	3.0		3.0		ns
t _{FH}	Global clock hold time of fast input	(2)	0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		6.0		6.0	ns
t _{CH}	Global clock high time		4.0		4.0		ns
t _{CL}	Global clock low time		4.0		4.0		ns
t _{ASU}	Array clock setup time		3.0		4.0		ns
t _{AH}	Array clock hold time		4.0		4.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		12.0		12.0	ns
t _{ACH}	Array clock high time		5.0		5.0		ns
t _{ACL}	Array clock low time		5.0		5.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	5.0		5.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF (4)	1.0		1.0		ns
t _{CNT}	Minimum global clock period			11.0		11.0	ns
f _{CNT}	Maximum internal global clock frequency	(5)	90.9		90.9		MHz
t _{ACNT}	Minimum array clock period			11.0		11.0	ns
f _{acnt}	Maximum internal array clock frequency	(5)	90.9		90.9		MHz
f _{MAX}	Maximum clock frequency	(6)	125.0		125.0		MHz

Symbol	Parameter	Conditions		Speed	Grade		Unit
			MAX 700	OE (-12P)		00 (-12) DOE (-12)	
			Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			1.0		2.0	ns
t _{IO}	I/O input pad and buffer delay			1.0		2.0	ns
t _{FIN}	Fast input delay	(2)		1.0		1.0	ns
t _{SEXP}	Shared expander delay			7.0		7.0	ns
t _{PEXP}	Parallel expander delay			1.0		1.0	ns
t _{LAD}	Logic array delay			7.0		5.0	ns
t _{LAC}	Logic control array delay			5.0		5.0	ns
t _{IOE}	Internal output enable delay	(2)		2.0		2.0	ns
t _{OD1}	Output buffer and pad delay Slow slew rate = off $V_{CCIO} = 5.0 V$	C1 = 35 pF		1.0		3.0	ns
t _{OD2}	Output buffer and pad delay Slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF (7)		2.0		4.0	ns
t _{OD3}	Output buffer and pad delay Slow slew rate = on V _{CCIO} = 5.0 V or 3.3 V	C1 = 35 pF (2)		5.0		7.0	ns
t _{ZX1}	Output buffer enable delay Slow slew rate = off $V_{CCIO} = 5.0 V$	C1 = 35 pF		6.0		6.0	ns
t _{ZX2}	Output buffer enable delay Slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF (7)		7.0		7.0	ns
t _{ZX3}	Output buffer enable delay Slow slew rate = on $V_{CCIO} = 5.0 V \text{ or } 3.3 V$	C1 = 35 pF (2)		10.0		10.0	ns
t _{XZ}	Output buffer disable delay	C1 = 5 pF		6.0		6.0	ns
t _{SU}	Register setup time		1.0		4.0		ns
t _H	Register hold time		6.0		4.0		ns
t _{FSU}	Register setup time of fast input	(2)	4.0		2.0		ns
t _{FH}	Register hold time of fast input	(2)	0.0		2.0		ns
t _{RD}	Register delay			2.0		1.0	ns
t _{COMB}	Combinatorial delay			2.0		1.0	ns
t _{IC}	Array clock delay			5.0		5.0	ns
t _{EN}	Register enable time			7.0		5.0	ns
t _{GLOB}	Global control delay			2.0		0.0	ns
t _{PRE}	Register preset time			4.0		3.0	ns
t _{CLR}	Register clear time			4.0		3.0	ns
t _{PIA}	PIA delay			1.0		1.0	ns
t _{LPA}	Low-power adder	(8)		12.0		12.0	ns

Table 2	8. EPM7032S Internal T	iming Parameter	rs A	lote (1)							
Symbol	Parameter	Conditions				Speed	Grade				Unit
			-	-5 -6				7	-1	-10	
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{PIA}	PIA delay	(7)		1.1		1.1		1.4		1.0	ns
t _{LPA}	Low-power adder	(8)		12.0		10.0		10.0		11.0	ns

- (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells running in the low-power mode.

Tables 29 and 30 show the EPM7064S AC operating conditions.

