

Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	7.5 ns
Voltage Supply - Internal	4.75V ~ 5.25V
Number of Logic Elements/Blocks	4
Number of Macrocells	64
Number of Gates	1250
Number of I/O	68
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm7064stc100-7n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The MAX 7000 architecture includes four dedicated inputs that can be used as general-purpose inputs or as high-speed, global control signals (clock, clear, and two output enable signals) for each macrocell and I/O pin. Figure 1 shows the architecture of EPM7032, EPM7064, and EPM7096 devices.

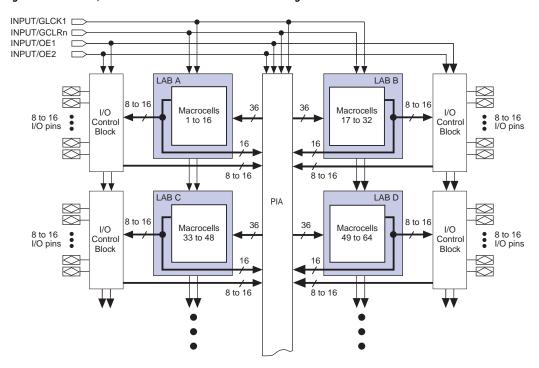
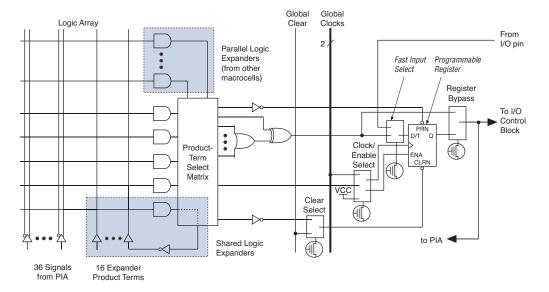


Figure 1. EPM7032, EPM7064 & EPM7096 Device Block Diagram


Each LAB is fed by the following signals:

- 36 signals from the PIA that are used for general logic inputs
- Global controls that are used for secondary register functions
- Direct input paths from I/O pins to the registers that are used for fast setup times for MAX 7000E and MAX 7000S devices

Macrocells

The MAX 7000 macrocell can be individually configured for either sequential or combinatorial logic operation. The macrocell consists of three functional blocks: the logic array, the product-term select matrix, and the programmable register. The macrocell of EPM7032, EPM7064, and EPM7096 devices is shown in Figure 3.

Figure 3. EPM7032, EPM7064 & EPM7096 Device Macrocell

Each programmable register can be clocked in three different modes:

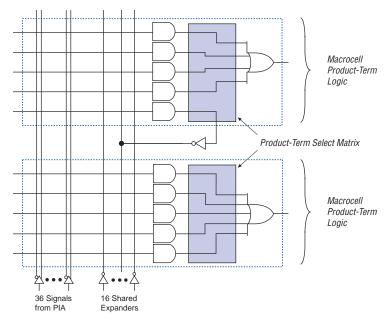
- By a global clock signal. This mode achieves the fastest clock-tooutput performance.
- By a global clock signal and enabled by an active-high clock enable. This mode provides an enable on each flipflop while still achieving the fast clock-to-output performance of the global clock.
- By an array clock implemented with a product term. In this mode, the flipflop can be clocked by signals from buried macrocells or I/O pins.

In EPM7032, EPM7064, and EPM7096 devices, the global clock signal is available from a dedicated clock pin, GCLK1, as shown in Figure 1. In MAX 7000E and MAX 7000S devices, two global clock signals are available. As shown in Figure 2, these global clock signals can be the true or the complement of either of the global clock pins, GCLK1 or GCLK2.

Each register also supports asynchronous preset and clear functions. As shown in Figures 3 and 4, the product-term select matrix allocates product terms to control these operations. Although the product-term-driven preset and clear of the register are active high, active-low control can be obtained by inverting the signal within the logic array. In addition, each register clear function can be individually driven by the active-low dedicated global clear pin (GCLRn). Upon power-up, each register in the device will be set to a low state.

All MAX 7000E and MAX 7000S I/O pins have a fast input path to a macrocell register. This dedicated path allows a signal to bypass the PIA and combinatorial logic and be driven to an input D flipflop with an extremely fast (2.5 ns) input setup time.

