



Welcome to **E-XFL.COM** 

**Understanding Embedded - CPLDs (Complex Programmable Logic Devices)** 

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

## **Applications of Embedded - CPLDs**

| Details                         |                                                            |
|---------------------------------|------------------------------------------------------------|
| Product Status                  | Obsolete                                                   |
| Programmable Type               | In System Programmable                                     |
| Delay Time tpd(1) Max           | 5 ns                                                       |
| Voltage Supply - Internal       | 4.75V ~ 5.25V                                              |
| Number of Logic Elements/Blocks | 4                                                          |
| Number of Macrocells            | 64                                                         |
| Number of Gates                 | 1250                                                       |
| Number of I/O                   | 68                                                         |
| Operating Temperature           | 0°C ~ 70°C (TA)                                            |
| Mounting Type                   | Surface Mount                                              |
| Package / Case                  | 84-LCC (J-Lead)                                            |
| Supplier Device Package         | 84-PLCC (29.31x29.31)                                      |
| Purchase URL                    | https://www.e-xfl.com/product-detail/intel/epm7064slc84-5n |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, and VeriBest
- Programming support
  - Altera's Master Programming Unit (MPU) and programming hardware from third-party manufacturers program all MAX 7000 devices
  - The BitBlaster<sup>TM</sup> serial download cable, ByteBlasterMV<sup>TM</sup> parallel port download cable, and MasterBlaster<sup>TM</sup> serial/universal serial bus (USB) download cable program MAX 7000S devices

# General Description

The MAX 7000 family of high-density, high-performance PLDs is based on Altera's second-generation MAX architecture. Fabricated with advanced CMOS technology, the EEPROM-based MAX 7000 family provides 600 to 5,000 usable gates, ISP, pin-to-pin delays as fast as 5 ns, and counter speeds of up to 175.4 MHz. MAX 7000S devices in the -5, -6, -7, and -10 speed grades as well as MAX 7000 and MAX 7000E devices in -5, -6, -7, -10P, and -12P speed grades comply with the PCI Special Interest Group (PCI SIG) *PCI Local Bus Specification, Revision 2.2.* See Table 3 for available speed grades.

| Device   |          |          |          |          | Speed    | l Grade  |          |          |          |          |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|          | -5       | -6       | -7       | -10P     | -10      | -12P     | -12      | -15      | -15T     | -20      |
| EPM7032  |          | <b>✓</b> | <b>✓</b> |          | <b>✓</b> |          | <b>✓</b> | <b>✓</b> | <b>✓</b> |          |
| EPM7032S | <b>✓</b> | <b>✓</b> | <b>✓</b> |          | <b>✓</b> |          |          |          |          |          |
| EPM7064  |          | <b>✓</b> | <b>✓</b> |          | ~        |          | <b>✓</b> | <b>✓</b> |          |          |
| EPM7064S | <b>✓</b> | <b>✓</b> | <b>✓</b> |          | ~        |          |          |          |          |          |
| EPM7096  |          |          | <b>✓</b> |          | ~        |          | <b>✓</b> | <b>✓</b> |          |          |
| EPM7128E |          |          | <b>✓</b> | <b>✓</b> | ~        |          | <b>✓</b> | <b>✓</b> |          | <b>✓</b> |
| EPM7128S |          | <b>✓</b> | <b>✓</b> |          | <b>✓</b> |          |          | <b>✓</b> |          |          |
| EPM7160E |          |          |          | <b>✓</b> | <b>✓</b> |          | <b>✓</b> | <b>✓</b> |          | <b>✓</b> |
| EPM7160S |          | <b>✓</b> | <b>✓</b> |          | ~        |          |          | <b>✓</b> |          |          |
| EPM7192E |          |          |          |          |          | <b>✓</b> | <b>✓</b> | <b>✓</b> |          | <b>✓</b> |
| EPM7192S |          |          | <b>✓</b> |          | <b>✓</b> |          |          | <b>✓</b> |          |          |
| EPM7256E |          |          |          |          |          | <b>✓</b> | <b>✓</b> | <b>✓</b> |          | <b>✓</b> |
| EPM7256S |          |          | <b>✓</b> |          | <b>✓</b> |          |          | <b>✓</b> |          |          |

The MAX 7000E devices—including the EPM7128E, EPM7160E, EPM7192E, and EPM7256E devices—have several enhanced features: additional global clocking, additional output enable controls, enhanced interconnect resources, fast input registers, and a programmable slew rate.

In-system programmable MAX 7000 devices—called MAX 7000S devices—include the EPM7032S, EPM7064S, EPM7128S, EPM7160S, EPM7192S, and EPM7256S devices. MAX 7000S devices have the enhanced features of MAX 7000E devices as well as JTAG BST circuitry in devices with 128 or more macrocells, ISP, and an open-drain output option. See Table 4.

| Table 4. MAX 7000 Device Feat   | ures                          |                             |                             |
|---------------------------------|-------------------------------|-----------------------------|-----------------------------|
| Feature                         | EPM7032<br>EPM7064<br>EPM7096 | All<br>MAX 7000E<br>Devices | All<br>MAX 7000S<br>Devices |
| ISP via JTAG interface          |                               |                             | ✓                           |
| JTAG BST circuitry              |                               |                             | <b>√</b> (1)                |
| Open-drain output option        |                               |                             | <b>✓</b>                    |
| Fast input registers            |                               | <b>✓</b>                    | ✓                           |
| Six global output enables       |                               | <b>✓</b>                    | ✓                           |
| Two global clocks               |                               | ✓                           | ✓                           |
| Slew-rate control               |                               | <b>✓</b>                    | ✓                           |
| MultiVolt interface (2)         | ✓                             | <b>✓</b>                    | <b>✓</b>                    |
| Programmable register           | ✓                             | <b>✓</b>                    | ✓                           |
| Parallel expanders              | <b>✓</b>                      | ✓                           | ✓                           |
| Shared expanders                | <b>✓</b>                      | <b>✓</b>                    | <b>✓</b>                    |
| Power-saving mode               | <b>✓</b>                      | ✓                           | ✓                           |
| Security bit                    | <b>✓</b>                      | ✓                           | ✓                           |
| PCI-compliant devices available | ✓                             | ✓                           | ✓                           |

#### Notes:

- (1) Available only in EPM7128S, EPM7160S, EPM7192S, and EPM7256S devices only.
- (2) The MultiVolt I/O interface is not available in 44-pin packages.

