E·XFL

Intel - EPM7064STC100-10FN Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	10 ns
Voltage Supply - Internal	4.75V ~ 5.25V
Number of Logic Elements/Blocks	4
Number of Macrocells	64
Number of Gates	1250
Number of I/O	68
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm7064stc100-10fn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The MAX 7000E devices—including the EPM7128E, EPM7160E, EPM7192E, and EPM7256E devices—have several enhanced features: additional global clocking, additional output enable controls, enhanced interconnect resources, fast input registers, and a programmable slew rate.

In-system programmable MAX 7000 devices—called MAX 7000S devices—include the EPM7032S, EPM7064S, EPM7128S, EPM7160S, EPM7192S, and EPM7256S devices. MAX 7000S devices have the enhanced features of MAX 7000E devices as well as JTAG BST circuitry in devices with 128 or more macrocells, ISP, and an open-drain output option. See Table 4.

Feature	EPM7032 EPM7064 EPM7096	All MAX 7000E Devices	All MAX 7000S Devices
ISP via JTAG interface			\checkmark
JTAG BST circuitry			✓(1)
Open-drain output option			\checkmark
Fast input registers		~	\checkmark
Six global output enables		~	\checkmark
Two global clocks		~	\checkmark
Slew-rate control		~	\checkmark
MultiVolt interface (2)	\checkmark	~	\checkmark
Programmable register	\checkmark	~	\checkmark
Parallel expanders	\checkmark	~	\checkmark
Shared expanders	\checkmark	~	\checkmark
Power-saving mode	\checkmark	~	\checkmark
Security bit	\checkmark	~	\checkmark
PCI-compliant devices available	\checkmark	\checkmark	\checkmark

Notes:

(1) Available only in EPM7128S, EPM7160S, EPM7192S, and EPM7256S devices only.

(2) The MultiVolt I/O interface is not available in 44-pin packages.

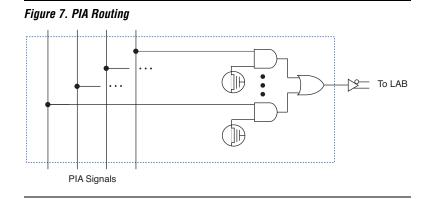
MAX 7000 devices contain from 32 to 256 macrocells that are combined into groups of 16 macrocells, called logic array blocks (LABs). Each macrocell has a programmable-AND/fixed-OR array and a configurable register with independently programmable clock, clock enable, clear, and preset functions. To build complex logic functions, each macrocell can be supplemented with both shareable expander product terms and highspeed parallel expander product terms to provide up to 32 product terms per macrocell.

The MAX 7000 family provides programmable speed/power optimization. Speed-critical portions of a design can run at high speed/full power, while the remaining portions run at reduced speed/low power. This speed/power optimization feature enables the designer to configure one or more macrocells to operate at 50% or lower power while adding only a nominal timing delay. MAX 7000E and MAX 7000S devices also provide an option that reduces the slew rate of the output buffers, minimizing noise transients when non-speed-critical signals are switching. The output drivers of all MAX 7000 devices (except 44-pin devices) can be set for either 3.3-V or 5.0-V operation, allowing MAX 7000 devices to be used in mixed-voltage systems.

The MAX 7000 family is supported by Altera development systems, which are integrated packages that offer schematic, text—including VHDL, Verilog HDL, and the Altera Hardware Description Language (AHDL)— and waveform design entry, compilation and logic synthesis, simulation and timing analysis, and device programming. The software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry-standard PC- and UNIX-workstation-based EDA tools. The software runs on Windows-based PCs, as well as Sun SPARCstation, and HP 9000 Series 700/800 workstations.

-

For more information on development tools, see the MAX+PLUS II Programmable Logic Development System & Software Data Sheet and the Quartus Programmable Logic Development System & Software Data Sheet.


Functional Description

The MAX 7000 architecture includes the following elements:

- Logic array blocks
- Macrocells
- Expander product terms (shareable and parallel)
- Programmable interconnect array
- I/O control blocks

Programmable Interconnect Array

Logic is routed between LABs via the programmable interconnect array (PIA). This global bus is a programmable path that connects any signal source to any destination on the device. All MAX 7000 dedicated inputs, I/O pins, and macrocell outputs feed the PIA, which makes the signals available throughout the entire device. Only the signals required by each LAB are actually routed from the PIA into the LAB. Figure 7 shows how the PIA signals are routed into the LAB. An EEPROM cell controls one input to a 2-input AND gate, which selects a PIA signal to drive into the LAB.

