



Welcome to **E-XFL.COM** 

**Understanding Embedded - CPLDs (Complex Programmable Logic Devices)** 

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

## **Applications of Embedded - CPLDs**

| Details                         |                                                              |
|---------------------------------|--------------------------------------------------------------|
| Product Status                  | Obsolete                                                     |
| Programmable Type               | EE PLD                                                       |
| Delay Time tpd(1) Max           | 10 ns                                                        |
| Voltage Supply - Internal       | 4.75V ~ 5.25V                                                |
| Number of Logic Elements/Blocks | 4                                                            |
| Number of Macrocells            | 64                                                           |
| Number of Gates                 | 1250                                                         |
| Number of I/O                   | 68                                                           |
| Operating Temperature           | 0°C ~ 70°C (TA)                                              |
| Mounting Type                   | Surface Mount                                                |
| Package / Case                  | 100-BQFP                                                     |
| Supplier Device Package         | 100-PQFP (20x14)                                             |
| Purchase URL                    | https://www.e-xfl.com/product-detail/intel/epm7064qc100-10yy |
|                                 |                                                              |

Email: info@E-XFL.COM

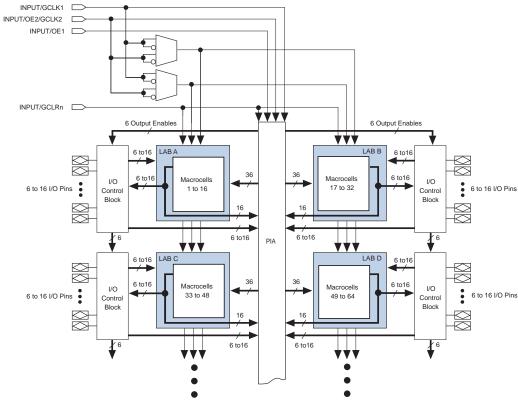
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

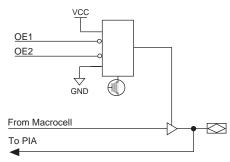
| Table 2. MAX           | 7000S Device I | Features - |          |          |          |          |
|------------------------|----------------|------------|----------|----------|----------|----------|
| Feature                | EPM7032S       | EPM7064S   | EPM7128S | EPM7160S | EPM7192S | EPM7256S |
| Usable gates           | 600            | 1,250      | 2,500    | 3,200    | 3,750    | 5,000    |
| Macrocells             | 32             | 64         | 128      | 160      | 192      | 256      |
| Logic array blocks     | 2              | 4          | 8        | 10       | 12       | 16       |
| Maximum user I/O pins  | 36             | 68         | 100      | 104      | 124      | 164      |
| t <sub>PD</sub> (ns)   | 5              | 5          | 6        | 6        | 7.5      | 7.5      |
| t <sub>SU</sub> (ns)   | 2.9            | 2.9        | 3.4      | 3.4      | 4.1      | 3.9      |
| t <sub>FSU</sub> (ns)  | 2.5            | 2.5        | 2.5      | 2.5      | 3        | 3        |
| t <sub>CO1</sub> (ns)  | 3.2            | 3.2        | 4        | 3.9      | 4.7      | 4.7      |
| f <sub>CNT</sub> (MHz) | 175.4          | 175.4      | 147.1    | 149.3    | 125.0    | 128.2    |

# ...and More Features

- Open-drain output option in MAX 7000S devices
- Programmable macrocell flipflops with individual clear, preset, clock, and clock enable controls
- Programmable power-saving mode for a reduction of over 50% in each macrocell
- Configurable expander product-term distribution, allowing up to 32 product terms per macrocell
- 44 to 208 pins available in plastic J-lead chip carrier (PLCC), ceramic pin-grid array (PGA), plastic quad flat pack (PQFP), power quad flat pack (RQFP), and 1.0-mm thin quad flat pack (TQFP) packages
- Programmable security bit for protection of proprietary designs
- 3.3-V or 5.0-V operation
  - MultiVolt<sup>TM</sup> I/O interface operation, allowing devices to interface with 3.3-V or 5.0-V devices (MultiVolt I/O operation is not available in 44-pin packages)
  - Pin compatible with low-voltage MAX 7000A and MAX 7000B devices
- Enhanced features available in MAX 7000E and MAX 7000S devices
  - Six pin- or logic-driven output enable signals
  - Two global clock signals with optional inversion
  - Enhanced interconnect resources for improved routability
  - Fast input setup times provided by a dedicated path from I/O pin to macrocell registers
  - Programmable output slew-rate control
- Software design support and automatic place-and-route provided by Altera's development system for Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 workstations

Figure 2. MAX 7000E & MAX 7000S Device Block Diagram





Figure 2 shows the architecture of MAX 7000E and MAX 7000S devices.

**Logic Array Blocks** 

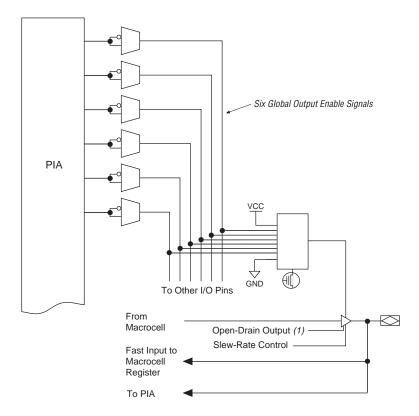

The MAX 7000 device architecture is based on the linking of highperformance, flexible, logic array modules called logic array blocks (LABs). LABs consist of 16-macrocell arrays, as shown in Figures 1 and 2. Multiple LABs are linked together via the programmable interconnect array (PIA), a global bus that is fed by all dedicated inputs, I/O pins, and macrocells.

Figure 8. I/O Control Block of MAX 7000 Devices

## EPM7032, EPM7064 & EPM7096 Devices



### MAX 7000E & MAX 7000S Devices



#### Note:

(1) The open-drain output option is available only in MAX 7000S devices.



For more information on using the Jam language, refer to AN 122: Using Jam STAPL for ISP & ICR via an Embedded Processor.

The ISP circuitry in MAX 7000S devices is compatible with IEEE Std. 1532 specification. The IEEE Std. 1532 is a standard developed to allow concurrent ISP between multiple PLD vendors.

## **Programming Sequence**

During in-system programming, instructions, addresses, and data are shifted into the MAX 7000S device through the TDI input pin. Data is shifted out through the TDO output pin and compared against the expected data.

Programming a pattern into the device requires the following six ISP stages. A stand-alone verification of a programmed pattern involves only stages 1, 2, 5, and 6.