MAX 7000 devices contain from 32 to 256 macrocells that are combined into groups of 16 macrocells, called logic array blocks (LABs). Each macrocell has a programmable-AND/fixed-OR array and a configurable register with independently programmable clock, clock enable, clear, and preset functions. To build complex logic functions, each macrocell can be supplemented with both shareable expander product terms and high-speed parallel expander product terms to provide up to 32 product terms per macrocell.

The MAX 7000 family provides programmable speed/power optimization. Speed-critical portions of a design can run at high speed/full power, while the remaining portions run at reduced speed/low power. This speed/power optimization feature enables the designer to configure one or more macrocells to operate at 50% or lower power while adding only a nominal timing delay. MAX 7000E and MAX 7000S devices also provide an option that reduces the slew rate of the output buffers, minimizing noise transients when non-speed-critical signals are switching. The output drivers of all MAX 7000 devices (except 44-pin devices) can be set for either 3.3-V or 5.0-V operation, allowing MAX 7000 devices to be used in mixed-voltage systems.

The MAX 7000 family is supported by Altera development systems, which are integrated packages that offer schematic, text—including VHDL, Verilog HDL, and the Altera Hardware Description Language (AHDL)—and waveform design entry, compilation and logic synthesis, simulation and timing analysis, and device programming. The software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry-standard PC- and UNIX-workstation-based EDA tools. The software runs on Windows-based PCs, as well as Sun SPARCstation, and HP 9000 Series 700/800 workstations.



For more information on development tools, see the MAX+PLUS II Programmable Logic Development System & Software Data Sheet and the Quartus Programmable Logic Development System & Software Data Sheet.

# Functional Description

The MAX 7000 architecture includes the following elements:

- Logic array blocks
- Macrocells
- Expander product terms (shareable and parallel)
- Programmable interconnect array
- I/O control blocks

The MAX 7000 architecture includes four dedicated inputs that can be used as general-purpose inputs or as high-speed, global control signals (clock, clear, and two output enable signals) for each macrocell and I/O pin. Figure 1 shows the architecture of EPM7032, EPM7064, and EPM7096 devices.

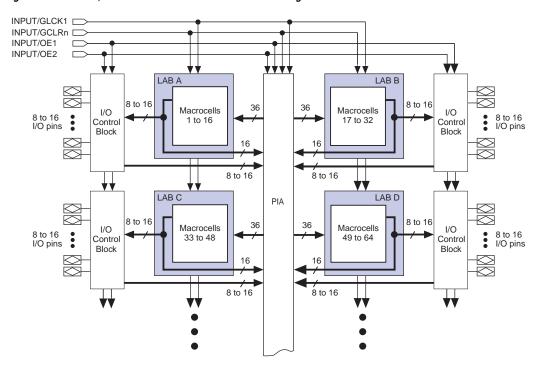
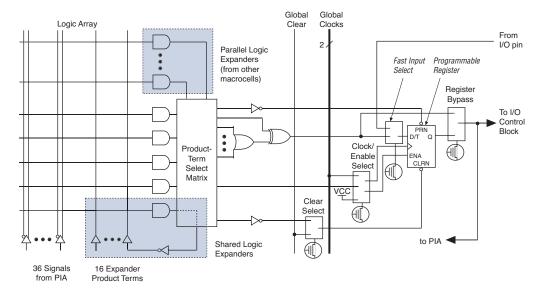



Figure 1. EPM7032, EPM7064 & EPM7096 Device Block Diagram


Each LAB is fed by the following signals:

- 36 signals from the PIA that are used for general logic inputs
- Global controls that are used for secondary register functions
- Direct input paths from I/O pins to the registers that are used for fast setup times for MAX 7000E and MAX 7000S devices

## **Macrocells**

The MAX 7000 macrocell can be individually configured for either sequential or combinatorial logic operation. The macrocell consists of three functional blocks: the logic array, the product-term select matrix, and the programmable register. The macrocell of EPM7032, EPM7064, and EPM7096 devices is shown in Figure 3.

Figure 3. EPM7032, EPM7064 & EPM7096 Device Macrocell



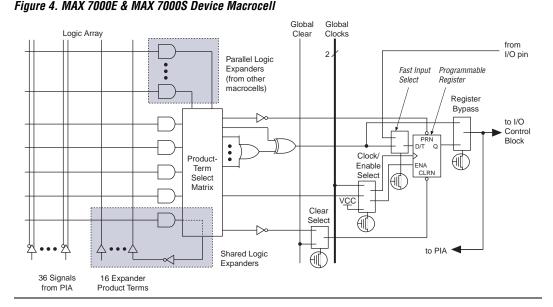
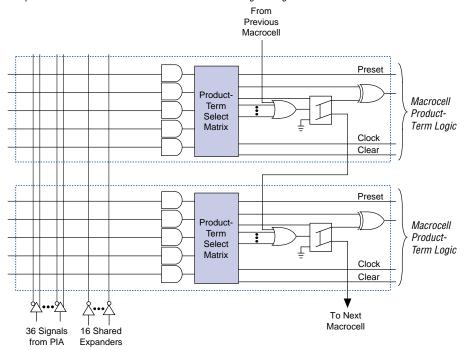



Figure 4 shows a MAX 7000E and MAX 7000S device macrocell.

