E·XFL

Altera - EPM7064QC100-12 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Active
Programmable Type	EE PLD
Delay Time tpd(1) Max	12 ns
Voltage Supply - Internal	4.75V ~ 5.25V
Number of Logic Elements/Blocks	4
Number of Macrocells	64
Number of Gates	1250
Number of I/O	68
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-PQFP (20x14)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=epm7064qc100-12

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. MAX	Table 2. MAX 7000S Device Features												
Feature	EPM7032S	EPM7064S	EPM7128S	EPM7160S	EPM7192S	EPM7256S							
Usable gates	600	1,250	2,500	3,200	3,750	5,000							
Macrocells	32	64	128	160	192	256							
Logic array blocks	2	4	8	10	12	16							
Maximum user I/O pins	36	68	100	104	124	164							
t _{PD} (ns)	5	5	6	6	7.5	7.5							
t _{su} (ns)	2.9	2.9	3.4	3.4	4.1	3.9							
t _{FSU} (ns)	2.5	2.5	2.5	2.5	3	3							
t_{CO1} (ns)	3.2	3.2	4	3.9	4.7	4.7							
f _{CNT} (MHz)	175.4	175.4	147.1	149.3	125.0	128.2							

...and More Features

- Open-drain output option in MAX 7000S devices
- Programmable macrocell flipflops with individual clear, preset, clock, and clock enable controls
- Programmable power-saving mode for a reduction of over 50% in each macrocell
- Configurable expander product-term distribution, allowing up to 32 product terms per macrocell
- 44 to 208 pins available in plastic J-lead chip carrier (PLCC), ceramic pin-grid array (PGA), plastic quad flat pack (PQFP), power quad flat pack (RQFP), and 1.0-mm thin quad flat pack (TQFP) packages
- Programmable security bit for protection of proprietary designs
- 3.3-V or 5.0-V operation
 - MultiVoltTM I/O interface operation, allowing devices to interface with 3.3-V or 5.0-V devices (MultiVolt I/O operation is not available in 44-pin packages)
 - Pin compatible with low-voltage MAX 7000A and MAX 7000B devices
- Enhanced features available in MAX 7000E and MAX 7000S devices
 - Six pin- or logic-driven output enable signals
 - Two global clock signals with optional inversion
 - Enhanced interconnect resources for improved routability
 - Fast input setup times provided by a dedicated path from I/O pin to macrocell registers
 - Programmable output slew-rate control
- Software design support and automatic place-and-route provided by Altera's development system for Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 workstations

The MAX 7000 architecture includes four dedicated inputs that can be used as general-purpose inputs or as high-speed, global control signals (clock, clear, and two output enable signals) for each macrocell and I/O pin. Figure 1 shows the architecture of EPM7032, EPM7064, and EPM7096 devices.

Figure 1. EPM7032, EPM7064 & EPM7096 Device Block Diagram

Figure 2 shows the architecture of MAX 7000E and MAX 7000S devices.

Figure 2. MAX 7000E & MAX 7000S Device Block Diagram

Logic Array Blocks

The MAX 7000 device architecture is based on the linking of highperformance, flexible, logic array modules called logic array blocks (LABs). LABs consist of 16-macrocell arrays, as shown in Figures 1 and 2. Multiple LABs are linked together via the programmable interconnect array (PIA), a global bus that is fed by all dedicated inputs, I/O pins, and macrocells.

Combinatorial logic is implemented in the logic array, which provides five product terms per macrocell. The product-term select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as secondary inputs to the macrocell's register clear, preset, clock, and clock enable control functions. Two kinds of expander product terms ("expanders") are available to supplement macrocell logic resources:

- Shareable expanders, which are inverted product terms that are fed back into the logic array
- Parallel expanders, which are product terms borrowed from adjacent macrocells

The Altera development system automatically optimizes product-term allocation according to the logic requirements of the design.

For registered functions, each macrocell flipflop can be individually programmed to implement D, T, JK, or SR operation with programmable clock control. The flipflop can be bypassed for combinatorial operation. During design entry, the designer specifies the desired flipflop type; the Altera development software then selects the most efficient flipflop operation for each registered function to optimize resource utilization.

For more information on using the Jam language, refer to AN 122: Using Jam STAPL for ISP & ICR via an Embedded Processor.