Symbol	Parameter	Conditions	Speed Grade									
			-	-5		-6		7	-10			
			Min	Max	Min	Max	Min	Max	Min	Max		
t _{PD1}	Input to non-registered output	C1 = 35 pF		5.0		6.0		7.5		10.0	ns	
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		5.0		6.0		7.5		10.0	ns	
t _{SU}	Global clock setup time		2.9		3.6		6.0		7.0		ns	
t _H	Global clock hold time		0.0		0.0		0.0		0.0		ns	
t _{FSU}	Global clock setup time of fast input		2.5		2.5		3.0		3.0		ns	
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.5		0.5		ns	
t _{CO1}	Global clock to output delay	C1 = 35 pF		3.2		4.0		4.5		5.0	ns	
t _{CH}	Global clock high time		2.0		2.5		3.0		4.0		ns	
t _{CL}	Global clock low time		2.0		2.5		3.0		4.0		ns	
t _{ASU}	Array clock setup time		0.7		0.9		3.0		2.0		ns	
t _{AH}	Array clock hold time		1.8		2.1		2.0		3.0		ns	

- (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells running in the low-power mode.

Tables 33 and 34 show the EPM7160S AC operating conditions.

Symbol	Parameter	Conditions				Speed	Grade	1			Unit
			-	-6		-7		0	-1	15	
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns
t _{SU}	Global clock setup time		3.4		4.2		7.0		11.0		ns
t _H	Global clock hold time		0.0		0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.5		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		3.9		4.8		5		8	ns
t _{CH}	Global clock high time		3.0		3.0		4.0		5.0		ns
t _{CL}	Global clock low time		3.0		3.0		4.0		5.0		ns
t _{ASU}	Array clock setup time		0.9		1.1		2.0		4.0		ns
t _{AH}	Array clock hold time		1.7		2.1		3.0		4.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		6.4		7.9		10.0		15.0	ns
t _{ACH}	Array clock high time		3.0		3.0		4.0		6.0		ns
t _{ACL}	Array clock low time		3.0		3.0		4.0		6.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(2)	2.5		3.0		4.0		6.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		1.0		ns
t _{CNT}	Minimum global clock period			6.7		8.2		10.0		13.0	ns
f _{сnт}	Maximum internal global clock frequency	(4)	149.3		122.0		100.0		76.9		MHz

Altera Corporation

Table 3	4. EPM7160S Internal 1	<i>Timing Parameters</i>	s (Part)	2 of 2)	No	te (1)					
Symbol	Parameter	Conditions	Speed Grade								
			-	6	-	7	-1	10		15	
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{CLR}	Register clear time			2.4		3.0		3.0		4.0	ns
t _{PIA}	PIA delay	(7)		1.6		2.0		1.0		2.0	ns
t _{LPA}	Low-power adder	(8)		11.0		10.0		11.0		13.0	ns

- These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more (1)information on switching waveforms.
- This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter (2)must be added to this minimum width if the clear or reset signal incorporates the t_{IAD} parameter into the signal path.

This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This (3) parameter applies for both global and array clocking.

These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. (4)

- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use. (6)

For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, (7) these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.

(8)The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} and t_{CPPW} parameters for macrocells running in the low-power mode.

Tables 35 and 36 show the EPM7192S AC operating conditions.

Table 35. EPM7192S External Timing Parameters (Part 1 of 2) Note (1)											
Symbol	Parameter	Conditions	Speed Grade								
			-	-7		-10		15			
			Min	Max	Min	Max	Min	Max			
t _{PD1}	Input to non-registered output	C1 = 35 pF		7.5		10.0		15.0	ns		
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		7.5		10.0		15.0	ns		
t _{SU}	Global clock setup time		4.1		7.0		11.0		ns		
t _H	Global clock hold time		0.0		0.0		0.0		ns		
t _{FSU}	Global clock setup time of fast input		3.0		3.0		3.0		ns		
t _{FH}	Global clock hold time of fast input		0.0		0.5		0.0		ns		
t _{CO1}	Global clock to output delay	C1 = 35 pF		4.7		5.0		8.0	ns		
t _{CH}	Global clock high time		3.0		4.0		5.0		ns		
t _{CL}	Global clock low time		3.0		4.0		5.0		ns		
t _{ASU}	Array clock setup time		1.0		2.0		4.0		ns		