Expander Product Terms

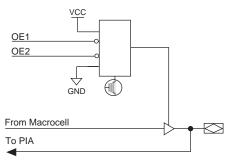

Although most logic functions can be implemented with the five product terms available in each macrocell, the more complex logic functions require additional product terms. Another macrocell can be used to supply the required logic resources; however, the MAX 7000 architecture also allows both shareable and parallel expander product terms ("expanders") that provide additional product terms directly to any macrocell in the same LAB. These expanders help ensure that logic is synthesized with the fewest possible logic resources to obtain the fastest possible speed.

Shareable Expanders

Each LAB has 16 shareable expanders that can be viewed as a pool of uncommitted single product terms (one from each macrocell) with inverted outputs that feed back into the logic array. Each shareable expander can be used and shared by any or all macrocells in the LAB to build complex logic functions. A small delay (t_{SEXP}) is incurred when shareable expanders are used. Figure 5 shows how shareable expanders can feed multiple macrocells.

Figure 5. Shareable Expanders

Shareable expanders can be shared by any or all macrocells in an LAB.



Parallel Expanders

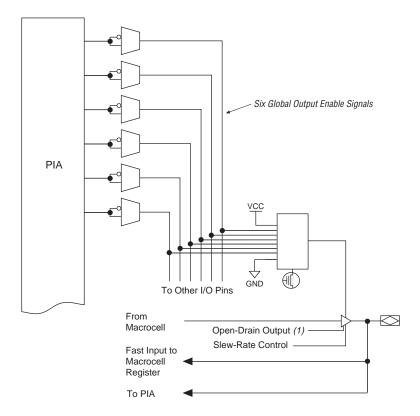

Parallel expanders are unused product terms that can be allocated to a neighboring macrocell to implement fast, complex logic functions. Parallel expanders allow up to 20 product terms to directly feed the macrocell OR logic, with five product terms provided by the macrocell and 15 parallel expanders provided by neighboring macrocells in the LAB.

Figure 8. I/O Control Block of MAX 7000 Devices

EPM7032, EPM7064 & EPM7096 Devices

MAX 7000E & MAX 7000S Devices

Note:

(1) The open-drain output option is available only in MAX 7000S devices.

The programming times described in Tables 6 through 8 are associated with the worst-case method using the enhanced ISP algorithm.

Table 6. MAX 7000S t _{PU}	able 6. MAX 7000S t _{PULSE} & Cycle _{TCK} Values								
Device	Progra	ımming	Stand-Alone	Verification					
	t _{PPULSE} (s)	Cycle _{PTCK}	t _{VPULSE} (s)	Cycle _{VTCK}					
EPM7032S	4.02	342,000	0.03	200,000					
EPM7064S	4.50	504,000	0.03	308,000					
EPM7128S	5.11	832,000	0.03	528,000					
EPM7160S	5.35	1,001,000	0.03	640,000					
EPM7192S	5.71	1,192,000	0.03	764,000					
EPM7256S	6.43	1,603,000	0.03	1,024,000					

Tables 7 and 8 show the in-system programming and stand alone verification times for several common test clock frequencies.

Table 7. MAX 7000S In-System Programming Times for Different Test Clock Frequencies									
Device				f	TCK				Units
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz	
EPM7032S	4.06	4.09	4.19	4.36	4.71	5.73	7.44	10.86	s
EPM7064S	4.55	4.60	4.76	5.01	5.51	7.02	9.54	14.58	S
EPM7128S	5.19	5.27	5.52	5.94	6.77	9.27	13.43	21.75	S
EPM7160S	5.45	5.55	5.85	6.35	7.35	10.35	15.36	25.37	S
EPM7192S	5.83	5.95	6.30	6.90	8.09	11.67	17.63	29.55	S
EPM7256S	6.59	6.75	7.23	8.03	9.64	14.45	22.46	38.49	S

Table 8. MAX 7000S Stand-Alone Verification Times for Different Test Clock Frequencies									
Device				1	тск				Units
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz	
EPM7032S	0.05	0.07	0.13	0.23	0.43	1.03	2.03	4.03	s
EPM7064S	0.06	0.09	0.18	0.34	0.64	1.57	3.11	6.19	S
EPM7128S	0.08	0.14	0.29	0.56	1.09	2.67	5.31	10.59	S
EPM7160S	0.09	0.16	0.35	0.67	1.31	3.23	6.43	12.83	S
EPM7192S	0.11	0.18	0.41	0.79	1.56	3.85	7.67	15.31	S
EPM7256S	0.13	0.24	0.54	1.06	2.08	5.15	10.27	20.51	S

Programmable Speed/Power Control

MAX 7000 devices offer a power-saving mode that supports low-power operation across user-defined signal paths or the entire device. This feature allows total power dissipation to be reduced by 50% or more, because most logic applications require only a small fraction of all gates to operate at maximum frequency.