While the routing delays of channel-based routing schemes in masked or FPGAs are cumulative, variable, and path-dependent, the MAX 7000 PIA has a fixed delay. The PIA thus eliminates skew between signals and makes timing performance easy to predict.

I/O Control Blocks

The I/O control block allows each I/O pin to be individually configured for input, output, or bidirectional operation. All I/O pins have a tri-state buffer that is individually controlled by one of the global output enable signals or directly connected to ground or V_{CC} . Figure 8 shows the I/O control block for the MAX 7000 family. The I/O control block of EPM7032, EPM7064, and EPM7096 devices has two global output enable signals that are driven by two dedicated active-low output enable pins (OE1 and OE2). The I/O control block of MAX 7000E and MAX 7000S devices has six global output enable signals that are driven by the true or complement of two output enable signals, a subset of the I/O pins, or a subset of the I/O macrocells.

For more information on using the Jam language, refer to AN 122: Using Jam STAPL for ISP & ICR via an Embedded Processor.

The ISP circuitry in MAX 7000S devices is compatible with IEEE Std. 1532 specification. The IEEE Std. 1532 is a standard developed to allow concurrent ISP between multiple PLD vendors.

Programming Sequence

During in-system programming, instructions, addresses, and data are shifted into the MAX 7000S device through the TDI input pin. Data is shifted out through the TDO output pin and compared against the expected data.

Programming a pattern into the device requires the following six ISP stages. A stand-alone verification of a programmed pattern involves only stages 1, 2, 5, and 6.

- 1. *Enter ISP*. The enter ISP stage ensures that the I/O pins transition smoothly from user mode to ISP mode. The enter ISP stage requires 1 ms.
- 2. *Check ID*. Before any program or verify process, the silicon ID is checked. The time required to read this silicon ID is relatively small compared to the overall programming time.
- 3. *Bulk Erase.* Erasing the device in-system involves shifting in the instructions to erase the device and applying one erase pulse of 100 ms.
- 4. *Program*. Programming the device in-system involves shifting in the address and data and then applying the programming pulse to program the EEPROM cells. This process is repeated for each EEPROM address.
- 5. *Verify.* Verifying an Altera device in-system involves shifting in addresses, applying the read pulse to verify the EEPROM cells, and shifting out the data for comparison. This process is repeated for each EEPROM address.
- 6. *Exit ISP*. An exit ISP stage ensures that the I/O pins transition smoothly from ISP mode to user mode. The exit ISP stage requires 1 ms.

Programming Times

The time required to implement each of the six programming stages can be broken into the following two elements:

- A pulse time to erase, program, or read the EEPROM cells.
- A shifting time based on the test clock (TCK) frequency and the number of TCK cycles to shift instructions, address, and data into the device.

By combining the pulse and shift times for each of the programming stages, the program or verify time can be derived as a function of the TCK frequency, the number of devices, and specific target device(s). Because different ISP-capable devices have a different number of EEPROM cells, both the total fixed and total variable times are unique for a single device.

Programming a Single MAX 7000S Device

The time required to program a single MAX 7000S device in-system can be calculated from the following formula:

$$t_{PROG} = t_{PPULSE} + \frac{Cycle_{PTCK}}{f_{TCK}}$$
where: t_{PROG} = Programming time
 t_{PPULSE} = Sum of the fixed times to erase, program, and
verify the EEPROM cells
 $Cycle_{PTCK}$ = Number of TCK cycles to program a device
 f_{TCK} = TCK frequency

The ISP times for a stand-alone verification of a single MAX 7000S device can be calculated from the following formula:

$$t_{VER} = t_{VPULSE} + \frac{Cycle_{VTCK}}{f_{TCK}}$$
where: t_{VER} = Verify time
 t_{VPULSE} = Sum of the fixed times to verify the EEPROM cells
 $Cycle_{VTCK}$ = Number of TCK cycles to verify a device

The programming times described in Tables 6 through 8 are associated

Device	Progra	mming	Stand-Alone	Verification
	t _{PPULSE} (s)	Cycle _{PTCK}	t _{VPULSE} (s)	Cycle _{VTCK}
EPM7032S	4.02	342,000	0.03	200,000
EPM7064S	4.50	504,000	0.03	308,000
EPM7128S	5.11	832,000	0.03	528,000
EPM7160S	5.35	1,001,000	0.03	640,000
EPM7192S	5.71	1,192,000	0.03	764,000
EPM7256S	6.43	1,603,000	0.03	1,024,000

with the worst-case method using the enhanced ISP algorithm.