- Enter ISP. The enter ISP stage ensures that the I/O pins transition smoothly from user mode to ISP mode. The enter ISP stage requires 1 ms.
- 2. *Check ID*. Before any program or verify process, the silicon ID is checked. The time required to read this silicon ID is relatively small compared to the overall programming time.
- 3. *Bulk Erase*. Erasing the device in-system involves shifting in the instructions to erase the device and applying one erase pulse of 100 ms.
- Program. Programming the device in-system involves shifting in the address and data and then applying the programming pulse to program the EEPROM cells. This process is repeated for each EEPROM address.
- Verify. Verifying an Altera device in-system involves shifting in addresses, applying the read pulse to verify the EEPROM cells, and shifting out the data for comparison. This process is repeated for each EEPROM address.
- 6. Exit ISP. An exit ISP stage ensures that the I/O pins transition smoothly from ISP mode to user mode. The exit ISP stage requires 1 ms.

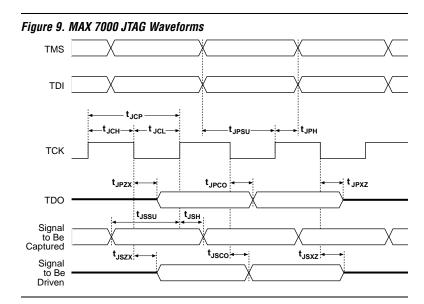



Figure 9 shows the timing requirements for the JTAG signals.

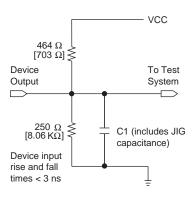
Table 12 shows the JTAG timing parameters and values for MAX 7000S devices.

| Table 12. JTAG Timing Parameters & Values for MAX 7000S Devices |                                                |     |     |      |  |  |  |  |
|-----------------------------------------------------------------|------------------------------------------------|-----|-----|------|--|--|--|--|
| Symbol                                                          | Parameter                                      | Min | Max | Unit |  |  |  |  |
| t <sub>JCP</sub>                                                | TCK clock period                               | 100 |     | ns   |  |  |  |  |
| t <sub>JCH</sub>                                                | TCK clock high time                            | 50  |     | ns   |  |  |  |  |
| t <sub>JCL</sub>                                                | TCK clock low time                             | 50  |     | ns   |  |  |  |  |
| t <sub>JPSU</sub>                                               | JTAG port setup time                           | 20  |     | ns   |  |  |  |  |
| t <sub>JPH</sub>                                                | JTAG port hold time                            | 45  |     | ns   |  |  |  |  |
| t <sub>JPCO</sub>                                               | JTAG port clock to output                      |     | 25  | ns   |  |  |  |  |
| t <sub>JPZX</sub>                                               | JTAG port high impedance to valid output       |     | 25  | ns   |  |  |  |  |
| t <sub>JPXZ</sub>                                               | JTAG port valid output to high impedance       |     | 25  | ns   |  |  |  |  |
| t <sub>JSSU</sub>                                               | Capture register setup time                    | 20  |     | ns   |  |  |  |  |
| t <sub>JSH</sub>                                                | Capture register hold time                     | 45  |     | ns   |  |  |  |  |
| t <sub>JSCO</sub>                                               | Update register clock to output                |     | 25  | ns   |  |  |  |  |
| t <sub>JSZX</sub>                                               | Update register high impedance to valid output |     | 25  | ns   |  |  |  |  |
| t <sub>JSXZ</sub>                                               | Update register valid output to high impedance |     | 25  | ns   |  |  |  |  |



For more information, see *Application Note* 39 (*IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices*).

# **Design Security**


All MAX 7000 devices contain a programmable security bit that controls access to the data programmed into the device. When this bit is programmed, a proprietary design implemented in the device cannot be copied or retrieved. This feature provides a high level of design security because programmed data within EEPROM cells is invisible. The security bit that controls this function, as well as all other programmed data, is reset only when the device is reprogrammed.

# **Generic Testing**

Each MAX 7000 device is functionally tested. Complete testing of each programmable EEPROM bit and all internal logic elements ensures 100% programming yield. AC test measurements are taken under conditions equivalent to those shown in Figure 10. Test patterns can be used and then erased during early stages of the production flow.

### Figure 10. MAX 7000 AC Test Conditions

Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast ground-current transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground. significant reductions in observable noise immunity can result. Numbers in brackets are for 2.5-V devices and outputs. Numbers without brackets are for 3.3-V devices and outputs.



# QFP Carrier & Development Socket

MAX 7000 and MAX 7000E devices in QFP packages with 100 or more pins are shipped in special plastic carriers to protect the QFP leads. The carrier is used with a prototype development socket and special programming hardware available from Altera. This carrier technology makes it possible to program, test, erase, and reprogram a device without exposing the leads to mechanical stress.



For detailed information and carrier dimensions, refer to the *QFP Carrier* & *Development Socket Data Sheet*.



MAX 7000S devices are not shipped in carriers.

| Symbol          | Parameter                                  | Conditions                                                    | Min                     | Max                      | Unit |
|-----------------|--------------------------------------------|---------------------------------------------------------------|-------------------------|--------------------------|------|
| V <sub>IH</sub> | High-level input voltage                   |                                                               | 2.0                     | V <sub>CCINT</sub> + 0.5 | V    |
| V <sub>IL</sub> | Low-level input voltage                    |                                                               | -0.5 (8)                | 0.8                      | V    |
| V <sub>OH</sub> | 5.0-V high-level TTL output voltage        | $I_{OH} = -4 \text{ mA DC}, V_{CCIO} = 4.75 \text{ V } (10)$  | 2.4                     |                          | V    |
|                 | 3.3-V high-level TTL output voltage        | $I_{OH} = -4 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V } (10)$  | 2.4                     |                          | V    |
|                 | 3.3-V high-level CMOS output voltage       | $I_{OH} = -0.1 \text{ mA DC}, V_{CCIO} = 3.0 \text{ V } (10)$ | V <sub>CCIO</sub> - 0.2 |                          | V    |
| V <sub>OL</sub> | 5.0-V low-level TTL output voltage         | I <sub>OL</sub> = 12 mA DC, V <sub>CCIO</sub> = 4.75 V (11)   |                         | 0.45                     | V    |
|                 | 3.3-V low-level TTL output voltage         | I <sub>OL</sub> = 12 mA DC, V <sub>CCIO</sub> = 3.00 V (11)   |                         | 0.45                     | V    |
|                 | 3.3-V low-level CMOS output voltage        | $I_{OL} = 0.1 \text{ mA DC}, V_{CCIO} = 3.0 V(11)$            |                         | 0.2                      | V    |
| I <sub>I</sub>  | Leakage current of dedicated input pins    | V <sub>I</sub> = -0.5 to 5.5 V (11)                           | -10                     | 10                       | μА   |
| l <sub>OZ</sub> | I/O pin tri-state output off-state current | V <sub>I</sub> = -0.5 to 5.5 V (11), (12)                     | -40                     | 40                       | μА   |