Combinatorial logic is implemented in the logic array, which provides five product terms per macrocell. The product-term select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as secondary inputs to the macrocell's register clear, preset, clock, and clock enable control functions. Two kinds of expander product terms ("expanders") are available to supplement macrocell logic resources:

- Shareable expanders, which are inverted product terms that are fed back into the logic array
- Parallel expanders, which are product terms borrowed from adjacent macrocells

The Altera development system automatically optimizes product-term allocation according to the logic requirements of the design.


For registered functions, each macrocell flipflop can be individually programmed to implement D, T, JK, or SR operation with programmable clock control. The flipflop can be bypassed for combinatorial operation. During design entry, the designer specifies the desired flipflop type; the Altera development software then selects the most efficient flipflop operation for each registered function to optimize resource utilization.

The compiler can allocate up to three sets of up to five parallel expanders automatically to the macrocells that require additional product terms. Each set of five parallel expanders incurs a small, incremental timing delay ( $t_{PEXP}$ ). For example, if a macrocell requires 14 product terms, the Compiler uses the five dedicated product terms within the macrocell and allocates two sets of parallel expanders; the first set includes five product terms and the second set includes four product terms, increasing the total delay by  $2 \times t_{PEXP}$ .

Two groups of 8 macrocells within each LAB (e.g., macrocells 1 through 8 and 9 through 16) form two chains to lend or borrow parallel expanders. A macrocell borrows parallel expanders from lower-numbered macrocells. For example, macrocell 8 can borrow parallel expanders from macrocell 7, from macrocells 7 and 6, or from macrocells 7, 6, and 5. Within each group of 8, the lowest-numbered macrocell can only lend parallel expanders and the highest-numbered macrocell can only borrow them. Figure 6 shows how parallel expanders can be borrowed from a neighboring macrocell.

Figure 6. Parallel Expanders

Unused product terms in a macrocell can be allocated to a neighboring macrocell.





For more information on using the Jam language, refer to AN 122: Using Jam STAPL for ISP & ICR via an Embedded Processor.

The ISP circuitry in MAX 7000S devices is compatible with IEEE Std. 1532 specification. The IEEE Std. 1532 is a standard developed to allow concurrent ISP between multiple PLD vendors.

## **Programming Sequence**

During in-system programming, instructions, addresses, and data are shifted into the MAX 7000S device through the TDI input pin. Data is shifted out through the TDO output pin and compared against the expected data.

Programming a pattern into the device requires the following six ISP stages. A stand-alone verification of a programmed pattern involves only stages 1, 2, 5, and 6.

- Enter ISP. The enter ISP stage ensures that the I/O pins transition smoothly from user mode to ISP mode. The enter ISP stage requires 1 ms.
- 2. *Check ID*. Before any program or verify process, the silicon ID is checked. The time required to read this silicon ID is relatively small compared to the overall programming time.
- 3. *Bulk Erase*. Erasing the device in-system involves shifting in the instructions to erase the device and applying one erase pulse of 100 ms.
- Program. Programming the device in-system involves shifting in the address and data and then applying the programming pulse to program the EEPROM cells. This process is repeated for each EEPROM address.
- Verify. Verifying an Altera device in-system involves shifting in addresses, applying the read pulse to verify the EEPROM cells, and shifting out the data for comparison. This process is repeated for each EEPROM address.
- 6. Exit ISP. An exit ISP stage ensures that the I/O pins transition smoothly from ISP mode to user mode. The exit ISP stage requires 1 ms.

# Programmable Speed/Power Control

MAX 7000 devices offer a power-saving mode that supports low-power operation across user-defined signal paths or the entire device. This feature allows total power dissipation to be reduced by 50% or more, because most logic applications require only a small fraction of all gates to operate at maximum frequency.

The designer can program each individual macrocell in a MAX 7000 device for either high-speed (i.e., with the Turbo Bit<sup>TM</sup> option turned on) or low-power (i.e., with the Turbo Bit option turned off) operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths can operate at reduced power. Macrocells that run at low power incur a nominal timing delay adder ( $t_{LPA}$ ) for the  $t_{LAD}$ ,  $t_{LAC}$ ,  $t_{IC}$ ,  $t_{EN}$ , and  $t_{SEXP}$ ,  $t_{ACL}$ , and  $t_{CPPW}$  parameters.

## Output Configuration

MAX 7000 device outputs can be programmed to meet a variety of system-level requirements.

## MultiVolt I/O Interface

MAX 7000 devices—except 44-pin devices—support the MultiVolt I/O interface feature, which allows MAX 7000 devices to interface with systems that have differing supply voltages. The 5.0-V devices in all packages can be set for 3.3-V or 5.0-V I/O pin operation. These devices have one set of VCC pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

The VCCINT pins must always be connected to a 5.0-V power supply. With a 5.0-V  $V_{\rm CCINT}$  level, input voltage thresholds are at TTL levels, and are therefore compatible with both 3.3-V and 5.0-V inputs.

The VCCIO pins can be connected to either a 3.3-V or a 5.0-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 5.0-V supply, the output levels are compatible with 5.0-V systems. When  $V_{\rm CCIO}$  is connected to a 3.3-V supply, the output high is 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with  $V_{\rm CCIO}$  levels lower than 4.75 V incur a nominally greater timing delay of  $t_{\rm OD2}$  instead of  $t_{\rm OD1}$ .

## Open-Drain Output Option (MAX 7000S Devices Only)

MAX 7000S devices provide an optional open-drain (functionally equivalent to open-collector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. It can also provide an additional wired-OR plane.