Tables 7 and 8 show the in-system programming and stand alone verification times for several common test clock frequencies.

Device		f _{TCK}							
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz]
EPM7032S	4.06	4.09	4.19	4.36	4.71	5.73	7.44	10.86	s
EPM7064S	4.55	4.60	4.76	5.01	5.51	7.02	9.54	14.58	S
EPM7128S	5.19	5.27	5.52	5.94	6.77	9.27	13.43	21.75	S
EPM7160S	5.45	5.55	5.85	6.35	7.35	10.35	15.36	25.37	S
EPM7192S	5.83	5.95	6.30	6.90	8.09	11.67	17.63	29.55	S
EPM7256S	6.59	6.75	7.23	8.03	9.64	14.45	22.46	38.49	S

Table 8. MAX 7000S Stand-Alone Verification Times for Different Test Clock Frequencies

									1	
Device		f _{TCK}								
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz		
EPM7032S	0.05	0.07	0.13	0.23	0.43	1.03	2.03	4.03	S	
EPM7064S	0.06	0.09	0.18	0.34	0.64	1.57	3.11	6.19	S	
EPM7128S	0.08	0.14	0.29	0.56	1.09	2.67	5.31	10.59	S	
EPM7160S	0.09	0.16	0.35	0.67	1.31	3.23	6.43	12.83	S	
EPM7192S	0.11	0.18	0.41	0.79	1.56	3.85	7.67	15.31	S	
EPM7256S	0.13	0.24	0.54	1.06	2.08	5.15	10.27	20.51	S	

The instruction register length of MAX 7000S devices is 10 bits. Tables 10 and 11 show the boundary-scan register length and device IDCODE information for MAX 7000S devices.

Table 10. MAX 7000S Boundary-Scan Register Length					
Device	Boundary-Scan Register Length				
EPM7032S	1 (1)				
EPM7064S	1 (1)				
EPM7128S	288				
EPM7160S	312				
EPM7192S	360				
EPM7256S	480				

Note:

 This device does not support JTAG boundary-scan testing. Selecting either the EXTEST or SAMPLE/PRELOAD instruction will select the one-bit bypass register.

Table 11. 32-Bit MAX 7000 Device IDCODE Note (1)								
Device	IDCODE (32 Bits)							
	Version (4 Bits)	Part Number (16 Bits)	Manufacturer's Identity (11 Bits)	1 (1 Bit) (2)				
EPM7032S	0000	0111 0000 0011 0010	00001101110	1				
EPM7064S	0000	0111 0000 0110 0100	00001101110	1				
EPM7128S	0000	0111 0001 0010 1000	00001101110	1				
EPM7160S	0000	0111 0001 0110 0000	00001101110	1				
EPM7192S	0000	0111 0001 1001 0010	00001101110	1				
EPM7256S	0000	0111 0010 0101 0110	00001101110	1				

Notes:

(1) The most significant bit (MSB) is on the left.

(2) The least significant bit (LSB) for all JTAG IDCODEs is 1.