| Table 1          | Table 16. MAX 7000 5.0-V Device Capacitance: EPM7032, EPM7064 & EPM7096 Devices |                                     |     |     |      |  |  |
|------------------|---------------------------------------------------------------------------------|-------------------------------------|-----|-----|------|--|--|
| Symbol           | Parameter                                                                       | Conditions                          | Min | Max | Unit |  |  |
| C <sub>IN</sub>  | Input pin capacitance                                                           | V <sub>IN</sub> = 0 V, f = 1.0 MHz  |     | 12  | pF   |  |  |
| C <sub>I/O</sub> | I/O pin capacitance                                                             | V <sub>OUT</sub> = 0 V, f = 1.0 MHz |     | 12  | pF   |  |  |

| Table 1          | Table 17. MAX 7000 5.0-V Device Capacitance: MAX 7000E Devices Note (13) |                                     |     |     |      |  |  |
|------------------|--------------------------------------------------------------------------|-------------------------------------|-----|-----|------|--|--|
| Symbol           | Parameter                                                                | Conditions                          | Min | Max | Unit |  |  |
| C <sub>IN</sub>  | Input pin capacitance                                                    | V <sub>IN</sub> = 0 V, f = 1.0 MHz  |     | 15  | pF   |  |  |
| C <sub>I/O</sub> | I/O pin capacitance                                                      | V <sub>OUT</sub> = 0 V, f = 1.0 MHz |     | 15  | pF   |  |  |

| Table 1          | Table 18. MAX 7000 5.0-V Device Capacitance: MAX 7000S Devices   Note (13) |                                     |     |     |      |  |  |  |
|------------------|----------------------------------------------------------------------------|-------------------------------------|-----|-----|------|--|--|--|
| Symbol           | Parameter                                                                  | Conditions                          | Min | Max | Unit |  |  |  |
| C <sub>IN</sub>  | Dedicated input pin capacitance                                            | V <sub>IN</sub> = 0 V, f = 1.0 MHz  |     | 10  | pF   |  |  |  |
| C <sub>I/O</sub> | I/O pin capacitance                                                        | V <sub>OUT</sub> = 0 V, f = 1.0 MHz |     | 10  | pF   |  |  |  |

#### Notes to tables:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input voltage on I/O pins is –0.5 V and on 4 dedicated input pins is –0.3 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 7.0 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) Numbers in parentheses are for industrial-temperature-range devices.
- (4)  $V_{CC}$  must rise monotonically.
- (5) The POR time for all 7000S devices does not exceed 300 μs. The sufficient V<sub>CCINT</sub> voltage level for POR is 4.5 V. The device is fully initialized within the POR time after V<sub>CCINT</sub> reaches the sufficient POR voltage level.
- (6) 3.3-V I/O operation is not available for 44-pin packages.
- (7) The V<sub>CCISP</sub> parameter applies only to MAX 7000S devices.
- (8) During in-system programming, the minimum DC input voltage is –0.3 V.
- (9) These values are specified under the MAX 7000 recommended operating conditions in Table 14 on page 26.
- (10) The parameter is measured with 50% of the outputs each sourcing the specified current. The I<sub>OH</sub> parameter refers to high-level TTL or CMOS output current.
- (11) The parameter is measured with 50% of the outputs each sinking the specified current. The I<sub>OL</sub> parameter refers to low-level TTL, PCI, or CMOS output current.
- (12) When the JTAG interface is enabled in MAX 7000S devices, the input leakage current on the JTAG pins is typically -60 uA.
- (13) Capacitance is measured at 25° C and is sample-tested only. The OE1 pin has a maximum capacitance of 20 pF.

Figure 11 shows the typical output drive characteristics of MAX 7000 devices.

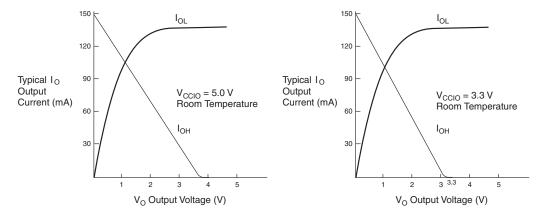



Figure 11. Output Drive Characteristics of 5.0-V MAX 7000 Devices

## **Timing Model**

MAX 7000 device timing can be analyzed with the Altera software, with a variety of popular industry-standard EDA simulators and timing analyzers, or with the timing model shown in Figure 12. MAX 7000 devices have fixed internal delays that enable the designer to determine the worst-case timing of any design. The Altera software provides timing simulation, point-to-point delay prediction, and detailed timing analysis for a device-wide performance evaluation.

Tables 19 through 26 show the MAX 7000 and MAX 7000E AC operating conditions.

| Table 19          | . MAX 7000 & MAX 7000E Extern            | al Timing Para | meters         | Note (1) |                |     |      |
|-------------------|------------------------------------------|----------------|----------------|----------|----------------|-----|------|
| Symbol            | Parameter                                | Conditions     | -6 Speed Grade |          | -7 Speed Grade |     | Unit |
|                   |                                          |                | Min            | Max      | Min            | Max |      |
| t <sub>PD1</sub>  | Input to non-registered output           | C1 = 35 pF     |                | 6.0      |                | 7.5 | ns   |
| t <sub>PD2</sub>  | I/O input to non-registered output       | C1 = 35 pF     |                | 6.0      |                | 7.5 | ns   |
| t <sub>SU</sub>   | Global clock setup time                  |                | 5.0            |          | 6.0            |     | ns   |
| t <sub>H</sub>    | Global clock hold time                   |                | 0.0            |          | 0.0            |     | ns   |
| t <sub>FSU</sub>  | Global clock setup time of fast input    | (2)            | 2.5            |          | 3.0            |     | ns   |
| t <sub>FH</sub>   | Global clock hold time of fast input     | (2)            | 0.5            |          | 0.5            |     | ns   |
| t <sub>CO1</sub>  | Global clock to output delay             | C1 = 35 pF     |                | 4.0      |                | 4.5 | ns   |
| t <sub>CH</sub>   | Global clock high time                   |                | 2.5            |          | 3.0            |     | ns   |
| t <sub>CL</sub>   | Global clock low time                    |                | 2.5            |          | 3.0            |     | ns   |
| t <sub>ASU</sub>  | Array clock setup time                   |                | 2.5            |          | 3.0            |     | ns   |
| t <sub>AH</sub>   | Array clock hold time                    |                | 2.0            |          | 2.0            |     | ns   |
| t <sub>ACO1</sub> | Array clock to output delay              | C1 = 35 pF     |                | 6.5      |                | 7.5 | ns   |
| t <sub>ACH</sub>  | Array clock high time                    |                | 3.0            |          | 3.0            |     | ns   |
| t <sub>ACL</sub>  | Array clock low time                     |                | 3.0            |          | 3.0            |     | ns   |
| t <sub>CPPW</sub> | Minimum pulse width for clear and preset | (3)            | 3.0            |          | 3.0            |     | ns   |
| t <sub>ODH</sub>  | Output data hold time after clock        | C1 = 35 pF (4) | 1.0            |          | 1.0            |     | ns   |
| t <sub>CNT</sub>  | Minimum global clock period              |                |                | 6.6      |                | 8.0 | ns   |
| f <sub>CNT</sub>  | Maximum internal global clock frequency  | (5)            | 151.5          |          | 125.0          |     | MHz  |
| t <sub>ACNT</sub> | Minimum array clock period               |                |                | 6.6      |                | 8.0 | ns   |
| f <sub>ACNT</sub> | Maximum internal array clock frequency   | (5)            | 151.5          |          | 125.0          |     | MHz  |
| f <sub>MAX</sub>  | Maximum clock frequency                  | (6)            | 200            |          | 166.7          |     | MHz  |