By using an external 5.0-V pull-up resistor, output pins on MAX 7000S devices can be set to meet 5.0-V CMOS input voltages. When  $V_{\rm CCIO}$  is 3.3 V, setting the open drain option will turn off the output pull-up transistor, allowing the external pull-up resistor to pull the output high enough to meet 5.0-V CMOS input voltages. When  $V_{\rm CCIO}$  is 5.0 V, setting the output drain option is not necessary because the pull-up transistor will already turn off when the pin exceeds approximately 3.8 V, allowing the external pull-up resistor to pull the output high enough to meet 5.0-V CMOS input voltages.

### Slew-Rate Control

The output buffer for each MAX 7000E and MAX 7000S I/O pin has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A faster slew rate provides high-speed transitions for high-performance systems. However, these fast transitions may introduce noise transients into the system. A slow slew rate reduces system noise, but adds a nominal delay of 4 to 5 ns. In MAX 7000E devices, when the Turbo Bit is turned off, the slew rate is set for low noise performance. For MAX 7000S devices, each I/O pin has an individual EEPROM bit that controls the slew rate, allowing designers to specify the slew rate on a pin-by-pin basis.

## Programming with External Hardware

MAX 7000 devices can be programmed on Windows-based PCs with the Altera Logic Programmer card, the Master Programming Unit (MPU), and the appropriate device adapter. The MPU performs a continuity check to ensure adequate electrical contact between the adapter and the device.



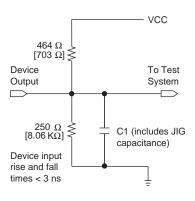
For more information, see the *Altera Programming Hardware Data Sheet*.

The Altera development system can use text- or waveform-format test vectors created with the Text Editor or Waveform Editor to test the programmed device. For added design verification, designers can perform functional testing to compare the functional behavior of a MAX 7000 device with the results of simulation. Moreover, Data I/O, BP Microsystems, and other programming hardware manufacturers also provide programming support for Altera devices.



For more information, see the *Programming Hardware Manufacturers*.

## **Design Security**


All MAX 7000 devices contain a programmable security bit that controls access to the data programmed into the device. When this bit is programmed, a proprietary design implemented in the device cannot be copied or retrieved. This feature provides a high level of design security because programmed data within EEPROM cells is invisible. The security bit that controls this function, as well as all other programmed data, is reset only when the device is reprogrammed.

## **Generic Testing**

Each MAX 7000 device is functionally tested. Complete testing of each programmable EEPROM bit and all internal logic elements ensures 100% programming yield. AC test measurements are taken under conditions equivalent to those shown in Figure 10. Test patterns can be used and then erased during early stages of the production flow.

## Figure 10. MAX 7000 AC Test Conditions

Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast ground-current transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground. significant reductions in observable noise immunity can result. Numbers in brackets are for 2.5-V devices and outputs. Numbers without brackets are for 3.3-V devices and outputs.



## QFP Carrier & Development Socket

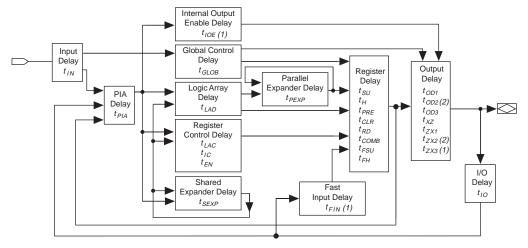
MAX 7000 and MAX 7000E devices in QFP packages with 100 or more pins are shipped in special plastic carriers to protect the QFP leads. The carrier is used with a prototype development socket and special programming hardware available from Altera. This carrier technology makes it possible to program, test, erase, and reprogram a device without exposing the leads to mechanical stress.



For detailed information and carrier dimensions, refer to the *QFP Carrier* & *Development Socket Data Sheet*.



MAX 7000S devices are not shipped in carriers.


| Symbol          | Parameter                                  | Conditions                                                    | Min                     | Max                      | Unit |
|-----------------|--------------------------------------------|---------------------------------------------------------------|-------------------------|--------------------------|------|
| V <sub>IH</sub> | High-level input voltage                   |                                                               | 2.0                     | V <sub>CCINT</sub> + 0.5 | V    |
| V <sub>IL</sub> | Low-level input voltage                    |                                                               | -0.5 (8)                | 0.8                      | V    |
| V <sub>OH</sub> | 5.0-V high-level TTL output voltage        | $I_{OH} = -4 \text{ mA DC}, V_{CCIO} = 4.75 \text{ V} (10)$   | 2.4                     |                          | V    |
|                 | 3.3-V high-level TTL output voltage        | $I_{OH} = -4 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V } (10)$  | 2.4                     |                          | V    |
|                 | 3.3-V high-level CMOS output voltage       | $I_{OH} = -0.1 \text{ mA DC}, V_{CCIO} = 3.0 \text{ V } (10)$ | V <sub>CCIO</sub> - 0.2 |                          | V    |
| V <sub>OL</sub> | 5.0-V low-level TTL output voltage         | I <sub>OL</sub> = 12 mA DC, V <sub>CCIO</sub> = 4.75 V (11)   |                         | 0.45                     | V    |
|                 | 3.3-V low-level TTL output voltage         | I <sub>OL</sub> = 12 mA DC, V <sub>CCIO</sub> = 3.00 V (11)   |                         | 0.45                     | V    |
|                 | 3.3-V low-level CMOS output voltage        | $I_{OL} = 0.1 \text{ mA DC}, V_{CCIO} = 3.0 \text{ V}(11)$    |                         | 0.2                      | V    |
| I <sub>I</sub>  | Leakage current of dedicated input pins    | V <sub>I</sub> = -0.5 to 5.5 V (11)                           | -10                     | 10                       | μА   |
| l <sub>OZ</sub> | I/O pin tri-state output off-state current | V <sub>I</sub> = -0.5 to 5.5 V (11), (12)                     | -40                     | 40                       | μА   |

| Table 1          | 6. MAX 7000 5.0-V Device Capa | ncitance: EPM7032, EPM7064 & EPM7   | 7096 Devices | Note (1 | 3)   |
|------------------|-------------------------------|-------------------------------------|--------------|---------|------|
| Symbol           | Parameter                     | Conditions                          | Min          | Max     | Unit |
| C <sub>IN</sub>  | Input pin capacitance         | V <sub>IN</sub> = 0 V, f = 1.0 MHz  |              | 12      | pF   |
| C <sub>I/O</sub> | I/O pin capacitance           | V <sub>OUT</sub> = 0 V, f = 1.0 MHz |              | 12      | pF   |