Table 15. MAX 7000 5.0-V Device DC Operating Conditions Note (9)								
Symbol	Parameter	Conditions	Min	Max	Unit			
V _{IH}	High-level input voltage		2.0	V _{CCINT} + 0.5	V			
V _{IL}	Low-level input voltage		-0.5 (8)	0.8	V			
V _{OH}	5.0-V high-level TTL output voltage	$I_{OH} = -4 \text{ mA DC}, V_{CCIO} = 4.75 \text{ V} (10)$	2.4		V			
	3.3-V high-level TTL output voltage	$I_{OH} = -4 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V} (10)$	2.4		V			
	3.3-V high-level CMOS output voltage	I_{OH} = -0.1 mA DC, V_{CCIO} = 3.0 V (10)	V _{CCIO} – 0.2		V			
V _{OL}	5.0-V low-level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 4.75 V (11)		0.45	V			
	3.3-V low-level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 3.00 V (11)		0.45	V			
	3.3-V low-level CMOS output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 3.0 V(11)		0.2	V			
I _I	Leakage current of dedicated input pins	$V_{I} = -0.5$ to 5.5 V (11)	-10	10	μΑ			
I _{OZ}	I/O pin tri-state output off-state current	V _I = -0.5 to 5.5 V (11), (12)	-40	40	μA			

Table 1	Note (1	3)			
Symbol	Parameter	Conditions	Min	Max	Unit
CIN	Input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		12	pF
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		12	pF

Table 17. MAX 7000 5.0-V Device Capacitance: MAX 7000E Devices Note (13)							
Symbol	Parameter	Conditions	Min	Max	Unit		
C _{IN}	Input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		15	pF		
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		15	pF		

Table 1	Table 18. MAX 7000 5.0-V Device Capacitance: MAX 7000S Devices Note (13)								
Symbol	Parameter	Conditions	Min	Max	Unit				
CIN	Dedicated input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF				
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		10	pF				

.

Table 2	Table 23. MAX 7000 & MAX 7000E External Timing Parameters Note (1)								
Symbol	Parameter	Conditions	Speed Grade						
			MAX 7000E (-12P)		MAX 7000 (-12) MAX 7000E (-12)		1		
			Min	Max	Min	Max			
t _{PD1}	Input to non-registered output	C1 = 35 pF		12.0		12.0	ns		
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		12.0		12.0	ns		
t _{SU}	Global clock setup time		7.0		10.0		ns		
t _H	Global clock hold time		0.0		0.0		ns		
t _{FSU}	Global clock setup time of fast input	(2)	3.0		3.0		ns		
t _{FH}	Global clock hold time of fast input	(2)	0.0		0.0		ns		
t _{CO1}	Global clock to output delay	C1 = 35 pF		6.0		6.0	ns		
t _{CH}	Global clock high time		4.0		4.0		ns		
t _{CL}	Global clock low time		4.0		4.0		ns		
t _{ASU}	Array clock setup time		3.0		4.0		ns		
t _{AH}	Array clock hold time		4.0		4.0		ns		
t _{ACO1}	Array clock to output delay	C1 = 35 pF		12.0		12.0	ns		
t _{ACH}	Array clock high time		5.0		5.0		ns		
t _{ACL}	Array clock low time		5.0		5.0		ns		
t _{CPPW}	Minimum pulse width for clear and preset	(3)	5.0		5.0		ns		
t _{ODH}	Output data hold time after clock	C1 = 35 pF (4)	1.0		1.0		ns		
t _{CNT}	Minimum global clock period			11.0		11.0	ns		
f _{CNT}	Maximum internal global clock frequency	(5)	90.9		90.9		MHz		
t _{ACNT}	Minimum array clock period			11.0		11.0	ns		
f _{acnt}	Maximum internal array clock frequency	(5)	90.9		90.9		MHz		
f _{MAX}	Maximum clock frequency	(6)	125.0		125.0		MHz		

Notes to tables:

- (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This parameter applies to MAX 7000E devices only.
- (3) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (4) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (5) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (6) The f_{MAX} values represent the highest frequency for pipelined data.
- (7) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells running in the low-power mode.

Tables 27 and 28 show the EPM7032S AC operating conditions.