| Symbol            | Parameter                                                                                 | Conditions     | Speed | Grade -6 | Speed ( | Unit |    |
|-------------------|-------------------------------------------------------------------------------------------|----------------|-------|----------|---------|------|----|
|                   |                                                                                           |                | Min   | Max      | Min     | Max  |    |
| t <sub>IN</sub>   | Input pad and buffer delay                                                                |                |       | 0.4      |         | 0.5  | ns |
| $t_{IO}$          | I/O input pad and buffer delay                                                            |                |       | 0.4      |         | 0.5  | ns |
| t <sub>FIN</sub>  | Fast input delay                                                                          | (2)            |       | 0.8      |         | 1.0  | ns |
| t <sub>SEXP</sub> | Shared expander delay                                                                     |                |       | 3.5      |         | 4.0  | ns |
| $t_{PEXP}$        | Parallel expander delay                                                                   |                |       | 0.8      |         | 0.8  | ns |
| $t_{LAD}$         | Logic array delay                                                                         |                |       | 2.0      |         | 3.0  | ns |
| t <sub>LAC</sub>  | Logic control array delay                                                                 |                |       | 2.0      |         | 3.0  | ns |
| t <sub>IOE</sub>  | Internal output enable delay                                                              | (2)            |       |          |         | 2.0  | ns |
| t <sub>OD1</sub>  | Output buffer and pad delay<br>Slow slew rate = off, V <sub>CCIO</sub> = 5.0 V            | C1 = 35 pF     |       | 2.0      |         | 2.0  | ns |
| t <sub>OD2</sub>  | Output buffer and pad delay<br>Slow slew rate = off, V <sub>CCIO</sub> = 3.3 V            | C1 = 35 pF (7) |       | 2.5      |         | 2.5  | ns |
| t <sub>OD3</sub>  | Output buffer and pad delay<br>Slow slew rate = on,<br>V <sub>CCIO</sub> = 5.0 V or 3.3 V | C1 = 35 pF (2) |       | 7.0      |         | 7.0  | ns |
| t <sub>ZX1</sub>  | Output buffer enable delay<br>Slow slew rate = off, V <sub>CCIO</sub> = 5.0 V             | C1 = 35 pF     |       | 4.0      |         | 4.0  | ns |
| t <sub>ZX2</sub>  | Output buffer enable delay<br>Slow slew rate = off, V <sub>CCIO</sub> = 3.3 V             | C1 = 35 pF (7) |       | 4.5      |         | 4.5  | ns |
| t <sub>ZX3</sub>  | Output buffer enable delay<br>Slow slew rate = on<br>V <sub>CCIO</sub> = 5.0 V or 3.3 V   | C1 = 35 pF (2) |       | 9.0      |         | 9.0  | ns |
| $t_{XZ}$          | Output buffer disable delay                                                               | C1 = 5 pF      |       | 4.0      |         | 4.0  | ns |
| $t_{SU}$          | Register setup time                                                                       |                | 3.0   |          | 3.0     |      | ns |
| $t_H$             | Register hold time                                                                        |                | 1.5   |          | 2.0     |      | ns |
| t <sub>FSU</sub>  | Register setup time of fast input                                                         | (2)            | 2.5   |          | 3.0     |      | ns |
| $t_{FH}$          | Register hold time of fast input                                                          | (2)            | 0.5   |          | 0.5     |      | ns |
| $t_{RD}$          | Register delay                                                                            |                |       | 0.8      |         | 1.0  | ns |
| t <sub>COMB</sub> | Combinatorial delay                                                                       |                |       | 0.8      |         | 1.0  | ns |
| t <sub>IC</sub>   | Array clock delay                                                                         |                |       | 2.5      |         | 3.0  | ns |
| t <sub>EN</sub>   | Register enable time                                                                      |                |       | 2.0      |         | 3.0  | ns |
| t <sub>GLOB</sub> | Global control delay                                                                      |                |       | 0.8      |         | 1.0  | ns |
| t <sub>PRE</sub>  | Register preset time                                                                      |                |       | 2.0      |         | 2.0  | ns |
| t <sub>CLR</sub>  | Register clear time                                                                       |                |       | 2.0      |         | 2.0  | ns |
| t <sub>PIA</sub>  | PIA delay                                                                                 |                |       | 0.8      |         | 1.0  | ns |
| $t_{LPA}$         | Low-power adder                                                                           | (8)            |       | 10.0     |         | 10.0 | ns |

| Table 2           | 21. MAX 7000 & MAX 7000E Ext             | ernal Timing Param | eters Note | (1)         |        |      |     |  |  |
|-------------------|------------------------------------------|--------------------|------------|-------------|--------|------|-----|--|--|
| Symbol            | Parameter                                | Conditions         |            | Speed Grade |        |      |     |  |  |
|                   |                                          |                    | MAX 700    | 0E (-10P)   | MAX 70 |      |     |  |  |
|                   |                                          |                    | Min        | Max         | Min    | Max  |     |  |  |
| t <sub>PD1</sub>  | Input to non-registered output           | C1 = 35 pF         |            | 10.0        |        | 10.0 | ns  |  |  |
| t <sub>PD2</sub>  | I/O input to non-registered output       | C1 = 35 pF         |            | 10.0        |        | 10.0 | ns  |  |  |
| t <sub>SU</sub>   | Global clock setup time                  |                    | 7.0        |             | 8.0    |      | ns  |  |  |
| t <sub>H</sub>    | Global clock hold time                   |                    | 0.0        |             | 0.0    |      | ns  |  |  |
| t <sub>FSU</sub>  | Global clock setup time of fast input    | (2)                | 3.0        |             | 3.0    |      | ns  |  |  |
| t <sub>FH</sub>   | Global clock hold time of fast input     | (2)                | 0.5        |             | 0.5    |      | ns  |  |  |
| t <sub>CO1</sub>  | Global clock to output delay             | C1 = 35 pF         |            | 5.0         |        | 5    | ns  |  |  |
| t <sub>CH</sub>   | Global clock high time                   |                    | 4.0        |             | 4.0    |      | ns  |  |  |
| t <sub>CL</sub>   | Global clock low time                    |                    | 4.0        |             | 4.0    |      | ns  |  |  |
| t <sub>ASU</sub>  | Array clock setup time                   |                    | 2.0        |             | 3.0    |      | ns  |  |  |
| t <sub>AH</sub>   | Array clock hold time                    |                    | 3.0        |             | 3.0    |      | ns  |  |  |
| t <sub>ACO1</sub> | Array clock to output delay              | C1 = 35 pF         |            | 10.0        |        | 10.0 | ns  |  |  |
| t <sub>ACH</sub>  | Array clock high time                    |                    | 4.0        |             | 4.0    |      | ns  |  |  |
| t <sub>ACL</sub>  | Array clock low time                     |                    | 4.0        |             | 4.0    |      | ns  |  |  |
| t <sub>CPPW</sub> | Minimum pulse width for clear and preset | (3)                | 4.0        |             | 4.0    |      | ns  |  |  |
| t <sub>ODH</sub>  | Output data hold time after clock        | C1 = 35 pF (4)     | 1.0        |             | 1.0    |      | ns  |  |  |
| t <sub>CNT</sub>  | Minimum global clock period              |                    |            | 10.0        |        | 10.0 | ns  |  |  |
| f <sub>CNT</sub>  | Maximum internal global clock frequency  | (5)                | 100.0      |             | 100.0  |      | MHz |  |  |
| t <sub>ACNT</sub> | Minimum array clock period               |                    |            | 10.0        |        | 10.0 | ns  |  |  |
| f <sub>ACNT</sub> | Maximum internal array clock frequency   | (5)                | 100.0      |             | 100.0  |      | MHz |  |  |
| f <sub>MAX</sub>  | Maximum clock frequency                  | (6)                | 125.0      |             | 125.0  |      | MHz |  |  |