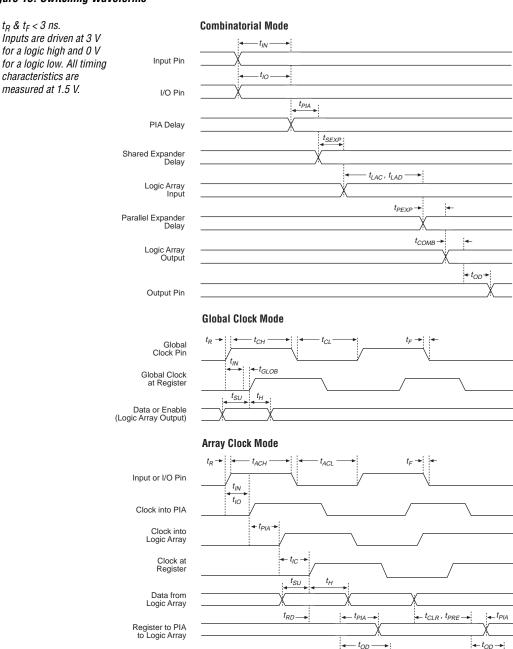
| Table 1          | 7. MAX 7000 5.0-V Device Capa | acitance: MAX 7000E Devices Note    | (13) |     |      |
|------------------|-------------------------------|-------------------------------------|------|-----|------|
| Symbol           | Parameter                     | Conditions                          | Min  | Max | Unit |
| C <sub>IN</sub>  | Input pin capacitance         | V <sub>IN</sub> = 0 V, f = 1.0 MHz  |      | 15  | pF   |
| C <sub>I/O</sub> | I/O pin capacitance           | V <sub>OUT</sub> = 0 V, f = 1.0 MHz |      | 15  | pF   |

| Table 1          | 8. MAX 7000 5.0-V Device Capa   | ncitance: MAX 7000S Devices Note    | (13) |     |      |
|------------------|---------------------------------|-------------------------------------|------|-----|------|
| Symbol           | Parameter                       | Conditions                          | Min  | Max | Unit |
| C <sub>IN</sub>  | Dedicated input pin capacitance | V <sub>IN</sub> = 0 V, f = 1.0 MHz  |      | 10  | pF   |
| C <sub>I/O</sub> | I/O pin capacitance             | V <sub>OUT</sub> = 0 V, f = 1.0 MHz |      | 10  | pF   |

Figure 12. MAX 7000 Timing Model



### Notes:


- (1) Only available in MAX 7000E and MAX 7000S devices.
- (2) Not available in 44-pin devices.

The timing characteristics of any signal path can be derived from the timing model and parameters of a particular device. External timing parameters, which represent pin-to-pin timing delays, can be calculated as the sum of internal parameters. Figure 13 shows the internal timing relationship of internal and external delay parameters.



For more infomration, see *Application Note* 94 (Understanding MAX 7000 *Timing*).

## Figure 13. Switching Waveforms



30 Altera Corporation

Register Output to Pin

| Table 2           | 77. EPM7032\$ External Time            | ing Parameter | s (Part | 2 of 2       | ) No  | ote (1) |       |     |       |     |      |
|-------------------|----------------------------------------|---------------|---------|--------------|-------|---------|-------|-----|-------|-----|------|
| Symbol            | Parameter                              | Conditions    |         |              |       | Speed   | Grade | !   |       |     | Unit |
|                   |                                        |               | -       | -5 -6 -7 -10 |       |         |       |     |       |     |      |
|                   |                                        |               | Min     | Max          | Min   | Max     | Min   | Max | Min   | Max |      |
| f <sub>ACNT</sub> | Maximum internal array clock frequency | (4)           | 175.4   |              | 142.9 |         | 116.3 |     | 100.0 |     | MHz  |
| f <sub>MAX</sub>  | Maximum clock frequency                | (5)           | 250.0   |              | 200.0 |         | 166.7 |     | 125.0 |     | MHz  |

