E·XFL

Intel - EPM7064STI100-7N Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	7.5 ns
Voltage Supply - Internal	4.5V ~ 5.5V
Number of Logic Elements/Blocks	4
Number of Macrocells	64
Number of Gates	1250
Number of I/O	68
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm7064sti100-7n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2 shows the architecture of MAX 7000E and MAX 7000S devices.

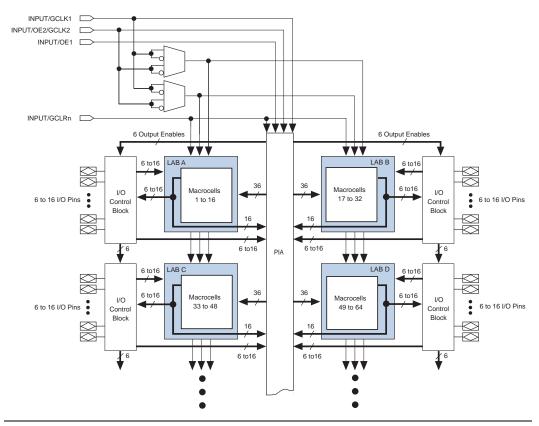
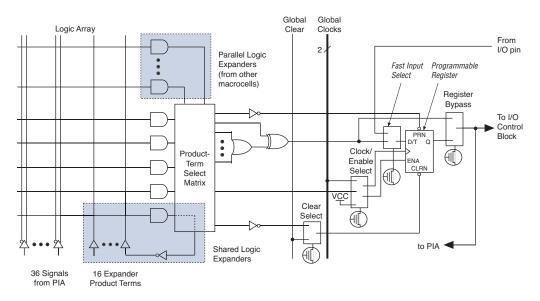
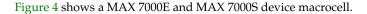


Figure 2. MAX 7000E & MAX 7000S Device Block Diagram

Logic Array Blocks


The MAX 7000 device architecture is based on the linking of highperformance, flexible, logic array modules called logic array blocks (LABs). LABs consist of 16-macrocell arrays, as shown in Figures 1 and 2. Multiple LABs are linked together via the programmable interconnect array (PIA), a global bus that is fed by all dedicated inputs, I/O pins, and macrocells. Each LAB is fed by the following signals:


- **3**6 signals from the PIA that are used for general logic inputs
- Global controls that are used for secondary register functions
- Direct input paths from I/O pins to the registers that are used for fast setup times for MAX 7000E and MAX 7000S devices

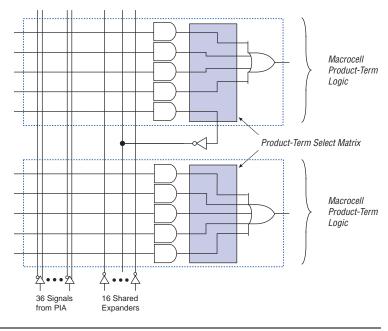

Macrocells

The MAX 7000 macrocell can be individually configured for either sequential or combinatorial logic operation. The macrocell consists of three functional blocks: the logic array, the product-term select matrix, and the programmable register. The macrocell of EPM7032, EPM7064, and EPM7096 devices is shown in Figure 3.

Figure 3. EPM7032, EPM7064 & EPM7096 Device Macrocell

Combinatorial logic is implemented in the logic array, which provides five product terms per macrocell. The product-term select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as secondary inputs to the macrocell's register clear, preset, clock, and clock enable control functions. Two kinds of expander product terms ("expanders") are available to supplement macrocell logic resources:

- Shareable expanders, which are inverted product terms that are fed back into the logic array
- Parallel expanders, which are product terms borrowed from adjacent macrocells


The Altera development system automatically optimizes product-term allocation according to the logic requirements of the design.

For registered functions, each macrocell flipflop can be individually programmed to implement D, T, JK, or SR operation with programmable clock control. The flipflop can be bypassed for combinatorial operation. During design entry, the designer specifies the desired flipflop type; the Altera development software then selects the most efficient flipflop operation for each registered function to optimize resource utilization.