Symbol	Parameter	Conditions	Speed Grade									
			-5		-6		-7		-10		1	
			Min	Max	Min	Max	Min	Max	Min	Max		
t _{PD1}	Input to non-registered output	C1 = 35 pF		5.0		6.0		7.5		10.0	ns	
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		5.0		6.0		7.5		10.0	ns	
t _{SU}	Global clock setup time		2.9		4.0		5.0		7.0		ns	
t _H	Global clock hold time		0.0		0.0		0.0		0.0		ns	
t _{FSU}	Global clock setup time of fast input		2.5		2.5		2.5		3.0		ns	
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.0		0.5		ns	
t _{CO1}	Global clock to output delay	C1 = 35 pF		3.2		3.5		4.3		5.0	ns	
t _{CH}	Global clock high time		2.0		2.5		3.0		4.0		ns	
t _{CL}	Global clock low time		2.0		2.5		3.0		4.0		ns	
t _{ASU}	Array clock setup time		0.7		0.9		1.1		2.0		ns	
t _{AH}	Array clock hold time		1.8		2.1		2.7		3.0		ns	
t _{ACO1}	Array clock to output delay	C1 = 35 pF		5.4		6.6		8.2		10.0	ns	
t _{ACH}	Array clock high time		2.5		2.5		3.0		4.0		ns	
t _{ACL}	Array clock low time		2.5		2.5		3.0		4.0		ns	
t _{CPPW}	Minimum pulse width for clear and preset	(2)	2.5		2.5		3.0		4.0		ns	
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		1.0		ns	
t _{CNT}	Minimum global clock period			5.7		7.0		8.6		10.0	ns	
f _{CNT}	Maximum internal global clock frequency	(4)	175.4		142.9		116.3		100.0		MHz	
t _{ACNT}	Minimum array clock period			5.7	İ	7.0		8.6	l	10.0	ns	

Table 3	0. EPM7064S Internal Tir	ning Parameters	s (Part à	2 of 2)	No	te (1)						
Symbol	Parameter	Conditions	Speed Grade									
			-5		-6		-7		-10			
			Min	Max	Min	Max	Min	Max	Min	Max		
t _{FSU}	Register setup time of fast input		1.9		1.8		3.0		3.0		ns	
t _{FH}	Register hold time of fast input		0.6		0.7		0.5		0.5		ns	
t _{RD}	Register delay			1.2		1.6		1.0		2.0	ns	
t _{COMB}	Combinatorial delay			0.9		1.0		1.0		2.0	ns	
t _{IC}	Array clock delay			2.7		3.3		3.0		5.0	ns	
t _{EN}	Register enable time			2.6		3.2		3.0		5.0	ns	
t _{GLOB}	Global control delay			1.6		1.9		1.0		1.0	ns	
t _{PRE}	Register preset time			2.0		2.4		2.0		3.0	ns	
t _{CLR}	Register clear time			2.0		2.4		2.0		3.0	ns	
t _{PIA}	PIA delay	(7)		1.1		1.3		1.0		1.0	ns	
t _{LPA}	Low-power adder	(8)		12.0		11.0		10.0		11.0	ns	

Notes to tables:

- (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells running in the low-power mode.

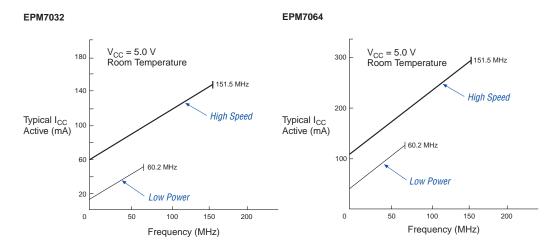
Symbol	Parameter	Conditions	Speed Grade									
			-6		-7		-10		-15		-	
			Min	Max	Min	Max	Min	Max	Min	Max		
t _{PD1}	Input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns	
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns	
t _{SU}	Global clock setup time		3.4		6.0		7.0		11.0		ns	
t _H	Global clock hold time		0.0		0.0		0.0		0.0		ns	
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		3.0		ns	
t _{FH}	Global clock hold time of fast input		0.0		0.5		0.5		0.0		ns	
t _{CO1}	Global clock to output delay	C1 = 35 pF		4.0		4.5		5.0		8.0	ns	
t _{CH}	Global clock high time		3.0		3.0		4.0		5.0		ns	
t _{CL}	Global clock low time		3.0		3.0		4.0		5.0		ns	
t _{ASU}	Array clock setup time		0.9		3.0		2.0		4.0		ns	
t _{AH}	Array clock hold time		1.8		2.0		5.0		4.0		ns	
t _{ACO1}	Array clock to output delay	C1 = 35 pF		6.5		7.5		10.0		15.0	ns	
t _{ACH}	Array clock high time		3.0		3.0		4.0		6.0		ns	
t _{ACL}	Array clock low time		3.0		3.0		4.0		6.0		ns	
t _{CPPW}	Minimum pulse width for clear and preset	(2)	3.0		3.0		4.0		6.0		ns	
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		1.0		ns	
t _{CNT}	Minimum global clock period			6.8		8.0		10.0		13.0	ns	
fcnt	Maximum internal global clock frequency	(4)	147.1		125.0		100.0		76.9		MHz	
t _{acnt}	Minimum array clock period			6.8		8.0		10.0		13.0	ns	
f _{acnt}	Maximum internal array clock frequency	(4)	147.1		125.0		100.0		76.9		MHz	
f _{MAX}	Maximum clock frequency	(5)	166.7		166.7		125.0		100.0		MHz	