| Table 2           | 8. EPM7032S Internal Tim          | ing Parameter  | <b>s</b> / | Note (1) |     |       |       |     |     |     |      |
|-------------------|-----------------------------------|----------------|------------|----------|-----|-------|-------|-----|-----|-----|------|
| Symbol            | Parameter                         | Conditions     |            |          |     | Speed | Grade | )   |     |     | Unit |
|                   |                                   |                | -          | 5        | -   | 6     | -     | 7   |     | 10  |      |
|                   |                                   |                | Min        | Max      | Min | Max   | Min   | Max | Min | Max | -    |
| t <sub>IN</sub>   | Input pad and buffer delay        |                |            | 0.2      |     | 0.2   |       | 0.3 |     | 0.5 | ns   |
| t <sub>IO</sub>   | I/O input pad and buffer delay    |                |            | 0.2      |     | 0.2   |       | 0.3 |     | 0.5 | ns   |
| t <sub>FIN</sub>  | Fast input delay                  |                |            | 2.2      |     | 2.1   |       | 2.5 |     | 1.0 | ns   |
| t <sub>SEXP</sub> | Shared expander delay             |                |            | 3.1      |     | 3.8   |       | 4.6 |     | 5.0 | ns   |
| t <sub>PEXP</sub> | Parallel expander delay           |                |            | 0.9      |     | 1.1   |       | 1.4 |     | 0.8 | ns   |
| t <sub>LAD</sub>  | Logic array delay                 |                |            | 2.6      |     | 3.3   |       | 4.0 |     | 5.0 | ns   |
| t <sub>LAC</sub>  | Logic control array delay         |                |            | 2.5      |     | 3.3   |       | 4.0 |     | 5.0 | ns   |
| t <sub>IOE</sub>  | Internal output enable delay      |                |            | 0.7      |     | 0.8   |       | 1.0 |     | 2.0 | ns   |
| t <sub>OD1</sub>  | Output buffer and pad delay       | C1 = 35 pF     |            | 0.2      |     | 0.3   |       | 0.4 |     | 1.5 | ns   |
| t <sub>OD2</sub>  | Output buffer and pad delay       | C1 = 35 pF (6) |            | 0.7      |     | 0.8   |       | 0.9 |     | 2.0 | ns   |
| t <sub>OD3</sub>  | Output buffer and pad delay       | C1 = 35 pF     |            | 5.2      |     | 5.3   |       | 5.4 |     | 5.5 | ns   |
| $t_{ZX1}$         | Output buffer enable delay        | C1 = 35 pF     |            | 4.0      |     | 4.0   |       | 4.0 |     | 5.0 | ns   |
| t <sub>ZX2</sub>  | Output buffer enable delay        | C1 = 35 pF (6) |            | 4.5      |     | 4.5   |       | 4.5 |     | 5.5 | ns   |
| t <sub>ZX3</sub>  | Output buffer enable delay        | C1 = 35 pF     |            | 9.0      |     | 9.0   |       | 9.0 |     | 9.0 | ns   |
| $t_{XZ}$          | Output buffer disable delay       | C1 = 5 pF      |            | 4.0      |     | 4.0   |       | 4.0 |     | 5.0 | ns   |
| t <sub>SU</sub>   | Register setup time               |                | 0.8        |          | 1.0 |       | 1.3   |     | 2.0 |     | ns   |
| t <sub>H</sub>    | Register hold time                |                | 1.7        |          | 2.0 |       | 2.5   |     | 3.0 |     | ns   |
| t <sub>FSU</sub>  | Register setup time of fast input |                | 1.9        |          | 1.8 |       | 1.7   |     | 3.0 |     | ns   |
| t <sub>FH</sub>   | Register hold time of fast input  |                | 0.6        |          | 0.7 |       | 0.8   |     | 0.5 |     | ns   |
| t <sub>RD</sub>   | Register delay                    |                |            | 1.2      |     | 1.6   |       | 1.9 |     | 2.0 | ns   |
| t <sub>COMB</sub> | Combinatorial delay               |                |            | 0.9      |     | 1.1   |       | 1.4 |     | 2.0 | ns   |
| t <sub>IC</sub>   | Array clock delay                 |                |            | 2.7      |     | 3.4   |       | 4.2 |     | 5.0 | ns   |
| t <sub>EN</sub>   | Register enable time              |                |            | 2.6      |     | 3.3   |       | 4.0 |     | 5.0 | ns   |
| t <sub>GLOB</sub> | Global control delay              |                |            | 1.6      |     | 1.4   |       | 1.7 |     | 1.0 | ns   |
| t <sub>PRE</sub>  | Register preset time              |                |            | 2.0      |     | 2.4   |       | 3.0 |     | 3.0 | ns   |
| t <sub>CLR</sub>  | Register clear time               |                |            | 2.0      |     | 2.4   |       | 3.0 |     | 3.0 | ns   |

| Table 2   | 8. EPM7032S Internal Tim | ing Paramete | rs / | lote (1)     |     |       |       |      |     |      |      |
|-----------|--------------------------|--------------|------|--------------|-----|-------|-------|------|-----|------|------|
| Symbol    | Parameter                | Conditions   |      |              |     | Speed | Grade |      |     |      | Unit |
|           |                          |              | -    | -5 -6 -7 -10 |     |       |       |      |     |      |      |
|           |                          |              | Min  | Max          | Min | Max   | Min   | Max  | Min | Max  |      |
| $t_{PIA}$ | PIA delay                | (7)          |      | 1.1          |     | 1.1   |       | 1.4  |     | 1.0  | ns   |
| $t_{LPA}$ | Low-power adder          | (8)          |      | 12.0         |     | 10.0  |       | 10.0 |     | 11.0 | ns   |

#### Notes to tables:

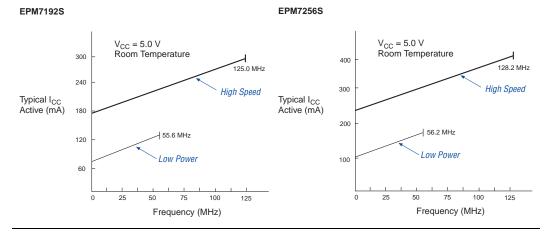
- (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t<sub>LPA</sub> parameter must be added to this minimum width if the clear or reset signal incorporates the t<sub>LAD</sub> parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The  $f_{MAX}$  values represent the highest frequency for pipelined data.
- (6) Operating conditions:  $V_{CCIO} = 3.3 \text{ V} \pm 10\%$  for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The  $t_{LPA}$  parameter must be added to the  $t_{LAD}$ ,  $t_{LAC}$ ,  $t_{IC}$ ,  $t_{EN}$ ,  $t_{SEXP}$ ,  $\mathbf{t_{ACL}}$ , and  $\mathbf{t_{CPPW}}$  parameters for macrocells running in the low-power mode.