Shareable Expanders

Each LAB has 16 shareable expanders that can be viewed as a pool of uncommitted single product terms (one from each macrocell) with inverted outputs that feed back into the logic array. Each shareable expander can be used and shared by any or all macrocells in the LAB to build complex logic functions. A small delay (t_{SEXP}) is incurred when shareable expanders are used. Figure 5 shows how shareable expanders can feed multiple macrocells.

Figure 5. Shareable Expanders

Shareable expanders can be shared by any or all macrocells in an LAB.

Parallel Expanders

Parallel expanders are unused product terms that can be allocated to a neighboring macrocell to implement fast, complex logic functions. Parallel expanders allow up to 20 product terms to directly feed the macrocell OR logic, with five product terms provided by the macrocell and 15 parallel expanders provided by neighboring macrocells in the LAB. When the tri-state buffer control is connected to ground, the output is tri-stated (high impedance) and the I/O pin can be used as a dedicated input. When the tri-state buffer control is connected to V_{CC} , the output is enabled.

The MAX 7000 architecture provides dual I/O feedback, in which macrocell and pin feedbacks are independent. When an I/O pin is configured as an input, the associated macrocell can be used for buried logic.

In-System Programmability (ISP)

MAX 7000S devices are in-system programmable via an industry-standard 4-pin Joint Test Action Group (JTAG) interface (IEEE Std. 1149.1-1990). ISP allows quick, efficient iterations during design development and debugging cycles. The MAX 7000S architecture internally generates the high programming voltage required to program EEPROM cells, allowing in-system programming with only a single 5.0 V power supply. During in-system programming, the I/O pins are tri-stated and pulled-up to eliminate board conflicts. The pull-up value is nominally 50 k³4.

ISP simplifies the manufacturing flow by allowing devices to be mounted on a printed circuit board with standard in-circuit test equipment before they are programmed. MAX 7000S devices can be programmed by downloading the information via in-circuit testers (ICT), embedded processors, or the Altera MasterBlaster, ByteBlasterMV, ByteBlaster, BitBlaster download cables. (The ByteBlaster cable is obsolete and is replaced by the ByteBlasterMV cable, which can program and configure 2.5-V, 3.3-V, and 5.0-V devices.) Programming the devices after they are placed on the board eliminates lead damage on high-pin-count packages (e.g., QFP packages) due to device handling and allows devices to be reprogrammed after a system has already shipped to the field. For example, product upgrades can be performed in the field via software or modem.

In-system programming can be accomplished with either an adaptive or constant algorithm. An adaptive algorithm reads information from the unit and adapts subsequent programming steps to achieve the fastest possible programming time for that unit. Because some in-circuit testers cannot support an adaptive algorithm, Altera offers devices tested with a constant algorithm. Devices tested to the constant algorithm have an "F" suffix in the ordering code.

The Jam[™] Standard Test and Programming Language (STAPL) can be used to program MAX 7000S devices with in-circuit testers, PCs, or embedded processor.

Programming Times

The time required to implement each of the six programming stages can be broken into the following two elements:

- A pulse time to erase, program, or read the EEPROM cells.
- A shifting time based on the test clock (TCK) frequency and the number of TCK cycles to shift instructions, address, and data into the device.

By combining the pulse and shift times for each of the programming stages, the program or verify time can be derived as a function of the TCK frequency, the number of devices, and specific target device(s). Because different ISP-capable devices have a different number of EEPROM cells, both the total fixed and total variable times are unique for a single device.