The designer can program each individual macrocell in a MAX 7000 device for either high-speed (i.e., with the Turbo BitTM option turned on) or low-power (i.e., with the Turbo Bit option turned off) operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths can operate at reduced power. Macrocells that run at low power incur a nominal timing delay adder (t_{LPA}) for the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , and t_{SEXP} , t_{ACL} , and t_{CPPW} parameters.

Output Configuration

MAX 7000 device outputs can be programmed to meet a variety of system-level requirements.

MultiVolt I/O Interface

MAX 7000 devices—except 44-pin devices—support the MultiVolt I/O interface feature, which allows MAX 7000 devices to interface with systems that have differing supply voltages. The 5.0-V devices in all packages can be set for 3.3-V or 5.0-V I/O pin operation. These devices have one set of VCC pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

The VCCINT pins must always be connected to a 5.0-V power supply. With a 5.0-V $V_{\rm CCINT}$ level, input voltage thresholds are at TTL levels, and are therefore compatible with both 3.3-V and 5.0-V inputs.

The VCCIO pins can be connected to either a 3.3-V or a 5.0-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 5.0-V supply, the output levels are compatible with 5.0-V systems. When $V_{\rm CCIO}$ is connected to a 3.3-V supply, the output high is 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with $V_{\rm CCIO}$ levels lower than 4.75 V incur a nominally greater timing delay of $t_{\rm OD2}$ instead of $t_{\rm OD1}$.

Open-Drain Output Option (MAX 7000S Devices Only)

MAX 7000S devices provide an optional open-drain (functionally equivalent to open-collector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. It can also provide an additional wired-OR plane.

By using an external 5.0-V pull-up resistor, output pins on MAX 7000S devices can be set to meet 5.0-V CMOS input voltages. When $V_{\rm CCIO}$ is 3.3 V, setting the open drain option will turn off the output pull-up transistor, allowing the external pull-up resistor to pull the output high enough to meet 5.0-V CMOS input voltages. When $V_{\rm CCIO}$ is 5.0 V, setting the output drain option is not necessary because the pull-up transistor will already turn off when the pin exceeds approximately 3.8 V, allowing the external pull-up resistor to pull the output high enough to meet 5.0-V CMOS input voltages.

Slew-Rate Control

The output buffer for each MAX 7000E and MAX 7000S I/O pin has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A faster slew rate provides high-speed transitions for high-performance systems. However, these fast transitions may introduce noise transients into the system. A slow slew rate reduces system noise, but adds a nominal delay of 4 to 5 ns. In MAX 7000E devices, when the Turbo Bit is turned off, the slew rate is set for low noise performance. For MAX 7000S devices, each I/O pin has an individual EEPROM bit that controls the slew rate, allowing designers to specify the slew rate on a pin-by-pin basis.

Programming with External Hardware

MAX 7000 devices can be programmed on Windows-based PCs with the Altera Logic Programmer card, the Master Programming Unit (MPU), and the appropriate device adapter. The MPU performs a continuity check to ensure adequate electrical contact between the adapter and the device.

For more information, see the *Altera Programming Hardware Data Sheet*.

The Altera development system can use text- or waveform-format test vectors created with the Text Editor or Waveform Editor to test the programmed device. For added design verification, designers can perform functional testing to compare the functional behavior of a MAX 7000 device with the results of simulation. Moreover, Data I/O, BP Microsystems, and other programming hardware manufacturers also provide programming support for Altera devices.

For more information, see the *Programming Hardware Manufacturers*.

IEEE Std. 1149.1 (JTAG) Boundary-Scan Support

MAX 7000 devices support JTAG BST circuitry as specified by IEEE Std. 1149.1-1990. Table 9 describes the JTAG instructions supported by the MAX 7000 family. The pin-out tables (see the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information) show the location of the JTAG control pins for each device. If the JTAG interface is not required, the JTAG pins are available as user I/O pins.