The ISP circuitry in MAX 7000S devices is compatible with IEEE Std. 1532 specification. The IEEE Std. 1532 is a standard developed to allow concurrent ISP between multiple PLD vendors.

Programming Sequence

During in-system programming, instructions, addresses, and data are shifted into the MAX 7000S device through the TDI input pin. Data is shifted out through the TDO output pin and compared against the expected data.

Programming a pattern into the device requires the following six ISP stages. A stand-alone verification of a programmed pattern involves only stages 1, 2, 5, and 6.

- 1. *Enter ISP*. The enter ISP stage ensures that the I/O pins transition smoothly from user mode to ISP mode. The enter ISP stage requires 1 ms.
- 2. *Check ID*. Before any program or verify process, the silicon ID is checked. The time required to read this silicon ID is relatively small compared to the overall programming time.
- 3. *Bulk Erase.* Erasing the device in-system involves shifting in the instructions to erase the device and applying one erase pulse of 100 ms.
- 4. *Program*. Programming the device in-system involves shifting in the address and data and then applying the programming pulse to program the EEPROM cells. This process is repeated for each EEPROM address.
- 5. *Verify.* Verifying an Altera device in-system involves shifting in addresses, applying the read pulse to verify the EEPROM cells, and shifting out the data for comparison. This process is repeated for each EEPROM address.
- 6. *Exit ISP*. An exit ISP stage ensures that the I/O pins transition smoothly from ISP mode to user mode. The exit ISP stage requires 1 ms.

The programming times described in Tables 6 through 8 are associated

Table 6. MAX 7000S t _{PULSE} & Cycle _{TCK} Values											
Device	Progra	imming	Stand-Alone Verification								
	t _{PPULSE} (s)	Cycle _{PTCK}	t _{VPULSE} (s)	Cycle _{VTCK}							
EPM7032S	4.02	342,000	0.03	200,000							
EPM7064S	4.50	504,000	0.03	308,000							
EPM7128S	5.11	832,000	0.03	528,000							
EPM7160S	5.35	1,001,000	0.03	640,000							
EPM7192S	5.71	1,192,000	0.03	764,000							
EPM7256S	6.43	1,603,000	0.03	1,024,000							

with the worst-case method using the enhanced ISP algorithm.

Tables 7 and 8 show the in-system programming and stand alone verification times for several common test clock frequencies.

Table 7. MAX 7000S In-System Programming Times for Different Test Clock Frequencies										
Device		f _{TCK}								
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz		
EPM7032S	4.06	4.09	4.19	4.36	4.71	5.73	7.44	10.86	S	
EPM7064S	4.55	4.60	4.76	5.01	5.51	7.02	9.54	14.58	S	
EPM7128S	5.19	5.27	5.52	5.94	6.77	9.27	13.43	21.75	S	
EPM7160S	5.45	5.55	5.85	6.35	7.35	10.35	15.36	25.37	S	
EPM7192S	5.83	5.95	6.30	6.90	8.09	11.67	17.63	29.55	S	
EPM7256S	6.59	6.75	7.23	8.03	9.64	14.45	22.46	38.49	S	

Table 8. MAX 7000S Stand-Alone Verification Times for Different Test Clock Frequencies

Device				1	тск				Units			
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz				
EPM7032S	0.05	0.07	0.13	0.23	0.43	1.03	2.03	4.03	S			
EPM7064S	0.06	0.09	0.18	0.34	0.64	1.57	3.11	6.19	S			
EPM7128S	0.08	0.14	0.29	0.56	1.09	2.67	5.31	10.59	S			
EPM7160S	0.09	0.16	0.35	0.67	1.31	3.23	6.43	12.83	S			
EPM7192S	0.11	0.18	0.41	0.79	1.56	3.85	7.67	15.31	S			
EPM7256S	0.13	0.24	0.54	1.06	2.08	5.15	10.27	20.51	S			

The instruction register length of MAX 7000S devices is 10 bits. Tables 10 and 11 show the boundary-scan register length and device IDCODE information for MAX 7000S devices.

Table 10. MAX 7000S Boundary-Sca	Table 10. MAX 7000S Boundary-Scan Register Length									
Device	Boundary-Scan Register Length									
EPM7032S	1 (1)									
EPM7064S	1 (1)									
EPM7128S	288									
EPM7160S	312									
EPM7192S	360									
EPM7256S	480									

Note:

 This device does not support JTAG boundary-scan testing. Selecting either the EXTEST or SAMPLE/PRELOAD instruction will select the one-bit bypass register.