Programming a Single MAX 7000S Device

The time required to program a single MAX 7000S device in-system can be calculated from the following formula:

$$t_{PROG} = t_{PPULSE} + \frac{Cycle_{PTCK}}{f_{TCK}}$$
where: t_{PROG} = Programming time
 t_{PPULSE} = Sum of the fixed times to erase, program, and
verify the EEPROM cells
 $Cycle_{PTCK}$ = Number of TCK cycles to program a device
 f_{TCK} = TCK frequency

The ISP times for a stand-alone verification of a single MAX 7000S device can be calculated from the following formula:

$$t_{VER} = t_{VPULSE} + \frac{Cycle_{VTCK}}{f_{TCK}}$$
where: t_{VER} = Verify time
 t_{VPULSE} = Sum of the fixed times to verify the EEPROM cells
 $Cycle_{VTCK}$ = Number of TCK cycles to verify a device

Programmable Speed/Power Control

MAX 7000 devices offer a power-saving mode that supports low-power operation across user-defined signal paths or the entire device. This feature allows total power dissipation to be reduced by 50% or more, because most logic applications require only a small fraction of all gates to operate at maximum frequency.

The designer can program each individual macrocell in a MAX 7000 device for either high-speed (i.e., with the Turbo BitTM option turned on) or low-power (i.e., with the Turbo Bit option turned off) operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths can operate at reduced power. Macrocells that run at low power incur a nominal timing delay adder (t_{LPA}) for the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , and t_{SEXP} , \mathbf{t}_{ACL} , and \mathbf{t}_{CPPW} parameters.

Output Configuration

MAX 7000 device outputs can be programmed to meet a variety of system-level requirements.

MultiVolt I/O Interface

MAX 7000 devices—except 44-pin devices—support the MultiVolt I/O interface feature, which allows MAX 7000 devices to interface with systems that have differing supply voltages. The 5.0-V devices in all packages can be set for 3.3-V or 5.0-V I/O pin operation. These devices have one set of VCC pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

The VCCINT pins must always be connected to a 5.0-V power supply. With a 5.0-V V_{CCINT} level, input voltage thresholds are at TTL levels, and are therefore compatible with both 3.3-V and 5.0-V inputs.

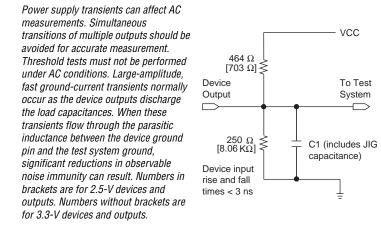
The VCCIO pins can be connected to either a 3.3-V or a 5.0-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 5.0-V supply, the output levels are compatible with 5.0-V systems. When V_{CCIO} is connected to a 3.3-V supply, the output high is 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with V_{CCIO} levels lower than 4.75 V incur a nominally greater timing delay of t_{OD2} instead of t_{OD1} .

Open-Drain Output Option (MAX 7000S Devices Only)

MAX 7000S devices provide an optional open-drain (functionally equivalent to open-collector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. It can also provide an additional wired-OR plane.

IEEE Std. 1149.1 (JTAG) Boundary-Scan Support

MAX 7000 devices support JTAG BST circuitry as specified by IEEE Std. 1149.1-1990. Table 9 describes the JTAG instructions supported by the MAX 7000 family. The pin-out tables (see the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information) show the location of the JTAG control pins for each device. If the JTAG interface is not required, the JTAG pins are available as user I/O pins.