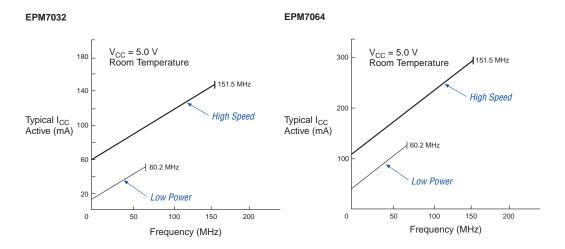
| Symbol            | Parameter                                                                                | Conditions     | Speed Grade |           |                                   |      |    |  |
|-------------------|------------------------------------------------------------------------------------------|----------------|-------------|-----------|-----------------------------------|------|----|--|
|                   |                                                                                          |                | MAX 700     | OE (-10P) | MAX 7000 (-10)<br>MAX 7000E (-10) |      | -  |  |
|                   |                                                                                          |                | Min         | Max       | Min                               | Max  |    |  |
| t <sub>IN</sub>   | Input pad and buffer delay                                                               |                |             | 0.5       |                                   | 1.0  | ns |  |
| t <sub>IO</sub>   | I/O input pad and buffer delay                                                           |                |             | 0.5       |                                   | 1.0  | ns |  |
| t <sub>FIN</sub>  | Fast input delay                                                                         | (2)            |             | 1.0       |                                   | 1.0  | ns |  |
| t <sub>SEXP</sub> | Shared expander delay                                                                    |                |             | 5.0       |                                   | 5.0  | ns |  |
| t <sub>PEXP</sub> | Parallel expander delay                                                                  |                |             | 0.8       |                                   | 0.8  | ns |  |
| $t_{LAD}$         | Logic array delay                                                                        |                |             | 5.0       |                                   | 5.0  | ns |  |
| t <sub>LAC</sub>  | Logic control array delay                                                                |                |             | 5.0       |                                   | 5.0  | ns |  |
| t <sub>IOE</sub>  | Internal output enable delay                                                             | (2)            |             | 2.0       |                                   | 2.0  | ns |  |
| t <sub>OD1</sub>  | Output buffer and pad delay<br>Slow slew rate = off<br>V <sub>CCIO</sub> = 5.0 V         | C1 = 35 pF     |             | 1.5       |                                   | 2.0  | ns |  |
| t <sub>OD2</sub>  | Output buffer and pad delay<br>Slow slew rate = off<br>V <sub>CCIO</sub> = 3.3 V         | C1 = 35 pF (7) |             | 2.0       |                                   | 2.5  | ns |  |
| t <sub>OD3</sub>  | Output buffer and pad delay<br>Slow slew rate = on<br>V <sub>CCIO</sub> = 5.0 V or 3.3 V | C1 = 35 pF (2) |             | 5.5       |                                   | 6.0  | ns |  |
| t <sub>ZX1</sub>  | Output buffer enable delay<br>Slow slew rate = off<br>V <sub>CCIO</sub> = 5.0 V          | C1 = 35 pF     |             | 5.0       |                                   | 5.0  | ns |  |
| t <sub>ZX2</sub>  | Output buffer enable delay<br>Slow slew rate = off<br>V <sub>CCIO</sub> = 3.3 V          | C1 = 35 pF (7) |             | 5.5       |                                   | 5.5  | ns |  |
| t <sub>ZX3</sub>  | Output buffer enable delay<br>Slow slew rate = on<br>V <sub>CCIO</sub> = 5.0 V or 3.3 V  | C1 = 35 pF (2) |             | 9.0       |                                   | 9.0  | ns |  |
| $t_{XZ}$          | Output buffer disable delay                                                              | C1 = 5 pF      |             | 5.0       |                                   | 5.0  | ns |  |
| $t_{SU}$          | Register setup time                                                                      |                | 2.0         |           | 3.0                               |      | ns |  |
| $t_H$             | Register hold time                                                                       |                | 3.0         |           | 3.0                               |      | ns |  |
| t <sub>FSU</sub>  | Register setup time of fast input                                                        | (2)            | 3.0         |           | 3.0                               |      | ns |  |
| $t_{FH}$          | Register hold time of fast input                                                         | (2)            | 0.5         |           | 0.5                               |      | ns |  |
| t <sub>RD</sub>   | Register delay                                                                           |                |             | 2.0       |                                   | 1.0  | ns |  |
| t <sub>COMB</sub> | Combinatorial delay                                                                      |                |             | 2.0       |                                   | 1.0  | ns |  |
| t <sub>IC</sub>   | Array clock delay                                                                        |                |             | 5.0       |                                   | 5.0  | ns |  |
| $t_{EN}$          | Register enable time                                                                     |                |             | 5.0       |                                   | 5.0  | ns |  |
| t <sub>GLOB</sub> | Global control delay                                                                     |                |             | 1.0       |                                   | 1.0  | ns |  |
| t <sub>PRE</sub>  | Register preset time                                                                     |                |             | 3.0       |                                   | 3.0  | ns |  |
| t <sub>CLR</sub>  | Register clear time                                                                      |                |             | 3.0       |                                   | 3.0  | ns |  |
| t <sub>PIA</sub>  | PIA delay                                                                                |                |             | 1.0       |                                   | 1.0  | ns |  |
| t <sub>LPA</sub>  | Low-power adder                                                                          | (8)            |             | 11.0      |                                   | 11.0 | ns |  |