Table 11. 32-Bit MAX 7000 Device IDCODE Note (1)										
Device		IDCODE (32 B	lits)							
	Version (4 Bits)	Part Number (16 Bits)	Manufacturer's Identity (11 Bits)	1 (1 Bit) (2)						
EPM7032S	0000	0111 0000 0011 0010	00001101110	1						
EPM7064S	0000	0111 0000 0110 0100	00001101110	1						
EPM7128S	0000	0111 0001 0010 1000	00001101110	1						
EPM7160S	0000	0111 0001 0110 0000	00001101110	1						
EPM7192S	0000	0111 0001 1001 0010	00001101110	1						
EPM7256S	0000	0111 0010 0101 0110	00001101110	1						

Notes:

(1) The most significant bit (MSB) is on the left.

(2) The least significant bit (LSB) for all JTAG IDCODEs is 1.

Tables 19 through 26 show the MAX 7000 and MAX 7000E AC $\,$ operating conditions.

Table 19	Table 19. MAX 7000 & MAX 7000E External Timing Parameters Note (1)										
Symbol	Parameter	Conditions	-6 Spee	d Grade	-7 Spee	d Grade	Unit				
			Min	Max	Min	Max					
t _{PD1}	Input to non-registered output	C1 = 35 pF		6.0		7.5	ns				
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		6.0		7.5	ns				
t _{SU}	Global clock setup time		5.0		6.0		ns				
t _H	Global clock hold time		0.0		0.0		ns				
t _{FSU}	Global clock setup time of fast input	(2)	2.5		3.0		ns				
t _{FH}	Global clock hold time of fast input	(2)	0.5		0.5		ns				
t _{CO1}	Global clock to output delay	C1 = 35 pF		4.0		4.5	ns				
t _{CH}	Global clock high time		2.5		3.0		ns				
t _{CL}	Global clock low time		2.5		3.0		ns				
t _{ASU}	Array clock setup time		2.5		3.0		ns				
t _{AH}	Array clock hold time		2.0		2.0		ns				
t _{ACO1}	Array clock to output delay	C1 = 35 pF		6.5		7.5	ns				
t _{ACH}	Array clock high time		3.0		3.0		ns				
t _{ACL}	Array clock low time		3.0		3.0		ns				
t _{CPPW}	Minimum pulse width for clear and preset	(3)	3.0		3.0		ns				
t _{ODH}	Output data hold time after clock	C1 = 35 pF (4)	1.0		1.0		ns				
t _{CNT}	Minimum global clock period			6.6		8.0	ns				
f _{CNT}	Maximum internal global clock frequency	(5)	151.5		125.0		MHz				
t _{ACNT}	Minimum array clock period			6.6		8.0	ns				
f _{ACNT}	Maximum internal array clock frequency	(5)	151.5		125.0		MHz				
f _{MAX}	Maximum clock frequency	(6)	200		166.7		MHz				

Γ

Symbol	Parameter	Conditions		Speed	Grade		Unit	
			MAX 700	IOE (-12P)	MAX 70 Max 70	100 (-12) Doe (-12)		
			Min	Max	Min	Max		
t _{IN}	Input pad and buffer delay			1.0		2.0	ns	
t _{IO}	I/O input pad and buffer delay			1.0		2.0	ns	
t _{FIN}	Fast input delay	(2)		1.0		1.0	ns	
t _{SEXP}	Shared expander delay			7.0		7.0	ns	
t _{PEXP}	Parallel expander delay			1.0		1.0	ns	
t _{LAD}	Logic array delay			7.0		5.0	ns	
t _{LAC}	Logic control array delay			5.0		5.0	ns	
t _{IOE}	Internal output enable delay	(2)		2.0		2.0	ns	
t _{OD1}	Output buffer and pad delay Slow slew rate = off $V_{CCIO} = 5.0 V$	C1 = 35 pF		1.0		3.0	ns	
t _{OD2}	Output buffer and pad delay Slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF (7)		2.0		4.0	ns	
t _{OD3}	Output buffer and pad delay Slow slew rate = on V _{CCIO} = 5.0 V or 3.3 V	C1 = 35 pF (2)		5.0		7.0	ns	
t _{ZX1}	Output buffer enable delay Slow slew rate = off $V_{CCIO} = 5.0 V$	C1 = 35 pF		6.0		6.0	ns	
t _{ZX2}	Output buffer enable delay Slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF (7)		7.0		7.0	ns	
t _{ZX3}	Output buffer enable delay Slow slew rate = on $V_{CCIO} = 5.0 V \text{ or } 3.3 V$	C1 = 35 pF (2)		10.0		10.0	ns	
t _{XZ}	Output buffer disable delay	C1 = 5 pF		6.0		6.0	ns	
t _{SU}	Register setup time		1.0		4.0		ns	
t _H	Register hold time		6.0		4.0		ns	
t _{FSU}	Register setup time of fast input	(2)	4.0		2.0		ns	
t _{FH}	Register hold time of fast input	(2)	0.0		2.0		ns	
t _{RD}	Register delay			2.0		1.0	ns	
t _{COMB}	Combinatorial delay			2.0		1.0	ns	
t _{IC}	Array clock delay			5.0		5.0	ns	
t _{EN}	Register enable time			7.0		5.0	ns	
t _{GLOB}	Global control delay			2.0		0.0	ns	
t _{PRE}	Register preset time			4.0		3.0	ns	
t _{CLR}	Register clear time			4.0		3.0	ns	
t _{PIA}	PIA delay			1.0		1.0	ns	
t _{LPA}	Low-power adder	(8)		12.0		12.0	ns	