Table 9. MAX 7000 J	TAG Instructions	5
JTAG Instruction	Devices	Description
SAMPLE/PRELOAD	EPM7128S	Allows a snapshot of signals at the device pins to be captured and
	EPM7160S	examined during normal device operation, and permits an initial data
	EPM7192S	pattern output at the device pins.
	EPM7256S	
EXTEST	EPM7128S	Allows the external circuitry and board-level interconnections to be
	EPM7160S	tested by forcing a test pattern at the output pins and capturing test
	EPM7192S	results at the input pins.
	EPM7256S	
BYPASS	EPM7032S	Places the 1-bit bypass register between the TDI and TDO pins, which
	EPM7064S	allows the BST data to pass synchronously through a selected device
	EPM7128S	to adjacent devices during normal device operation.
	EPM7160S	
	EPM7192S	
	EPM7256S	
IDCODE	EPM7032S	Selects the IDCODE register and places it between TDI and TDO,
	EPM7064S	allowing the IDCODE to be serially shifted out of TDO.
	EPM7128S	
	EPM7160S	
	EPM7192S	
	EPM7256S	
ISP Instructions	EPM7032S	These instructions are used when programming MAX 7000S devices
	EPM7064S	via the JTAG ports with the MasterBlaster, ByteBlasterMV, BitBlaster
	EPM7128S	download cable, or using a Jam File (.jam), Jam Byte-Code file (.jbc),
	EPM7160S	or Serial Vector Format file (.svf) via an embedded processor or test
	EPM7192S	equipment.
	EPM7256S	

Design Security All MAX 7000 devices contain a programmable security bit that controls access to the data programmed into the device. When this bit is programmed, a proprietary design implemented in the device cannot be copied or retrieved. This feature provides a high level of design security because programmed data within EEPROM cells is invisible. The security bit that controls this function, as well as all other programmed data, is reset only when the device is reprogrammed.

Generic Testing

Each MAX 7000 device is functionally tested. Complete testing of each programmable EEPROM bit and all internal logic elements ensures 100% programming yield. AC test measurements are taken under conditions equivalent to those shown in Figure 10. Test patterns can be used and then erased during early stages of the production flow.

Figure 10. MAX 7000 AC Test Conditions

QFP Carrier & Development Socket

MAX 7000 and MAX 7000E devices in QFP packages with 100 or more pins are shipped in special plastic carriers to protect the QFP leads. The carrier is used with a prototype development socket and special programming hardware available from Altera. This carrier technology makes it possible to program, test, erase, and reprogram a device without exposing the leads to mechanical stress.

For detailed information and carrier dimensions, refer to the *QFP Carrier* & *Development Socket Data Sheet*.

MAX 7000S devices are not shipped in carriers.

Operating Conditions

Tables 13 through 18 provide information about absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for 5.0-V MAX 7000 devices.

Table 13. MAX 7000 5.0-V Device Absolute Maximum Ratings Note (1)

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	Supply voltage	With respect to ground (2)	-2.0	7.0	V
VI	DC input voltage		-2.0	7.0	V
I _{OUT}	DC output current, per pin		-25	25	mA
T _{STG}	Storage temperature	No bias	-65	150	°C
T _{AMB}	Ambient temperature	Under bias	-65	135	°C
TJ	Junction temperature	Ceramic packages, under bias		150	°C
		PQFP and RQFP packages, under bias		135	°C

Table 1	Table 14. MAX 7000 5.0-V Device Recommended Operating Conditions										
Symbol	Parameter	Conditions	Min	Мах	Unit						
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4), (5)	4.75 (4.50)	5.25 (5.50)	V						
V _{CCIO}	Supply voltage for output drivers, 5.0-V operation	(3), (4)	4.75 (4.50)	5.25 (5.50)	V						
	Supply voltage for output drivers, 3.3-V operation	(3), (4), (6)	3.00 (3.00)	3.60 (3.60)	V						
V _{CCISP}	Supply voltage during ISP	(7)	4.75	5.25	V						
VI	Input voltage		-0.5 (8)	V _{CCINT} + 0.5	V						
Vo	Output voltage		0	V _{CCIO}	V						
T _A	Ambient temperature	For commercial use	0	70	°C						
		For industrial use	-40	85	°C						
TJ	Junction temperature	For commercial use	0	90	°C						
		For industrial use	-40	105	°C						
t _R	Input rise time			40	ns						
t _F	Input fall time			40	ns						