Table 9. MAX 7000 J	ITAG Instruction	s
JTAG Instruction	Devices	Description
SAMPLE/PRELOAD	EPM7128S EPM7160S EPM7192S	Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern output at the device pins.
	EPM7256S	pattern output at the device pins.
EXTEST	EPM7128S EPM7160S EPM7192S EPM7256S	Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins.
BYPASS	EPM7032S EPM7064S EPM7128S EPM7160S EPM7192S EPM7256S	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through a selected device to adjacent devices during normal device operation.
IDCODE	EPM7032S EPM7064S EPM7128S EPM7160S EPM7192S EPM7256S	Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be serially shifted out of TDO.
ISP Instructions	EPM7032S EPM7064S EPM7128S EPM7160S EPM7192S EPM7256S	These instructions are used when programming MAX 7000S devices via the JTAG ports with the MasterBlaster, ByteBlasterMV, BitBlaster download cable, or using a Jam File (.jam), Jam Byte-Code file (.jbc), or Serial Vector Format file (.svf) via an embedded processor or test equipment.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{IH}	High-level input voltage		2.0	V _{CCINT} + 0.5	V
V _{IL}	Low-level input voltage		-0.5 (8)	0.8	V
V _{OH}	5.0-V high-level TTL output voltage	I _{OH} = -4 mA DC, V _{CCIO} = 4.75 V (10)	2.4		V
3	3.3-V high-level TTL output voltage	I _{OH} = -4 mA DC, V _{CCIO} = 3.00 V (10)	2.4		V
	3.3-V high-level CMOS output voltage	$I_{OH} = -0.1 \text{ mA DC}, V_{CCIO} = 3.0 \text{ V} (10)$	V _{CCIO} - 0.2		V
V _{OL}	5.0-V low-level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 4.75 V (11)		0.45	V
	3.3-V low-level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 3.00 V (11)		0.45	V
	3.3-V low-level CMOS output voltage	$I_{OL} = 0.1 \text{ mA DC}, V_{CCIO} = 3.0 \text{ V}(11)$		0.2	V
lı	Leakage current of dedicated input pins	$V_I = -0.5 \text{ to } 5.5 \text{ V } (11)$	-10	10	μА
l _{OZ}	I/O pin tri-state output off-state current	$V_I = -0.5 \text{ to } 5.5 \text{ V } (11), (12)$	-40	40	μА

Table 1	Table 16. MAX 7000 5.0-V Device Capacitance: EPM7032, EPM7064 & EPM7096 Devices Note (13)						
Symbol	Parameter	Conditions	Min	Max	Unit		
C _{IN}	Input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		12	pF		
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		12	pF		

Table 1	7. MAX 7000 5.0-V Device Capa	acitance: MAX 7000E Devices Note	(13)		
Symbol	Parameter	Conditions	Min	Max	Unit
C _{IN}	Input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		15	pF
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		15	pF

Table 1	Table 18. MAX 7000 5.0-V Device Capacitance: MAX 7000S Devices Note (13)								
Symbol	Parameter	Conditions	Min	Max	Unit				
C _{IN}	Dedicated input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF				
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		10	pF				

Table 2	23. MAX 7000 & MAX 7000E Ext	ernal Timing Param	eters Note	e (1)			
Symbol	Parameter	Conditions		Speed	Grade		Unit
			MAX 700	0E (-12P)	MAX 70		
			Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF		12.0		12.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		12.0		12.0	ns
t _{SU}	Global clock setup time		7.0		10.0		ns
t _H	Global clock hold time		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input	(2)	3.0		3.0		ns
t _{FH}	Global clock hold time of fast input	(2)	0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		6.0		6.0	ns
t _{CH}	Global clock high time		4.0		4.0		ns
t _{CL}	Global clock low time		4.0		4.0		ns
t _{ASU}	Array clock setup time		3.0		4.0		ns
t _{AH}	Array clock hold time		4.0		4.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		12.0		12.0	ns
t _{ACH}	Array clock high time		5.0		5.0		ns
t _{ACL}	Array clock low time		5.0		5.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	5.0		5.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF (4)	1.0		1.0		ns
t _{CNT}	Minimum global clock period			11.0		11.0	ns
f _{CNT}	Maximum internal global clock frequency	(5)	90.9		90.9		MHz
t _{ACNT}	Minimum array clock period			11.0		11.0	ns
f _{ACNT}	Maximum internal array clock frequency	(5)	90.9		90.9		MHz
f _{MAX}	Maximum clock frequency	(6)	125.0		125.0		MHz