Symbol	Parameter	Conditions			Speed	Grade			Unit
			-	15	-1	5T	-1	20	
			Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			2.0		2.0		3.0	ns
t _{IO}	I/O input pad and buffer delay			2.0		2.0		3.0	ns
t _{FIN}	Fast input delay	(2)		2.0		-		4.0	ns
t _{SEXP}	Shared expander delay			8.0		10.0		9.0	ns
t _{PEXP}	Parallel expander delay			1.0		1.0		2.0	ns
t _{LAD}	Logic array delay			6.0		6.0		8.0	ns
t _{LAC}	Logic control array delay			6.0		6.0		8.0	ns
t _{IOE}	Internal output enable delay	(2)		3.0		-		4.0	ns
t _{OD1}	Output buffer and pad delay Slow slew rate = off V _{CCIO} = 5.0 V	C1 = 35 pF		4.0		4.0		5.0	ns
t _{OD2}	Output buffer and pad delay Slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF (7)		5.0		-		6.0	ns
t _{OD3}	Output buffer and pad delay Slow slew rate = on $V_{CCIO} = 5.0 V \text{ or } 3.3 V$	C1 = 35 pF (2)		8.0		-		9.0	ns
t _{ZX1}	Output buffer enable delay Slow slew rate = off $V_{CCIO} = 5.0 V$	C1 = 35 pF		6.0		6.0		10.0	ns
t _{ZX2}	Output buffer enable delay Slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF (7)		7.0		-		11.0	ns
t _{ZX3}	Output buffer enable delay Slow slew rate = on $V_{CCIO} = 5.0 V \text{ or } 3.3 V$	C1 = 35 pF (2)		10.0		-		14.0	ns
t _{XZ}	Output buffer disable delay	C1 = 5 pF		6.0		6.0		10.0	ns
t _{SU}	Register setup time		4.0		4.0		4.0		ns
t _H	Register hold time		4.0		4.0		5.0		ns
t _{FSU}	Register setup time of fast input	(2)	2.0		-		4.0		ns
t _{FH}	Register hold time of fast input	(2)	2.0		-		3.0		ns
t _{RD}	Register delay			1.0		1.0		1.0	ns
t _{COMB}	Combinatorial delay			1.0		1.0		1.0	ns
t _{IC}	Array clock delay			6.0		6.0		8.0	ns
t _{EN}	Register enable time			6.0		6.0		8.0	ns
t _{GLOB}	Global control delay			1.0		1.0		3.0	ns
t _{PRE}	Register preset time			4.0		4.0		4.0	ns
t _{CLR}	Register clear time			4.0		4.0		4.0	ns
t _{PIA}	PIA delay			2.0		2.0		3.0	ns
t _{LPA}	Low-power adder	(8)		13.0		15.0		15.0	ns

Notes to tables:

- (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This parameter applies to MAX 7000E devices only.
- (3) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (4) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (5) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (6) The f_{MAX} values represent the highest frequency for pipelined data.
- (7) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells running in the low-power mode.

Tables 27 and 28 show the EPM7032S AC operating conditions.