| Table 2           | 5. MAX 7000 & MAX 7000E                  | External Timing I | Paramete    | ers / | lote (1) |      |      |      |      |
|-------------------|------------------------------------------|-------------------|-------------|-------|----------|------|------|------|------|
| Symbol            | Parameter                                | Conditions        | Speed Grade |       |          |      |      |      | Unit |
|                   |                                          |                   | -           | -15   |          | -15T |      | -20  |      |
|                   |                                          |                   | Min         | Max   | Min      | Max  | Min  | Max  |      |
| t <sub>PD1</sub>  | Input to non-registered output           | C1 = 35 pF        |             | 15.0  |          | 15.0 |      | 20.0 | ns   |
| t <sub>PD2</sub>  | I/O input to non-registered output       | C1 = 35 pF        |             | 15.0  |          | 15.0 |      | 20.0 | ns   |
| t <sub>SU</sub>   | Global clock setup time                  |                   | 11.0        |       | 11.0     |      | 12.0 |      | ns   |
| t <sub>H</sub>    | Global clock hold time                   |                   | 0.0         |       | 0.0      |      | 0.0  |      | ns   |
| t <sub>FSU</sub>  | Global clock setup time of fast input    | (2)               | 3.0         |       | -        |      | 5.0  |      | ns   |
| t <sub>FH</sub>   | Global clock hold time of fast input     | (2)               | 0.0         |       | -        |      | 0.0  |      | ns   |
| t <sub>CO1</sub>  | Global clock to output delay             | C1 = 35 pF        |             | 8.0   |          | 8.0  |      | 12.0 | ns   |
| t <sub>CH</sub>   | Global clock high time                   |                   | 5.0         |       | 6.0      |      | 6.0  |      | ns   |
| t <sub>CL</sub>   | Global clock low time                    |                   | 5.0         |       | 6.0      |      | 6.0  |      | ns   |
| t <sub>ASU</sub>  | Array clock setup time                   |                   | 4.0         |       | 4.0      |      | 5.0  |      | ns   |
| t <sub>AH</sub>   | Array clock hold time                    |                   | 4.0         |       | 4.0      |      | 5.0  |      | ns   |
| t <sub>ACO1</sub> | Array clock to output delay              | C1 = 35 pF        |             | 15.0  |          | 15.0 |      | 20.0 | ns   |
| t <sub>ACH</sub>  | Array clock high time                    |                   | 6.0         |       | 6.5      |      | 8.0  |      | ns   |
| t <sub>ACL</sub>  | Array clock low time                     |                   | 6.0         |       | 6.5      |      | 8.0  |      | ns   |
| t <sub>CPPW</sub> | Minimum pulse width for clear and preset | (3)               | 6.0         |       | 6.5      |      | 8.0  |      | ns   |
| t <sub>ODH</sub>  | Output data hold time after clock        | C1 = 35 pF (4)    | 1.0         |       | 1.0      |      | 1.0  |      | ns   |
| t <sub>CNT</sub>  | Minimum global clock period              |                   |             | 13.0  |          | 13.0 |      | 16.0 | ns   |
| f <sub>CNT</sub>  | Maximum internal global clock frequency  | (5)               | 76.9        |       | 76.9     |      | 62.5 |      | MHz  |
| t <sub>ACNT</sub> | Minimum array clock period               |                   |             | 13.0  |          | 13.0 |      | 16.0 | ns   |
| f <sub>ACNT</sub> | Maximum internal array clock frequency   | (5)               | 76.9        |       | 76.9     |      | 62.5 |      | MHz  |
| f <sub>MAX</sub>  | Maximum clock frequency                  | (6)               | 100         |       | 83.3     | _    | 83.3 | _    | MHz  |

| Symbol            | Parameter                                                                                | Conditions     |     |      | Speed | Grade |     |      | ns |
|-------------------|------------------------------------------------------------------------------------------|----------------|-----|------|-------|-------|-----|------|----------------------------------|
|                   |                                                                                          |                | -   | 15   | -1    | 5T    | -2  |      |                                  |
|                   |                                                                                          |                | Min | Max  | Min   | Max   | Min | Max  | 1                                |
| t <sub>IN</sub>   | Input pad and buffer delay                                                               |                |     | 2.0  |       | 2.0   |     | 3.0  | ns                               |
| t <sub>IO</sub>   | I/O input pad and buffer delay                                                           |                |     | 2.0  |       | 2.0   |     | 3.0  | ns                               |
| t <sub>FIN</sub>  | Fast input delay                                                                         | (2)            |     | 2.0  |       | _     |     | 4.0  | ns                               |
| t <sub>SEXP</sub> | Shared expander delay                                                                    |                |     | 8.0  |       | 10.0  |     | 9.0  | ns                               |
| t <sub>PEXP</sub> | Parallel expander delay                                                                  |                |     | 1.0  |       | 1.0   |     | 2.0  | ns                               |
| t <sub>LAD</sub>  | Logic array delay                                                                        |                |     | 6.0  |       | 6.0   |     | 8.0  | ns                               |
| t <sub>LAC</sub>  | Logic control array delay                                                                |                |     | 6.0  |       | 6.0   |     | 8.0  | ns                               |
| t <sub>IOE</sub>  | Internal output enable delay                                                             | (2)            |     | 3.0  |       | _     |     | 4.0  | ns                               |
| t <sub>OD1</sub>  | Output buffer and pad delay<br>Slow slew rate = off<br>V <sub>CCIO</sub> = 5.0 V         | C1 = 35 pF     |     | 4.0  |       | 4.0   |     | 5.0  | ns                               |
| t <sub>OD2</sub>  | Output buffer and pad delay<br>Slow slew rate = off<br>V <sub>CCIO</sub> = 3.3 V         | C1 = 35 pF (7) |     | 5.0  |       | -     |     | 6.0  | ns                               |
| t <sub>OD3</sub>  | Output buffer and pad delay<br>Slow slew rate = on<br>V <sub>CCIO</sub> = 5.0 V or 3.3 V | C1 = 35 pF (2) |     | 8.0  |       | -     |     | 9.0  | ns                               |
| t <sub>ZX1</sub>  | Output buffer enable delay<br>Slow slew rate = off<br>V <sub>CCIO</sub> = 5.0 V          | C1 = 35 pF     |     | 6.0  |       | 6.0   |     | 10.0 | ns                               |
| t <sub>ZX2</sub>  | Output buffer enable delay<br>Slow slew rate = off<br>V <sub>CCIO</sub> = 3.3 V          | C1 = 35 pF (7) |     | 7.0  |       | -     |     | 11.0 | ns                               |
| t <sub>ZX3</sub>  | Output buffer enable delay<br>Slow slew rate = on<br>V <sub>CCIO</sub> = 5.0 V or 3.3 V  | C1 = 35 pF (2) |     | 10.0 |       | -     |     | 14.0 | ns                               |
| $t_{XZ}$          | Output buffer disable delay                                                              | C1 = 5 pF      |     | 6.0  |       | 6.0   |     | 10.0 | ns                               |
| t <sub>SU</sub>   | Register setup time                                                                      |                | 4.0 |      | 4.0   |       | 4.0 |      | ns                               |
| t <sub>H</sub>    | Register hold time                                                                       |                | 4.0 |      | 4.0   |       | 5.0 |      | ns                               |
| t <sub>FSU</sub>  | Register setup time of fast input                                                        | (2)            | 2.0 |      | -     | İ     | 4.0 | İ    | ns                               |
| t <sub>FH</sub>   | Register hold time of fast input                                                         | (2)            | 2.0 |      | -     |       | 3.0 |      | ns                               |
| t <sub>RD</sub>   | Register delay                                                                           |                |     | 1.0  |       | 1.0   |     | 1.0  | ns                               |
| t <sub>COMB</sub> | Combinatorial delay                                                                      |                |     | 1.0  |       | 1.0   |     | 1.0  | ns                               |
| t <sub>IC</sub>   | Array clock delay                                                                        |                |     | 6.0  |       | 6.0   |     | 8.0  | ns                               |
| t <sub>EN</sub>   | Register enable time                                                                     |                |     | 6.0  |       | 6.0   |     | 8.0  | ns                               |
| t <sub>GLOB</sub> | Global control delay                                                                     |                |     | 1.0  |       | 1.0   |     | 3.0  | ns                               |
| t <sub>PRE</sub>  | Register preset time                                                                     |                |     | 4.0  |       | 4.0   |     | 4.0  | ns                               |
| t <sub>CLR</sub>  | Register clear time                                                                      |                |     | 4.0  |       | 4.0   |     | 4.0  | ns                               |
| t <sub>PIA</sub>  | PIA delay                                                                                |                |     | 2.0  |       | 2.0   |     | 3.0  | ns                               |
| t <sub>LPA</sub>  | Low-power adder                                                                          | (8)            | 1   | 13.0 |       | 15.0  |     | 15.0 | ns                               |