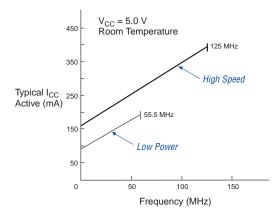
Tables 31 and 32 show the EPM7128S AC operating conditions.

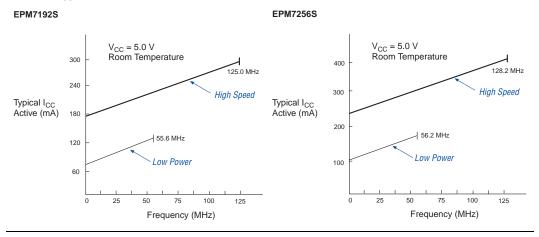
٦

Г

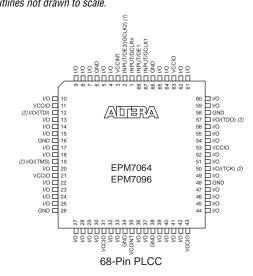
Symbol	Parameter	Conditions	Speed Grade									
			-6		-7		-10		-15		-	
			Min	Max	Min	Max	Min	Max	Min	Max	-	
t _{IN}	Input pad and buffer delay			0.2		0.5		0.5		2.0	ns	
t _{IO}	I/O input pad and buffer delay			0.2		0.5		0.5		2.0	ns	
t _{FIN}	Fast input delay			2.6		1.0		1.0		2.0	ns	
t _{SEXP}	Shared expander delay			3.7		4.0		5.0		8.0	ns	
t _{PEXP}	Parallel expander delay			1.1		0.8		0.8		1.0	ns	
t _{LAD}	Logic array delay			3.0		3.0		5.0		6.0	ns	
t _{LAC}	Logic control array delay			3.0		3.0		5.0		6.0	ns	
t _{IOE}	Internal output enable delay			0.7		2.0		2.0		3.0	ns	
t _{OD1}	Output buffer and pad delay	C1 = 35 pF		0.4		2.0		1.5		4.0	ns	
t _{OD2}	Output buffer and pad delay	C1 = 35 pF (6)		0.9		2.5		2.0		5.0	ns	
t _{OD3}	Output buffer and pad delay	C1 = 35 pF		5.4		7.0		5.5		8.0	ns	
t _{ZX1}	Output buffer enable delay	C1 = 35 pF		4.0		4.0		5.0		6.0	ns	
t _{ZX2}	Output buffer enable delay	C1 = 35 pF (6)		4.5		4.5		5.5		7.0	ns	
t _{ZX3}	Output buffer enable delay	C1 = 35 pF		9.0		9.0		9.0		10.0	ns	
t _{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		5.0		6.0	ns	
t _{SU}	Register setup time		1.0		3.0		2.0		4.0		ns	
t _H	Register hold time		1.7		2.0		5.0		4.0		ns	
t _{FSU}	Register setup time of fast input		1.9		3.0		3.0		2.0		ns	
t _{FH}	Register hold time of fast input		0.6		0.5		0.5		1.0		ns	
t _{RD}	Register delay			1.4		1.0		2.0		1.0	ns	
t _{COMB}	Combinatorial delay			1.0		1.0		2.0		1.0	ns	
t _{IC}	Array clock delay			3.1		3.0		5.0		6.0	ns	
t _{EN}	Register enable time			3.0		3.0		5.0		6.0	ns	
t _{GLOB}	Global control delay			2.0		1.0		1.0		1.0	ns	
t _{PRE}	Register preset time			2.4		2.0		3.0		4.0	ns	
t _{CLR}	Register clear time			2.4		2.0		3.0		4.0	ns	
t _{PIA}	PIA delay	(7)		1.4		1.0		1.0		2.0	ns	
t _{LPA}	Low-power adder	(8)		11.0		10.0		11.0		13.0	ns	