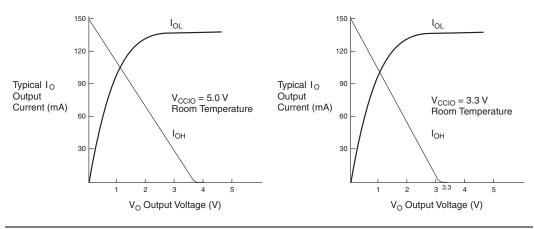
Table 15. MAX 7000 5.0-V Device DC Operating Conditions Note (9)									
Symbol	Parameter	Conditions	Min	Max	Unit				
V _{IH}	High-level input voltage		2.0	V _{CCINT} + 0.5	V				
V _{IL}	Low-level input voltage		-0.5 (8)	0.8	V				
V _{OH}	5.0-V high-level TTL output voltage	$I_{OH} = -4 \text{ mA DC}, V_{CCIO} = 4.75 \text{ V} (10)$	2.4		V				
	3.3-V high-level TTL output voltage	$I_{OH} = -4 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V} (10)$	2.4		V				
	3.3-V high-level CMOS output voltage	I_{OH} = -0.1 mA DC, V_{CCIO} = 3.0 V (10)	V _{CCIO} – 0.2		V				
V _{OL}	5.0-V low-level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 4.75 V (11)		0.45	V				
	3.3-V low-level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 3.00 V (11)		0.45	V				
	3.3-V low-level CMOS output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 3.0 V(11)		0.2	V				
I _I	Leakage current of dedicated input pins	$V_{I} = -0.5$ to 5.5 V (11)	-10	10	μΑ				
I _{OZ}	I/O pin tri-state output off-state current	V _I = -0.5 to 5.5 V (11), (12)	-40	40	μA				

Table 1	Table 16. MAX 7000 5.0-V Device Capacitance: EPM7032, EPM7064 & EPM7096 Devices Note (
Symbol	Parameter	Conditions	Min	Max	Unit				
CIN	Input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		12	pF				
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		12	pF				

Table 17. MAX 7000 5.0-V Device Capacitance: MAX 7000E Devices Note (13)								
Symbol	Parameter	Conditions	Min	Max	Unit			
C _{IN}	Input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		15	pF			
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		15	pF			

Table 1	Table 18. MAX 7000 5.0-V Device Capacitance: MAX 7000S Devices Note (13)									
Symbol	Parameter	Conditions	Min	Max	Unit					
CIN	Dedicated input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF					
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		10	pF					

.


MAX 7000 Programmable Logic Device Family Data Sheet

Notes to tables:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input voltage on I/O pins is -0.5 V and on 4 dedicated input pins is -0.3 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 7.0 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) Numbers in parentheses are for industrial-temperature-range devices.
- (4) V_{CC} must rise monotonically.
- (5) The POR time for all 7000S devices does not exceed 300 μs. The sufficient V_{CCINT} voltage level for POR is 4.5 V. The device is fully initialized within the POR time after V_{CCINT} reaches the sufficient POR voltage level.
- (6) 3.3-V I/O operation is not available for 44-pin packages.
- (7) The V_{CCISP} parameter applies only to MAX 7000S devices.
- (8) During in-system programming, the minimum DC input voltage is -0.3 V.
- (9) These values are specified under the MAX 7000 recommended operating conditions in Table 14 on page 26.
- (10) The parameter is measured with 50% of the outputs each sourcing the specified current. The I_{OH} parameter refers to high-level TTL or CMOS output current.
- (11) The parameter is measured with 50% of the outputs each sinking the specified current. The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current.
- (12) When the JTAG interface is enabled in MAX 7000S devices, the input leakage current on the JTAG pins is typically -60 μA.
- (13) Capacitance is measured at 25° C and is sample-tested only. The OE1 pin has a maximum capacitance of 20 pF.

Figure 11 shows the typical output drive characteristics of MAX 7000 devices.