#### Notes to tables:

- (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This parameter applies to MAX 7000E devices only.
- This minimum pulse width for preset and clear applies for both global clear and array controls. The  $t_{LPA}$  parameter must be added to this minimum width if the clear or reset signal incorporates the  $t_{LAD}$  parameter into the signal path.
- (4) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (5) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (6) The  $f_{MAX}$  values represent the highest frequency for pipelined data.
- (7) Operating conditions:  $V_{CCIO} = 3.3 \text{ V} \pm 10\%$  for commercial and industrial use.
- (8) The  $t_{LPA}$  parameter must be added to the  $t_{LAD}$ ,  $t_{LAC}$ ,  $t_{IC}$ ,  $t_{EN}$ ,  $t_{SEXP}$ ,  $t_{ACL}$ , and  $t_{CPPW}$  parameters for macrocells running in the low-power mode.


Tables 27 and 28 show the EPM7032S AC operating conditions.

| Table 27. EPM7032S External Timing Parameters (Part 1 of 2) Note (1) |                                          |                |       |     |       |       |       |     |       |      |     |  |  |  |  |
|----------------------------------------------------------------------|------------------------------------------|----------------|-------|-----|-------|-------|-------|-----|-------|------|-----|--|--|--|--|
| Symbol                                                               | Parameter                                | Conditions     |       |     |       | Speed | Grade |     |       |      |     |  |  |  |  |
|                                                                      |                                          |                | -5    |     | -6    |       | -7    |     | -10   |      |     |  |  |  |  |
|                                                                      |                                          |                | Min   | Max | Min   | Max   | Min   | Max | Min   | Max  |     |  |  |  |  |
| t <sub>PD1</sub>                                                     | Input to non-registered output           | C1 = 35 pF     |       | 5.0 |       | 6.0   |       | 7.5 |       | 10.0 | ns  |  |  |  |  |
| t <sub>PD2</sub>                                                     | I/O input to non-registered output       | C1 = 35 pF     |       | 5.0 |       | 6.0   |       | 7.5 |       | 10.0 | ns  |  |  |  |  |
| t <sub>SU</sub>                                                      | Global clock setup time                  |                | 2.9   |     | 4.0   |       | 5.0   |     | 7.0   |      | ns  |  |  |  |  |
| t <sub>H</sub>                                                       | Global clock hold time                   |                | 0.0   |     | 0.0   |       | 0.0   |     | 0.0   |      | ns  |  |  |  |  |
| t <sub>FSU</sub>                                                     | Global clock setup time of fast input    |                | 2.5   |     | 2.5   |       | 2.5   |     | 3.0   |      | ns  |  |  |  |  |
| t <sub>FH</sub>                                                      | Global clock hold time of fast input     |                | 0.0   |     | 0.0   |       | 0.0   |     | 0.5   |      | ns  |  |  |  |  |
| t <sub>CO1</sub>                                                     | Global clock to output delay             | C1 = 35 pF     |       | 3.2 |       | 3.5   |       | 4.3 |       | 5.0  | ns  |  |  |  |  |
| t <sub>CH</sub>                                                      | Global clock high time                   |                | 2.0   |     | 2.5   |       | 3.0   |     | 4.0   |      | ns  |  |  |  |  |
| t <sub>CL</sub>                                                      | Global clock low time                    |                | 2.0   |     | 2.5   |       | 3.0   |     | 4.0   |      | ns  |  |  |  |  |
| t <sub>ASU</sub>                                                     | Array clock setup time                   |                | 0.7   |     | 0.9   |       | 1.1   |     | 2.0   |      | ns  |  |  |  |  |
| t <sub>AH</sub>                                                      | Array clock hold time                    |                | 1.8   |     | 2.1   |       | 2.7   |     | 3.0   |      | ns  |  |  |  |  |
| t <sub>ACO1</sub>                                                    | Array clock to output delay              | C1 = 35 pF     |       | 5.4 |       | 6.6   |       | 8.2 |       | 10.0 | ns  |  |  |  |  |
| t <sub>ACH</sub>                                                     | Array clock high time                    |                | 2.5   |     | 2.5   |       | 3.0   |     | 4.0   |      | ns  |  |  |  |  |
| t <sub>ACL</sub>                                                     | Array clock low time                     |                | 2.5   |     | 2.5   |       | 3.0   |     | 4.0   |      | ns  |  |  |  |  |
| t <sub>CPPW</sub>                                                    | Minimum pulse width for clear and preset | (2)            | 2.5   |     | 2.5   |       | 3.0   |     | 4.0   |      | ns  |  |  |  |  |
| t <sub>ODH</sub>                                                     | Output data hold time after clock        | C1 = 35 pF (3) | 1.0   |     | 1.0   |       | 1.0   |     | 1.0   |      | ns  |  |  |  |  |
| t <sub>CNT</sub>                                                     | Minimum global clock period              |                |       | 5.7 |       | 7.0   |       | 8.6 |       | 10.0 | ns  |  |  |  |  |
| f <sub>CNT</sub>                                                     | Maximum internal global clock frequency  | (4)            | 175.4 |     | 142.9 |       | 116.3 |     | 100.0 |      | MHz |  |  |  |  |
| t <sub>ACNT</sub>                                                    | Minimum array clock period               |                |       | 5.7 |       | 7.0   |       | 8.6 |       | 10.0 | ns  |  |  |  |  |