Symbol	Parameter	Conditions			Speed	Grade			Unit
			-7		-10		-15		1
			Min	Мах	Min	Max	Min	Max	1
t _{AH}	Array clock hold time		1.8		3.0		4.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		7.8		10.0		15.0	ns
t _{ACH}	Array clock high time		3.0		4.0		6.0		ns
t _{ACL}	Array clock low time		3.0		4.0		6.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(2)	3.0		4.0		6.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		ns
t _{CNT}	Minimum global clock period			8.0		10.0		13.0	ns
f _{CNT}	Maximum internal global clock frequency	(4)	125.0		100.0		76.9		MHz
t _{ACNT}	Minimum array clock period			8.0		10.0		13.0	ns
f _{acnt}	Maximum internal array clock frequency	(4)	125.0		100.0		76.9		MHz
f _{MAX}	Maximum clock frequency	(5)	166.7		125.0		100.0		MHz


Table 3	Table 36. EPM7192S Internal Timing Parameters (Part 1 of 2) Note (1)											
Symbol	Parameter	Conditions		Speed Grade								
			-7		-10		-15					
			Min	Max	Min	Max	Min	Max				
t _{IN}	Input pad and buffer delay			0.3		0.5		2.0	ns			
t _{IO}	I/O input pad and buffer delay			0.3		0.5		2.0	ns			
t _{FIN}	Fast input delay			3.2		1.0		2.0	ns			
t _{SEXP}	Shared expander delay			4.2		5.0		8.0	ns			
t _{PEXP}	Parallel expander delay			1.2		0.8		1.0	ns			
t _{LAD}	Logic array delay			3.1		5.0		6.0	ns			
t _{LAC}	Logic control array delay			3.1		5.0		6.0	ns			
t _{IOE}	Internal output enable delay			0.9		2.0		3.0	ns			
t _{OD1}	Output buffer and pad delay	C1 = 35 pF		0.5		1.5		4.0	ns			
t _{OD2}	Output buffer and pad delay	C1 = 35 pF (6)		1.0		2.0		5.0	ns			
t _{OD3}	Output buffer and pad delay	C1 = 35 pF		5.5		5.5		7.0	ns			
t _{ZX1}	Output buffer enable delay	C1 = 35 pF		4.0		5.0		6.0	ns			
t _{ZX2}	Output buffer enable delay	C1 = 35 pF (6)		4.5		5.5		7.0	ns			
t _{ZX3}	Output buffer enable delay	C1 = 35 pF		9.0		9.0		10.0	ns			
t _{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		5.0		6.0	ns			
t _{SU}	Register setup time		1.1		2.0		4.0		ns			


Figure 14 shows typical supply current versus frequency for MAX 7000 devices.

EPM7096


Figure 15. I_{CC} vs. Frequency for MAX 7000S Devices (Part 2 of 2)

Device Pin-Outs

See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information.

Figure 17. 68-Pin Package Pin-Out Diagram

Package outlines not drawn to scale.

Notes:

- The pin functions shown in parenthesis are only available in MAX 7000E and MAX 7000S devices.
- (2) JTAG ports are available in MAX 7000S devices only.

Figure 21. 192-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

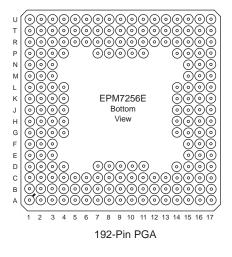
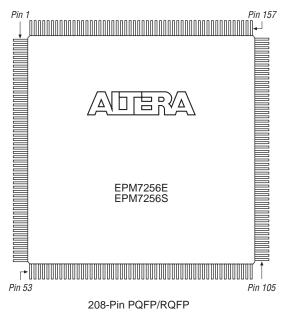



Figure 22. 208-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 www.altera.com Applications Hotline: (800) 800-EPLD Literature Services: literature@altera.com Copyright © 2005 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability

arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Altera Corporation