Symbol	Parameter	Conditions			Speed	Grade			Unit
			-	15	-1	5T	-2	20	
			Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			2.0		2.0		3.0	ns
t _{IO}	I/O input pad and buffer delay			2.0		2.0		3.0	ns
t _{FIN}	Fast input delay	(2)		2.0		_		4.0	ns
t _{SEXP}	Shared expander delay			8.0		10.0		9.0	ns
t _{PEXP}	Parallel expander delay			1.0		1.0		2.0	ns
t _{LAD}	Logic array delay			6.0		6.0		8.0	ns
t _{LAC}	Logic control array delay			6.0		6.0		8.0	ns
t _{IOE}	Internal output enable delay	(2)		3.0		_		4.0	ns
t _{OD1}	Output buffer and pad delay Slow slew rate = off V _{CCIO} = 5.0 V	C1 = 35 pF		4.0		4.0		5.0	ns
t _{OD2}	Output buffer and pad delay Slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF (7)		5.0		-		6.0	ns
t _{OD3}	Output buffer and pad delay Slow slew rate = on V _{CCIO} = 5.0 V or 3.3 V	C1 = 35 pF (2)		8.0		-		9.0	ns
t _{ZX1}	Output buffer enable delay Slow slew rate = off V _{CCIO} = 5.0 V	C1 = 35 pF		6.0		6.0		10.0	ns
t _{ZX2}	Output buffer enable delay Slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF (7)		7.0		-		11.0	ns
t _{ZX3}	Output buffer enable delay Slow slew rate = on V _{CCIO} = 5.0 V or 3.3 V	C1 = 35 pF (2)		10.0		-		14.0	ns
t_{XZ}	Output buffer disable delay	C1 = 5 pF		6.0		6.0		10.0	ns
t _{SU}	Register setup time		4.0		4.0		4.0		ns
t _H	Register hold time		4.0		4.0		5.0		ns
t _{FSU}	Register setup time of fast input	(2)	2.0		-		4.0		ns
t_{FH}	Register hold time of fast input	(2)	2.0		-		3.0		ns
t _{RD}	Register delay			1.0		1.0		1.0	ns
t _{COMB}	Combinatorial delay			1.0		1.0		1.0	ns
t _{IC}	Array clock delay			6.0		6.0		8.0	ns
t _{EN}	Register enable time			6.0		6.0		8.0	ns
t _{GLOB}	Global control delay			1.0		1.0		3.0	ns
t _{PRE}	Register preset time			4.0		4.0		4.0	ns
t _{CLR}	Register clear time			4.0		4.0		4.0	ns
t _{PIA}	PIA delay			2.0		2.0		3.0	ns
t _{LPA}	Low-power adder	(8)		13.0		15.0		15.0	ns

Notes to tables:

- (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This parameter applies to MAX 7000E devices only.
- This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (4) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (5) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (6) The f_{MAX} values represent the highest frequency for pipelined data.
- (7) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells running in the low-power mode.

Tables 27 and 28 show the EPM7032S AC operating conditions.

Table 2	77. EPM7032\$ External Time	ing Parameter	s (Part	1 of 2) No	ote (1)					
Symbol	Parameter	Conditions				Speed	Grade				Unit
			-5		-6		-7		-10		
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF		5.0		6.0		7.5		10.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		5.0		6.0		7.5		10.0	ns
t _{SU}	Global clock setup time		2.9		4.0		5.0		7.0		ns
t _H	Global clock hold time		0.0		0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		2.5		2.5		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.0		0.5		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		3.2		3.5		4.3		5.0	ns
t _{CH}	Global clock high time		2.0		2.5		3.0		4.0		ns
t _{CL}	Global clock low time		2.0		2.5		3.0		4.0		ns
t _{ASU}	Array clock setup time		0.7		0.9		1.1		2.0		ns
t _{AH}	Array clock hold time		1.8		2.1		2.7		3.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		5.4		6.6		8.2		10.0	ns
t _{ACH}	Array clock high time		2.5		2.5		3.0		4.0		ns
t _{ACL}	Array clock low time		2.5		2.5		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(2)	2.5		2.5		3.0		4.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		1.0		ns
t _{CNT}	Minimum global clock period			5.7		7.0		8.6		10.0	ns
f _{CNT}	Maximum internal global clock frequency	(4)	175.4		142.9		116.3		100.0		MHz
t _{ACNT}	Minimum array clock period			5.7		7.0		8.6		10.0	ns

Table 27. EPM7032S External Timing Parameters (Part 2 of 2) Note (1)											
Symbol	Parameter	Conditions				Speed	Grade	1			Unit
			-	5	-6		-7		-10		
			Min	Max	Min	Max	Min	Max	Min	Max	
f _{ACNT}	Maximum internal array clock frequency	(4)	175.4		142.9		116.3		100.0		MHz
f _{MAX}	Maximum clock frequency	(5)	250.0		200.0		166.7		125.0		MHz