| Symbol            | Parameter                         | Conditions     | Speed Grade |      |     |      |     |      |    |
|-------------------|-----------------------------------|----------------|-------------|------|-----|------|-----|------|----|
|                   |                                   |                | -7          |      | -10 |      | -15 |      |    |
|                   |                                   |                | Min         | Max  | Min | Max  | Min | Max  |    |
| t <sub>IN</sub>   | Input pad and buffer delay        |                |             | 0.3  |     | 0.5  |     | 2.0  | ns |
| t <sub>IO</sub>   | I/O input pad and buffer delay    |                |             | 0.3  |     | 0.5  |     | 2.0  | ns |
| t <sub>FIN</sub>  | Fast input delay                  |                |             | 3.4  |     | 1.0  |     | 2.0  | ns |
| t <sub>SEXP</sub> | Shared expander delay             |                |             | 3.9  |     | 5.0  |     | 8.0  | ns |
| $t_{PEXP}$        | Parallel expander delay           |                |             | 1.1  |     | 0.8  |     | 1.0  | ns |
| $t_{LAD}$         | Logic array delay                 |                |             | 2.6  |     | 5.0  |     | 6.0  | ns |
| t <sub>LAC</sub>  | Logic control array delay         |                |             | 2.6  |     | 5.0  |     | 6.0  | ns |
| t <sub>IOE</sub>  | Internal output enable delay      |                |             | 0.8  |     | 2.0  |     | 3.0  | ns |
| t <sub>OD1</sub>  | Output buffer and pad delay       | C1 = 35 pF     |             | 0.5  |     | 1.5  |     | 4.0  | ns |
| t <sub>OD2</sub>  | Output buffer and pad delay       | C1 = 35 pF (6) |             | 1.0  |     | 2.0  |     | 5.0  | ns |
| t <sub>OD3</sub>  | Output buffer and pad delay       | C1 = 35 pF     |             | 5.5  |     | 5.5  |     | 8.0  | ns |
| t <sub>ZX1</sub>  | Output buffer enable delay        | C1 = 35 pF     |             | 4.0  |     | 5.0  |     | 6.0  | ns |
| t <sub>ZX2</sub>  | Output buffer enable delay        | C1 = 35 pF (6) |             | 4.5  |     | 5.5  |     | 7.0  | ns |
| t <sub>ZX3</sub>  | Output buffer enable delay        | C1 = 35 pF     |             | 9.0  |     | 9.0  |     | 10.0 | ns |
| $t_{XZ}$          | Output buffer disable delay       | C1 = 5 pF      |             | 4.0  |     | 5.0  |     | 6.0  | ns |
| t <sub>SU</sub>   | Register setup time               |                | 1.1         |      | 2.0 |      | 4.0 |      | ns |
| t <sub>H</sub>    | Register hold time                |                | 1.6         |      | 3.0 |      | 4.0 |      | ns |
| t <sub>FSU</sub>  | Register setup time of fast input |                | 2.4         |      | 3.0 |      | 2.0 |      | ns |
| t <sub>FH</sub>   | Register hold time of fast input  |                | 0.6         |      | 0.5 |      | 1.0 |      | ns |
| $t_{RD}$          | Register delay                    |                |             | 1.1  |     | 2.0  |     | 1.0  | ns |
| t <sub>COMB</sub> | Combinatorial delay               |                |             | 1.1  |     | 2.0  |     | 1.0  | ns |
| t <sub>IC</sub>   | Array clock delay                 |                |             | 2.9  |     | 5.0  |     | 6.0  | ns |
| $t_{EN}$          | Register enable time              |                |             | 2.6  |     | 5.0  |     | 6.0  | ns |
| t <sub>GLOB</sub> | Global control delay              |                |             | 2.8  |     | 1.0  |     | 1.0  | ns |
| t <sub>PRE</sub>  | Register preset time              |                |             | 2.7  |     | 3.0  |     | 4.0  | ns |
| t <sub>CLR</sub>  | Register clear time               |                |             | 2.7  |     | 3.0  |     | 4.0  | ns |
| t <sub>PIA</sub>  | PIA delay                         | (7)            |             | 3.0  |     | 1.0  |     | 2.0  | ns |
| t <sub>LPA</sub>  | Low-power adder                   | (8)            |             | 10.0 | İ   | 11.0 |     | 13.0 | ns |

Figure 14 shows typical supply current versus frequency for MAX 7000 devices.

Figure 14. I<sub>CC</sub> vs. Frequency for MAX 7000 Devices (Part 1 of 2)



#### EPM7096

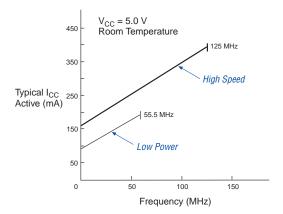
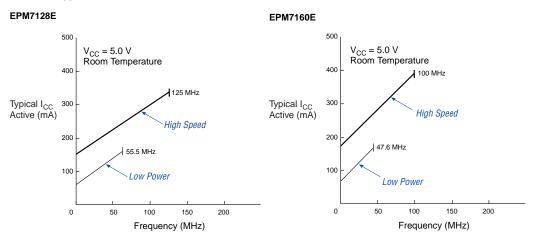




Figure 14. I<sub>CC</sub> vs. Frequency for MAX 7000 Devices (Part 2 of 2)



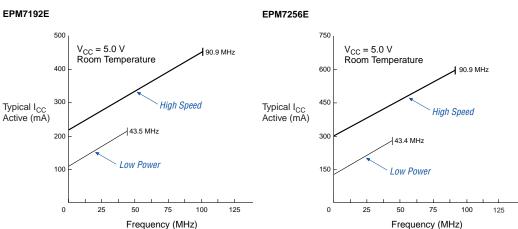
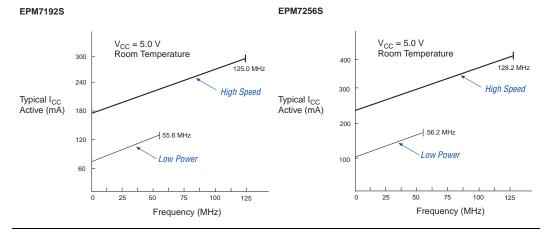
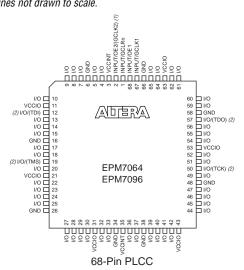




Figure 15. I<sub>CC</sub> vs. Frequency for MAX 7000S Devices (Part 2 of 2)




# Device Pin-Outs

See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information.

Figure 17. 68-Pin Package Pin-Out Diagram

Package outlines not drawn to scale.



#### Notes:

- The pin functions shown in parenthesis are only available in MAX 7000E and MAX 7000S devices.
- (2) JTAG ports are available in MAX 7000S devices only.