Symbol	Parameter	Conditions	Speed Grade								
			-	-5		-6		-7		-10	
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF		5.0		6.0		7.5		10.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		5.0		6.0		7.5		10.0	ns
t _{SU}	Global clock setup time		2.9		4.0		5.0		7.0		ns
t _H	Global clock hold time		0.0		0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		2.5		2.5		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.0		0.5		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		3.2		3.5		4.3		5.0	ns
t _{CH}	Global clock high time		2.0		2.5		3.0		4.0		ns
t _{CL}	Global clock low time		2.0		2.5		3.0		4.0		ns
t _{ASU}	Array clock setup time		0.7		0.9		1.1		2.0		ns
t _{AH}	Array clock hold time		1.8		2.1		2.7		3.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		5.4		6.6		8.2		10.0	ns
t _{ACH}	Array clock high time		2.5		2.5		3.0		4.0		ns
t _{ACL}	Array clock low time		2.5		2.5		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(2)	2.5		2.5		3.0		4.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		1.0		ns
t _{CNT}	Minimum global clock period			5.7		7.0		8.6		10.0	ns
f _{CNT}	Maximum internal global clock frequency	(4)	175.4		142.9		116.3		100.0		MHz
tACNT	Minimum array clock period			5.7		7.0		8.6		10.0	ns

Table 29. EPM7064S External Timing Parameters (Part 2 of 2) Note (1)											
Symbol	Parameter	Conditions				Speed	Grade	1			Unit
			-	-5 -6		-7		-10			
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{ACO1}	Array clock to output delay	C1 = 35 pF		5.4		6.7		7.5		10.0	ns
t _{ACH}	Array clock high time		2.5		2.5		3.0		4.0		ns
t _{ACL}	Array clock low time		2.5		2.5		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(2)	2.5		2.5		3.0		4.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		1.0		ns
t _{CNT}	Minimum global clock period			5.7		7.1		8.0		10.0	ns
f _{CNT}	Maximum internal global clock frequency	(4)	175.4		140.8		125.0		100.0		MHz
t _{ACNT}	Minimum array clock period			5.7		7.1		8.0		10.0	ns
f _{ACNT}	Maximum internal array clock frequency	(4)	175.4		140.8		125.0		100.0		MHz
f _{MAX}	Maximum clock frequency	(5)	250.0		200.0		166.7		125.0		MHz

Г

 Table 30. EPM7064S Internal Timing Parameters (Part 1 of 2)

Note (1)

Symbol	Parameter	Conditions	Speed Grade							Unit	
			-5		-6		-7		-10		
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.2		0.2		0.5		0.5	ns
t _{IO}	I/O input pad and buffer delay			0.2		0.2		0.5		0.5	ns
t _{FIN}	Fast input delay			2.2		2.6		1.0		1.0	ns
t _{SEXP}	Shared expander delay			3.1		3.8		4.0		5.0	ns
t _{PEXP}	Parallel expander delay			0.9		1.1		0.8		0.8	ns
t _{LAD}	Logic array delay			2.6		3.2		3.0		5.0	ns
t _{LAC}	Logic control array delay			2.5		3.2		3.0		5.0	ns
t _{IOE}	Internal output enable delay			0.7		0.8		2.0		2.0	ns
t _{OD1}	Output buffer and pad delay	C1 = 35 pF		0.2		0.3		2.0		1.5	ns
t _{OD2}	Output buffer and pad delay	C1 = 35 pF (6)		0.7		0.8		2.5		2.0	ns
t _{OD3}	Output buffer and pad delay	C1 = 35 pF		5.2		5.3		7.0		5.5	ns
t _{ZX1}	Output buffer enable delay	C1 = 35 pF		4.0		4.0		4.0		5.0	ns
t _{ZX2}	Output buffer enable delay	C1 = 35 pF (6)		4.5		4.5		4.5		5.5	ns
t _{ZX3}	Output buffer enable delay	C1 = 35 pF		9.0		9.0		9.0		9.0	ns
t _{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		4.0		5.0	ns
t _{SU}	Register setup time		0.8		1.0		3.0		2.0		ns
t _H	Register hold time		1.7		2.0		2.0		3.0		ns