Figure 11. Output Drive Characteristics of 5.0-V MAX 7000 Devices

Timing Model

MAX 7000 device timing can be analyzed with the Altera software, with a variety of popular industry-standard EDA simulators and timing analyzers, or with the timing model shown in Figure 12. MAX 7000 devices have fixed internal delays that enable the designer to determine the worst-case timing of any design. The Altera software provides timing simulation, point-to-point delay prediction, and detailed timing analysis for a device-wide performance evaluation.

Symbol	Parameter	Conditions		Speed	Grade		Unit
			MAX 700	0E (-10P)		00 (-10) Doe (-10)	
			Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.5		1.0	ns
t _{IO}	I/O input pad and buffer delay			0.5		1.0	ns
t _{FIN}	Fast input delay	(2)		1.0		1.0	ns
t _{SEXP}	Shared expander delay			5.0		5.0	ns
t _{PEXP}	Parallel expander delay			0.8		0.8	ns
t _{LAD}	Logic array delay			5.0		5.0	ns
t _{LAC}	Logic control array delay			5.0		5.0	ns
t _{IOE}	Internal output enable delay	(2)		2.0		2.0	ns
t _{OD1}	Output buffer and pad delay Slow slew rate = off V _{CCIO} = 5.0 V	C1 = 35 pF		1.5		2.0	ns
t _{OD2}	Output buffer and pad delay Slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF (7)		2.0		2.5	ns
t _{OD3}	Output buffer and pad delay Slow slew rate = on $V_{CCIO} = 5.0 V \text{ or } 3.3 V$	C1 = 35 pF (2)		5.5		6.0	ns
t _{ZX1}	Output buffer enable delay Slow slew rate = off V _{CCIO} = 5.0 V	C1 = 35 pF		5.0		5.0	ns
t _{ZX2}	Output buffer enable delay Slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF (7)		5.5		5.5	ns
t _{ZX3}	Output buffer enable delay Slow slew rate = on V _{CCIO} = 5.0 V or 3.3 V	C1 = 35 pF (2)		9.0		9.0	ns
t _{XZ}	Output buffer disable delay	C1 = 5 pF		5.0		5.0	ns
t _{SU}	Register setup time		2.0		3.0		ns
t _H	Register hold time		3.0		3.0		ns
t _{FSU}	Register setup time of fast input	(2)	3.0		3.0		ns
t _{FH}	Register hold time of fast input	(2)	0.5		0.5		ns
t _{RD}	Register delay			2.0		1.0	ns
t _{COMB}	Combinatorial delay			2.0		1.0	ns
t _{IC}	Array clock delay			5.0		5.0	ns
t _{EN}	Register enable time			5.0		5.0	ns
t _{GLOB}	Global control delay			1.0		1.0	ns
t _{PRE}	Register preset time			3.0		3.0	ns
t _{CLR}	Register clear time			3.0		3.0	ns
t _{PIA}	PIA delay			1.0		1.0	ns
t _{LPA}	Low-power adder	(8)		11.0		11.0	ns

Table 2	Table 27. EPM7032S External Timing Parameters (Part 2 of 2) Note (1)										
Symbol	Parameter	Conditions				Speed	Grade				Unit
			-5		-	-6		-7		-10	
			Min	Max	Min	Max	Min	Max	Min	Max	
f _{ACNT}	Maximum internal array clock frequency	(4)	175.4		142.9		116.3		100.0		MHz
f _{MAX}	Maximum clock frequency	(5)	250.0		200.0		166.7		125.0		MHz