Tables 29 and 30 show the EPM7064S AC operating conditions.

| Table 2          | 9. EPM7064\$ External Time            | ing Parameters | (Part | 1 of 2) | No  | nte (1) |       |     |     |      |      |
|------------------|---------------------------------------|----------------|-------|---------|-----|---------|-------|-----|-----|------|------|
| Symbol           | Parameter                             | Conditions     |       |         |     | Speed   | Grade | )   |     |      | Unit |
|                  |                                       |                | -     | 5       | -   | 6       | -     | 7   | -1  | 10   |      |
|                  |                                       |                | Min   | Max     | Min | Max     | Min   | Max | Min | Max  |      |
| t <sub>PD1</sub> | Input to non-registered output        | C1 = 35 pF     |       | 5.0     |     | 6.0     |       | 7.5 |     | 10.0 | ns   |
| t <sub>PD2</sub> | I/O input to non-registered output    | C1 = 35 pF     |       | 5.0     |     | 6.0     |       | 7.5 |     | 10.0 | ns   |
| t <sub>SU</sub>  | Global clock setup time               |                | 2.9   |         | 3.6 |         | 6.0   |     | 7.0 |      | ns   |
| t <sub>H</sub>   | Global clock hold time                |                | 0.0   |         | 0.0 |         | 0.0   |     | 0.0 |      | ns   |
| t <sub>FSU</sub> | Global clock setup time of fast input |                | 2.5   |         | 2.5 |         | 3.0   |     | 3.0 |      | ns   |
| t <sub>FH</sub>  | Global clock hold time of fast input  |                | 0.0   |         | 0.0 |         | 0.5   |     | 0.5 |      | ns   |
| t <sub>CO1</sub> | Global clock to output delay          | C1 = 35 pF     |       | 3.2     |     | 4.0     |       | 4.5 |     | 5.0  | ns   |
| t <sub>CH</sub>  | Global clock high time                |                | 2.0   |         | 2.5 |         | 3.0   |     | 4.0 |      | ns   |
| t <sub>CL</sub>  | Global clock low time                 |                | 2.0   |         | 2.5 |         | 3.0   |     | 4.0 |      | ns   |
| t <sub>ASU</sub> | Array clock setup time                |                | 0.7   |         | 0.9 |         | 3.0   |     | 2.0 |      | ns   |
| t <sub>AH</sub>  | Array clock hold time                 |                | 1.8   |         | 2.1 |         | 2.0   |     | 3.0 |      | ns   |

Tables 31 and 32 show the EPM7128S AC operating conditions.

| Table 3           | 11. EPM7128\$ External Time              | ing Parameters | : No  | te (1) |       |       |       |      |       |      |      |
|-------------------|------------------------------------------|----------------|-------|--------|-------|-------|-------|------|-------|------|------|
| Symbol            | Parameter                                | Conditions     |       |        |       | Speed | Grade | )    |       |      | Unit |
|                   |                                          |                | -     | 6      | -     | 7     | -1    | 10   | -1    | 15   |      |
|                   |                                          |                | Min   | Max    | Min   | Max   | Min   | Max  | Min   | Max  |      |
| t <sub>PD1</sub>  | Input to non-registered output           | C1 = 35 pF     |       | 6.0    |       | 7.5   |       | 10.0 |       | 15.0 | ns   |
| t <sub>PD2</sub>  | I/O input to non-registered output       | C1 = 35 pF     |       | 6.0    |       | 7.5   |       | 10.0 |       | 15.0 | ns   |
| t <sub>SU</sub>   | Global clock setup time                  |                | 3.4   |        | 6.0   |       | 7.0   |      | 11.0  |      | ns   |
| t <sub>H</sub>    | Global clock hold time                   |                | 0.0   |        | 0.0   |       | 0.0   |      | 0.0   |      | ns   |
| t <sub>FSU</sub>  | Global clock setup time of fast input    |                | 2.5   |        | 3.0   |       | 3.0   |      | 3.0   |      | ns   |
| t <sub>FH</sub>   | Global clock hold time of fast input     |                | 0.0   |        | 0.5   |       | 0.5   |      | 0.0   |      | ns   |
| t <sub>CO1</sub>  | Global clock to output delay             | C1 = 35 pF     |       | 4.0    |       | 4.5   |       | 5.0  |       | 8.0  | ns   |
| t <sub>CH</sub>   | Global clock high time                   |                | 3.0   |        | 3.0   |       | 4.0   |      | 5.0   |      | ns   |
| t <sub>CL</sub>   | Global clock low time                    |                | 3.0   |        | 3.0   |       | 4.0   |      | 5.0   |      | ns   |
| t <sub>ASU</sub>  | Array clock setup time                   |                | 0.9   |        | 3.0   |       | 2.0   |      | 4.0   |      | ns   |
| t <sub>AH</sub>   | Array clock hold time                    |                | 1.8   |        | 2.0   |       | 5.0   |      | 4.0   |      | ns   |
| t <sub>ACO1</sub> | Array clock to output delay              | C1 = 35 pF     |       | 6.5    |       | 7.5   |       | 10.0 |       | 15.0 | ns   |
| t <sub>ACH</sub>  | Array clock high time                    |                | 3.0   |        | 3.0   |       | 4.0   |      | 6.0   |      | ns   |
| t <sub>ACL</sub>  | Array clock low time                     |                | 3.0   |        | 3.0   |       | 4.0   |      | 6.0   |      | ns   |
| t <sub>CPPW</sub> | Minimum pulse width for clear and preset | (2)            | 3.0   |        | 3.0   |       | 4.0   |      | 6.0   |      | ns   |
| t <sub>ODH</sub>  | Output data hold time after clock        | C1 = 35 pF (3) | 1.0   |        | 1.0   |       | 1.0   |      | 1.0   |      | ns   |
| t <sub>CNT</sub>  | Minimum global clock period              |                |       | 6.8    |       | 8.0   |       | 10.0 |       | 13.0 | ns   |
| f <sub>CNT</sub>  | Maximum internal global clock frequency  | (4)            | 147.1 |        | 125.0 |       | 100.0 |      | 76.9  |      | MHz  |
| t <sub>ACNT</sub> | Minimum array clock period               |                |       | 6.8    |       | 8.0   |       | 10.0 |       | 13.0 | ns   |
| f <sub>ACNT</sub> | Maximum internal array clock frequency   | (4)            | 147.1 |        | 125.0 |       | 100.0 |      | 76.9  |      | MHz  |
| f <sub>MAX</sub>  | Maximum clock frequency                  | (5)            | 166.7 |        | 166.7 |       | 125.0 |      | 100.0 |      | MHz  |