Symbol	Parameter	Conditions	Speed Grade							Unit	
			-6		-7		-10		-15		
			Min	Max	Min	Max	Min	Max	Min	Max	1
t _{PD1}	Input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns
t _{SU}	Global clock setup time		3.4		6.0		7.0		11.0		ns
t _H	Global clock hold time		0.0		0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.5		0.5		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		4.0		4.5		5.0		8.0	ns
t _{CH}	Global clock high time		3.0		3.0		4.0		5.0		ns
t _{CL}	Global clock low time		3.0		3.0		4.0		5.0		ns
t _{ASU}	Array clock setup time		0.9		3.0		2.0		4.0		ns
t _{AH}	Array clock hold time		1.8		2.0		5.0		4.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		6.5		7.5		10.0		15.0	ns
t _{ACH}	Array clock high time		3.0		3.0		4.0		6.0		ns
t _{ACL}	Array clock low time		3.0		3.0		4.0		6.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(2)	3.0		3.0		4.0		6.0		ns
t _{odh}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		1.0		ns
t _{CNT}	Minimum global clock period			6.8		8.0		10.0		13.0	ns
f _{CNT}	Maximum internal global clock frequency	(4)	147.1		125.0		100.0		76.9		MHz
t _{ACNT}	Minimum array clock period			6.8		8.0		10.0		13.0	ns
f _{ACNT}	Maximum internal array clock frequency	(4)	147.1		125.0		100.0		76.9		MHz
f _{MAX}	Maximum clock frequency	(5)	166.7		166.7		125.0		100.0		MHz

Tables 31 and 32 show the EPM7128S AC operating conditions.

٦

Г

Notes to tables:

- (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells running in the low-power mode.

Power Consumption

Supply power (P) versus frequency (f_{MAX} in MHz) for MAX 7000 devices is calculated with the following equation:

$$P = P_{INT} + P_{IO} = I_{CCINT} \times V_{CC} + P_{IO}$$

The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note* 74 (*Evaluating Power for Altera Devices*).

The I_{CCINT} value, which depends on the switching frequency and the application logic, is calculated with the following equation:

 $I_{CCINT} =$

 $A \times MC_{TON} + B \times (MC_{DEV} - MC_{TON}) + C \times MC_{USED} \times f_{MAX} \times tog_{LC}$

The parameters in this equation are shown below:

MC _{TON}	=	Number of macrocells with the Turbo Bit option turned on,
		as reported in the MAX+PLUS II Report File (.rpt)
MC _{DEV}	=	Number of macrocells in the device
MC _{USED}	=	Total number of macrocells in the design, as reported
		in the MAX+PLUS II Report File (.rpt)
f _{MAX}	=	Highest clock frequency to the device
tog _{LC}	=	Average ratio of logic cells toggling at each clock
		(typically 0.125)
A, B, C	=	Constants, shown in Table 39

Table 39. MAX 7000 I _{CC} Equation Constants								
Device	Α	В	C					
EPM7032	1.87	0.52	0.144					
EPM7064	1.63	0.74	0.144					
EPM7096	1.63	0.74	0.144					
EPM7128E	1.17	0.54	0.096					
EPM7160E	1.17	0.54	0.096					
EPM7192E	1.17	0.54	0.096					
EPM7256E	1.17	0.54	0.096					
EPM7032S	0.93	0.40	0.040					
EPM7064S	0.93	0.40	0.040					
EPM7128S	0.93	0.40	0.040					
EPM7160S	0.93	0.40	0.040					
EPM7192S	0.93	0.40	0.040					
EPM7256S	0.93	0.40	0.040					

This calculation provides an I_{CC} estimate based on typical conditions using a pattern of a 16-bit, loadable, enabled, up/down counter in each LAB with no output load. Actual I_{CC} values should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions.

Figure 17. 68-Pin Package Pin-Out Diagram

Package outlines not drawn to scale.

Notes:

- The pin functions shown in parenthesis are only available in MAX 7000E and MAX 7000S devices.
- (2) JTAG ports are available in MAX 7000S devices only.

Figure 18. 84-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

84-Pin PLCC

Notes:

- (1) Pins 6, 39, 46, and 79 are no-connect (N.C.) pins on EPM7096, EPM7160E, and EPM7160S devices.
- (2) The pin functions shown in parenthesis are only available in MAX 7000E and MAX 7000S devices.
- (3) JTAG ports are available in MAX 7000S devices only.

Figure 19. 100-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

Figure 20. 160-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

Figure 21. 192-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

Figure 22. 208-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