Table 28. EPM7032S Internal Timing Parameters Note (1)												
Symbol	Parameter	Conditions	Speed Grade									
			-5		-6		-7		-10			
			Min	Max	Min	Max	Min	Max	Min	Max		
t _{IN}	Input pad and buffer delay			0.2		0.2		0.3		0.5	ns	
t _{IO}	I/O input pad and buffer delay			0.2		0.2		0.3		0.5	ns	
t _{FIN}	Fast input delay			2.2		2.1		2.5		1.0	ns	
t _{SEXP}	Shared expander delay			3.1		3.8		4.6		5.0	ns	
t _{PEXP}	Parallel expander delay			0.9		1.1		1.4		0.8	ns	
t _{LAD}	Logic array delay			2.6		3.3		4.0		5.0	ns	
t _{LAC}	Logic control array delay			2.5		3.3		4.0		5.0	ns	
t _{IOE}	Internal output enable delay			0.7		0.8		1.0		2.0	ns	
t _{OD1}	Output buffer and pad delay	C1 = 35 pF		0.2		0.3		0.4		1.5	ns	
t _{OD2}	Output buffer and pad delay	C1 = 35 pF (6)		0.7		0.8		0.9		2.0	ns	
t _{OD3}	Output buffer and pad delay	C1 = 35 pF		5.2		5.3		5.4		5.5	ns	
t _{ZX1}	Output buffer enable delay	C1 = 35 pF		4.0		4.0		4.0		5.0	ns	
t _{ZX2}	Output buffer enable delay	C1 = 35 pF (6)		4.5		4.5		4.5		5.5	ns	
t _{ZX3}	Output buffer enable delay	C1 = 35 pF		9.0		9.0		9.0		9.0	ns	
t _{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		4.0		5.0	ns	
t _{SU}	Register setup time		0.8		1.0		1.3		2.0		ns	
t _H	Register hold time		1.7		2.0		2.5		3.0		ns	
t _{FSU}	Register setup time of fast input		1.9		1.8		1.7		3.0		ns	
t _{FH}	Register hold time of fast input		0.6		0.7		0.8		0.5		ns	
t _{RD}	Register delay			1.2		1.6		1.9		2.0	ns	
t _{COMB}	Combinatorial delay			0.9		1.1		1.4		2.0	ns	
t _{IC}	Array clock delay			2.7		3.4		4.2		5.0	ns	
t _{EN}	Register enable time			2.6		3.3		4.0		5.0	ns	
t _{GLOB}	Global control delay			1.6		1.4		1.7		1.0	ns	
t _{PRE}	Register preset time			2.0		2.4		3.0		3.0	ns	
t _{CLR}	Register clear time			2.0		2.4		3.0		3.0	ns	

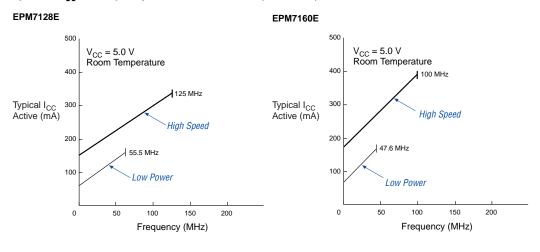
Table 33. EPM7160S External Timing Parameters (Part 2 of 2) Note (1)												
Symbol	Parameter	Conditions		Speed Grade								
			-	-6 -7				-10		-15		
			Min	Max	Min	Max	Min	Max	Min	Max		
t _{ACNT}	Minimum array clock period			6.7		8.2		10.0		13.0	ns	
f _{ACNT}	Maximum internal array clock frequency	(4)	149.3		122.0		100.0		76.9		MHz	
f _{MAX}	Maximum clock frequency	(5)	166.7		166.7		125.0		100.0		MHz	