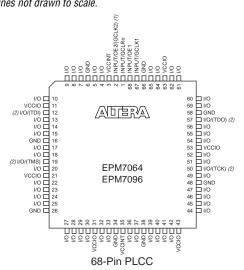

#### Notes to tables:

- These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t<sub>LPA</sub> parameter must be added to this minimum width if the clear or reset signal incorporates the t<sub>LAD</sub> parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The  $f_{MAX}$  values represent the highest frequency for pipelined data.
- (6) Operating conditions:  $V_{CCIO} = 3.3 \text{ V} \pm 10\%$  for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The  $t_{LPA}$  parameter must be added to the  $t_{LAD}$ ,  $t_{LAC}$ ,  $t_{IC}$ ,  $t_{EN}$ ,  $t_{SEXP}$ ,  $\mathbf{t_{ACL}}$ , and  $\mathbf{t_{CPPW}}$  parameters for macrocells running in the low-power mode.

Tables 33 and 34 show the EPM7160S AC operating conditions.

| Table 33. EPM7160S External Timing Parameters (Part 1 of 2) Note (1) |                                          |                |             |     |       |     |       |      |      |      |      |
|----------------------------------------------------------------------|------------------------------------------|----------------|-------------|-----|-------|-----|-------|------|------|------|------|
| Symbol                                                               | Parameter                                | Conditions     | Speed Grade |     |       |     |       |      |      |      | Unit |
|                                                                      |                                          |                | -6          |     | -7    |     | -10   |      | -15  |      | 1    |
|                                                                      |                                          |                | Min         | Max | Min   | Max | Min   | Max  | Min  | Max  |      |
| t <sub>PD1</sub>                                                     | Input to non-registered output           | C1 = 35 pF     |             | 6.0 |       | 7.5 |       | 10.0 |      | 15.0 | ns   |
| t <sub>PD2</sub>                                                     | I/O input to non-registered output       | C1 = 35 pF     |             | 6.0 |       | 7.5 |       | 10.0 |      | 15.0 | ns   |
| t <sub>SU</sub>                                                      | Global clock setup time                  |                | 3.4         |     | 4.2   |     | 7.0   |      | 11.0 |      | ns   |
| t <sub>H</sub>                                                       | Global clock hold time                   |                | 0.0         |     | 0.0   |     | 0.0   |      | 0.0  |      | ns   |
| t <sub>FSU</sub>                                                     | Global clock setup time of fast input    |                | 2.5         |     | 3.0   |     | 3.0   |      | 3.0  |      | ns   |
| t <sub>FH</sub>                                                      | Global clock hold time of fast input     |                | 0.0         |     | 0.0   |     | 0.5   |      | 0.0  |      | ns   |
| t <sub>CO1</sub>                                                     | Global clock to output delay             | C1 = 35 pF     |             | 3.9 |       | 4.8 |       | 5    |      | 8    | ns   |
| t <sub>CH</sub>                                                      | Global clock high time                   |                | 3.0         |     | 3.0   |     | 4.0   |      | 5.0  |      | ns   |
| t <sub>CL</sub>                                                      | Global clock low time                    |                | 3.0         |     | 3.0   |     | 4.0   |      | 5.0  |      | ns   |
| t <sub>ASU</sub>                                                     | Array clock setup time                   |                | 0.9         |     | 1.1   |     | 2.0   |      | 4.0  |      | ns   |
| t <sub>AH</sub>                                                      | Array clock hold time                    |                | 1.7         |     | 2.1   |     | 3.0   |      | 4.0  |      | ns   |
| t <sub>ACO1</sub>                                                    | Array clock to output delay              | C1 = 35 pF     |             | 6.4 |       | 7.9 |       | 10.0 |      | 15.0 | ns   |
| t <sub>ACH</sub>                                                     | Array clock high time                    |                | 3.0         |     | 3.0   |     | 4.0   |      | 6.0  |      | ns   |
| t <sub>ACL</sub>                                                     | Array clock low time                     |                | 3.0         |     | 3.0   |     | 4.0   |      | 6.0  |      | ns   |
| t <sub>CPPW</sub>                                                    | Minimum pulse width for clear and preset | (2)            | 2.5         |     | 3.0   |     | 4.0   |      | 6.0  |      | ns   |
| t <sub>ODH</sub>                                                     | Output data hold time after clock        | C1 = 35 pF (3) | 1.0         |     | 1.0   |     | 1.0   |      | 1.0  |      | ns   |
| t <sub>CNT</sub>                                                     | Minimum global clock period              |                |             | 6.7 |       | 8.2 |       | 10.0 |      | 13.0 | ns   |
| f <sub>CNT</sub>                                                     | Maximum internal global clock frequency  | (4)            | 149.3       |     | 122.0 |     | 100.0 |      | 76.9 |      | MHz  |

Figure 15. I<sub>CC</sub> vs. Frequency for MAX 7000S Devices (Part 2 of 2)




# Device Pin-Outs

See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information.

Figure 17. 68-Pin Package Pin-Out Diagram

Package outlines not drawn to scale.



### Notes:

- The pin functions shown in parenthesis are only available in MAX 7000E and MAX 7000S devices.
- (2) JTAG ports are available in MAX 7000S devices only.