Symbol	Parameter	Conditions	Speed Grade							
			-7		-10		-15			
			Min	Мах	Min	Max	Min	Max		
t _{AH}	Array clock hold time		1.8		3.0		4.0		ns	
t _{ACO1}	Array clock to output delay	C1 = 35 pF		7.8		10.0		15.0	ns	
t _{ACH}	Array clock high time		3.0		4.0		6.0		ns	
t _{ACL}	Array clock low time		3.0		4.0		6.0		ns	
t _{CPPW}	Minimum pulse width for clear and preset	(2)	3.0		4.0		6.0		ns	
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		ns	
t _{CNT}	Minimum global clock period			8.0		10.0		13.0	ns	
f _{CNT}	Maximum internal global clock frequency	(4)	125.0		100.0		76.9		MHz	
t _{ACNT}	Minimum array clock period			8.0		10.0		13.0	ns	
f _{acnt}	Maximum internal array clock frequency	(4)	125.0		100.0		76.9		MHz	
f _{MAX}	Maximum clock frequency	(5)	166.7		125.0		100.0		MHz	

Table 36. EPM7192S Internal Timing Parameters (Part 1 of 2) Note (1)										
Symbol	Parameter	Conditions	Speed Grade						Unit	
			-	-7		-10		-15		
			Min	Max	Min	Max	Min	Max	1	
t _{IN}	Input pad and buffer delay			0.3		0.5		2.0	ns	
t _{IO}	I/O input pad and buffer delay			0.3		0.5		2.0	ns	
t _{FIN}	Fast input delay			3.2		1.0		2.0	ns	
t _{SEXP}	Shared expander delay			4.2		5.0		8.0	ns	
t _{PEXP}	Parallel expander delay			1.2		0.8		1.0	ns	
t _{LAD}	Logic array delay			3.1		5.0		6.0	ns	
t _{LAC}	Logic control array delay			3.1		5.0		6.0	ns	
t _{IOE}	Internal output enable delay			0.9		2.0		3.0	ns	
t _{OD1}	Output buffer and pad delay	C1 = 35 pF		0.5		1.5		4.0	ns	
t _{OD2}	Output buffer and pad delay	C1 = 35 pF (6)		1.0		2.0		5.0	ns	
t _{OD3}	Output buffer and pad delay	C1 = 35 pF		5.5		5.5		7.0	ns	
t _{ZX1}	Output buffer enable delay	C1 = 35 pF		4.0		5.0		6.0	ns	
t _{ZX2}	Output buffer enable delay	C1 = 35 pF (6)		4.5		5.5		7.0	ns	
t _{ZX3}	Output buffer enable delay	C1 = 35 pF		9.0		9.0		10.0	ns	
t _{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		5.0		6.0	ns	
t _{SU}	Register setup time		1.1		2.0		4.0		ns	

- (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells running in the low-power mode.

Power Consumption

Supply power (P) versus frequency (f_{MAX} in MHz) for MAX 7000 devices is calculated with the following equation:

$$P = P_{INT} + P_{IO} = I_{CCINT} \times V_{CC} + P_{IO}$$

The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note* 74 (*Evaluating Power for Altera Devices*).

The I_{CCINT} value, which depends on the switching frequency and the application logic, is calculated with the following equation:

 $I_{CCINT} =$

 $A \times MC_{TON} + B \times (MC_{DEV} - MC_{TON}) + C \times MC_{USED} \times f_{MAX} \times tog_{LC}$

The parameters in this equation are shown below:

MC _{TON}	=	Number of macrocells with the Turbo Bit option turned on,
		as reported in the MAX+PLUS II Report File (.rpt)
MC _{DEV}	=	Number of macrocells in the device
MC _{USED}	=	Total number of macrocells in the design, as reported
		in the MAX+PLUS II Report File (.rpt)
f _{MAX}	=	Highest clock frequency to the device
togLC	=	Average ratio of logic cells toggling at each clock
		(typically 0.125)
A, B, C	=	Constants, shown in Table 39

Figure 14 shows typical supply current versus frequency for MAX 7000 devices.

EPM7096

Figure 18. 84-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

84-Pin PLCC

Notes:

- (1) Pins 6, 39, 46, and 79 are no-connect (N.C.) pins on EPM7096, EPM7160E, and EPM7160S devices.
- (2) The pin functions shown in parenthesis are only available in MAX 7000E and MAX 7000S devices.
- (3) JTAG ports are available in MAX 7000S devices only.

Figure 21. 192-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

Figure 22. 208-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 www.altera.com Applications Hotline: (800) 800-EPLD Literature Services: literature@altera.com Copyright © 2005 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability

arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Altera Corporation