Table 3	4. EPM7160\$ Internal Tim	ing Parameters	(Part	1 of 2)	No	te (1)					
Symbol	Parameter	Conditions	Speed Grade								
			-6		-7		-10		-15		
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.2		0.3		0.5		2.0	ns
t _{IO}	I/O input pad and buffer delay			0.2		0.3		0.5		2.0	ns
t _{FIN}	Fast input delay			2.6		3.2		1.0		2.0	ns
t _{SEXP}	Shared expander delay			3.6		4.3		5.0		8.0	ns
t _{PEXP}	Parallel expander delay			1.0		1.3		0.8		1.0	ns
t_{LAD}	Logic array delay			2.8		3.4		5.0		6.0	ns
t _{LAC}	Logic control array delay			2.8		3.4		5.0		6.0	ns
t _{IOE}	Internal output enable delay			0.7		0.9		2.0		3.0	ns
t _{OD1}	Output buffer and pad delay	C1 = 35 pF		0.4		0.5		1.5		4.0	ns
t _{OD2}	Output buffer and pad delay	C1 = 35 pF (6)		0.9		1.0		2.0		5.0	ns
t _{OD3}	Output buffer and pad delay	C1 = 35 pF		5.4		5.5		5.5		8.0	ns
t_{ZX1}	Output buffer enable delay	C1 = 35 pF		4.0		4.0		5.0		6.0	ns
t _{ZX2}	Output buffer enable delay	C1 = 35 pF (6)		4.5		4.5		5.5		7.0	ns
t _{ZX3}	Output buffer enable delay	C1 = 35 pF		9.0		9.0		9.0		10.0	ns
t _{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		5.0		6.0	ns
t _{SU}	Register setup time		1.0		1.2		2.0		4.0		ns
t _H	Register hold time		1.6		2.0		3.0		4.0		ns
t _{FSU}	Register setup time of fast input		1.9		2.2		3.0		2.0		ns
t _{FH}	Register hold time of fast input		0.6		0.8		0.5		1.0		ns
t _{RD}	Register delay			1.3		1.6		2.0		1.0	ns
t _{COMB}	Combinatorial delay			1.0		1.3		2.0		1.0	ns
t _{IC}	Array clock delay			2.9		3.5		5.0		6.0	ns
t _{EN}	Register enable time			2.8		3.4		5.0		6.0	ns
t _{GLOB}	Global control delay			2.0		2.4		1.0		1.0	ns
t _{PRE}	Register preset time			2.4		3.0		3.0		4.0	ns

Table 35. EPM7192S External Timing Parameters (Part 2 of 2) Note (1)											
Symbol	Parameter	Conditions			Speed	Grade			Unit		
			-	-7		-10		15	1		
			Min	Max	Min	Max	Min	Max			
t _{AH}	Array clock hold time		1.8		3.0		4.0		ns		
t _{ACO1}	Array clock to output delay	C1 = 35 pF		7.8		10.0		15.0	ns		
t _{ACH}	Array clock high time		3.0		4.0		6.0		ns		
t _{ACL}	Array clock low time		3.0		4.0		6.0		ns		
t _{CPPW}	Minimum pulse width for clear and preset	(2)	3.0		4.0		6.0		ns		
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		ns		
t _{CNT}	Minimum global clock period			8.0		10.0		13.0	ns		
f _{CNT}	Maximum internal global clock frequency	(4)	125.0		100.0		76.9		MHz		
t _{ACNT}	Minimum array clock period			8.0		10.0		13.0	ns		
f _{ACNT}	Maximum internal array clock frequency	(4)	125.0		100.0		76.9		MHz		
f _{MAX}	Maximum clock frequency	(5)	166.7		125.0		100.0		MHz		

Table 3	Table 36. EPM7192S Internal Timing Parameters (Part 1 of 2) Note (1)										
Symbol	Parameter	Conditions	Speed Grade								
			-7		-10		-15				
			Min	Max	Min	Max	Min	Max			
t _{IN}	Input pad and buffer delay			0.3		0.5		2.0	ns		
t _{IO}	I/O input pad and buffer delay			0.3		0.5		2.0	ns		
t _{FIN}	Fast input delay			3.2		1.0		2.0	ns		
t _{SEXP}	Shared expander delay			4.2		5.0		8.0	ns		
t _{PEXP}	Parallel expander delay			1.2		0.8		1.0	ns		
t_{LAD}	Logic array delay			3.1		5.0		6.0	ns		
t _{LAC}	Logic control array delay			3.1		5.0		6.0	ns		
t _{IOE}	Internal output enable delay			0.9		2.0		3.0	ns		
t _{OD1}	Output buffer and pad delay	C1 = 35 pF		0.5		1.5		4.0	ns		
t _{OD2}	Output buffer and pad delay	C1 = 35 pF (6)		1.0		2.0		5.0	ns		
t _{OD3}	Output buffer and pad delay	C1 = 35 pF		5.5		5.5		7.0	ns		
t_{ZX1}	Output buffer enable delay	C1 = 35 pF		4.0		5.0		6.0	ns		
t _{ZX2}	Output buffer enable delay	C1 = 35 pF (6)		4.5		5.5		7.0	ns		
t _{ZX3}	Output buffer enable delay	C1 = 35 pF		9.0		9.0		10.0	ns		
t _{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		5.0		6.0	ns		
t _{SU}	Register setup time		1.1		2.0		4.0		ns		

Table 3	Table 36. EPM7192S Internal Timing Parameters (Part 2 of 2) Note (1)											
Symbol	Parameter	Conditions		Speed Grade								
				-7		-10		-15				
			Min	Max	Min	Max	Min	Max				
t _H	Register hold time		1.7		3.0		4.0		ns			
t _{FSU}	Register setup time of fast input		2.3		3.0		2.0		ns			
t _{FH}	Register hold time of fast input		0.7		0.5		1.0		ns			
t _{RD}	Register delay			1.4		2.0		1.0	ns			
t _{COMB}	Combinatorial delay			1.2		2.0		1.0	ns			
t_{IC}	Array clock delay			3.2		5.0		6.0	ns			
t _{EN}	Register enable time			3.1		5.0		6.0	ns			
t_{GLOB}	Global control delay			2.5		1.0		1.0	ns			
t _{PRE}	Register preset time			2.7		3.0		4.0	ns			
t _{CLR}	Register clear time			2.7		3.0		4.0	ns			
t _{PIA}	PIA delay	(7)		2.4		1.0		2.0	ns			
t_{LPA}	Low-power adder	(8)		10.0		11.0		13.0	ns			


Notes to tables:

- These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode.

Tables 37 and 38 show the EPM7256S AC operating conditions.

Symbol	Parameter Input to non-registered output	Conditions C1 = 35 pF	Speed Grade							
Oymboi			_	7		15	Unit			
t			Min	Max	Min	IO Max	Min	Max		
			IVIIII	7.5	IVIIII	10.0	IVIIII	15.0		
t _{PD1}	I/O input to non-registered output output	C1 = 35 pF		7.5		10.0		15.0	ns ns	
t _{SU}	Global clock setup time		3.9		7.0		11.0		ns	
t _H	Global clock hold time		0.0		0.0		0.0		ns	
t _{FSU}	Global clock setup time of fast input		3.0		3.0		3.0		ns	
t _{FH}	Global clock hold time of fast input		0.0		0.5		0.0		ns	
t _{CO1}	Global clock to output delay	C1 = 35 pF		4.7		5.0		8.0	ns	
t _{CH}	Global clock high time		3.0		4.0		5.0		ns	
t _{CL}	Global clock low time		3.0		4.0		5.0		ns	
t _{ASU}	Array clock setup time		0.8		2.0		4.0		ns	
t _{AH}	Array clock hold time		1.9		3.0		4.0		ns	
t _{ACO1}	Array clock to output delay	C1 = 35 pF		7.8		10.0		15.0	ns	
t _{ACH}	Array clock high time		3.0		4.0		6.0		ns	
t _{ACL}	Array clock low time		3.0		4.0		6.0		ns	
t _{CPPW}	Minimum pulse width for clear and preset	(2)	3.0		4.0		6.0		ns	
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		ns	
t _{CNT}	Minimum global clock period			7.8		10.0		13.0	ns	
f _{CNT}	Maximum internal global clock frequency	(4)	128.2		100.0		76.9		MHz	
t _{ACNT}	Minimum array clock period			7.8		10.0		13.0	ns	
f _{ACNT}	Maximum internal array clock frequency	(4)	128.2		100.0		76.9		MHz	
f _{MAX}	Maximum clock frequency	(5)	166.7		125.0		100.0		MHz	

Figure 14. I_{CC} vs. Frequency for MAX 7000 Devices (Part 2 of 2)

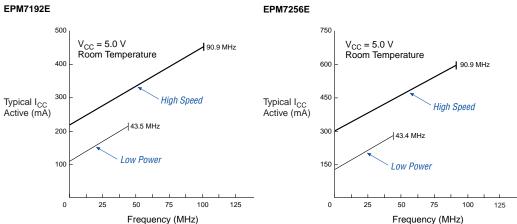
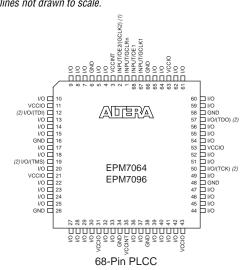



Figure 17. 68-Pin Package Pin-Out Diagram

Package outlines not drawn to scale.

Notes:

- The pin functions shown in parenthesis are only available in MAX 7000E and MAX 7000S devices.
- (2) JTAG ports are available in MAX 7000S devices only.