Symbol	Parameter	Conditions				Speed	Grade				Unit
			-	5	-6		-7		-10		
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.2		0.2		0.3		0.5	ns
t _{IO}	I/O input pad and buffer delay			0.2		0.2		0.3		0.5	ns
t _{FIN}	Fast input delay			2.2		2.1		2.5		1.0	ns
t _{SEXP}	Shared expander delay			3.1		3.8		4.6		5.0	ns
t _{PEXP}	Parallel expander delay			0.9		1.1		1.4		0.8	ns
t _{LAD}	Logic array delay			2.6		3.3		4.0		5.0	ns
t _{LAC}	Logic control array delay			2.5		3.3		4.0		5.0	ns
t _{IOE}	Internal output enable delay			0.7		0.8		1.0		2.0	ns
t _{OD1}	Output buffer and pad delay	C1 = 35 pF		0.2		0.3		0.4		1.5	ns
t _{OD2}	Output buffer and pad delay	C1 = 35 pF (6)		0.7		0.8		0.9		2.0	ns
t _{OD3}	Output buffer and pad delay	C1 = 35 pF		5.2		5.3		5.4		5.5	ns
t _{ZX1}	Output buffer enable delay	C1 = 35 pF		4.0		4.0		4.0		5.0	ns
t _{ZX2}	Output buffer enable delay	C1 = 35 pF (6)		4.5		4.5		4.5		5.5	ns
t _{ZX3}	Output buffer enable delay	C1 = 35 pF		9.0		9.0		9.0		9.0	ns
t _{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		4.0		5.0	ns
t _{SU}	Register setup time		0.8		1.0		1.3		2.0		ns
t _H	Register hold time		1.7		2.0		2.5		3.0		ns
t _{FSU}	Register setup time of fast input		1.9		1.8		1.7		3.0		ns
t _{FH}	Register hold time of fast input		0.6		0.7		0.8		0.5		ns
t _{RD}	Register delay			1.2		1.6		1.9		2.0	ns
t _{COMB}	Combinatorial delay			0.9		1.1		1.4		2.0	ns
t _{IC}	Array clock delay			2.7		3.4		4.2		5.0	ns
t _{EN}	Register enable time			2.6		3.3		4.0		5.0	ns
t _{GLOB}	Global control delay			1.6		1.4		1.7		1.0	ns
t _{PRE}	Register preset time			2.0		2.4		3.0		3.0	ns
t _{CLR}	Register clear time			2.0		2.4		3.0		3.0	ns

Table 3	Table 30. EPM7064S Internal Timing Parameters (Part 2 of 2) Note (1)											
Symbol	Parameter	Conditions	ns Speed Grade									
			-	5	-	6	-	7	-1	0		
			Min	Max	Min	Max	Min	Max	Min	Max		
t _{FSU}	Register setup time of fast input		1.9		1.8		3.0		3.0		ns	
t _{FH}	Register hold time of fast input		0.6		0.7		0.5		0.5		ns	
t _{RD}	Register delay			1.2		1.6		1.0		2.0	ns	
t _{COMB}	Combinatorial delay			0.9		1.0		1.0		2.0	ns	
t _{IC}	Array clock delay			2.7		3.3		3.0		5.0	ns	
t _{EN}	Register enable time			2.6		3.2		3.0		5.0	ns	
t _{GLOB}	Global control delay			1.6		1.9		1.0		1.0	ns	
t _{PRE}	Register preset time			2.0		2.4		2.0		3.0	ns	
t _{CLR}	Register clear time			2.0		2.4		2.0		3.0	ns	
t _{PIA}	PIA delay	(7)		1.1		1.3		1.0		1.0	ns	
t _{LPA}	Low-power adder	(8)		12.0		11.0		10.0		11.0	ns	

Notes to tables:

- (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter (2) must be added to this minimum width if the clear or reset signal incorporates the t_{IAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- The f_{MAX} values represent the highest frequency for pipelined data. (5)
- Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use. (6)
- For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, (7) these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells (8) running in the low-power mode.

Symbol	Parameter	Conditions	Speed Grade						
			-7		-10		-15		1
			Min	Max	Min	Max	Min	Max	1
t _H	Register hold time		1.7		3.0		4.0		ns
t _{FSU}	Register setup time of fast input		2.3		3.0		2.0		ns
t _{FH}	Register hold time of fast input		0.7		0.5		1.0		ns
t _{RD}	Register delay			1.4		2.0		1.0	ns
t _{COMB}	Combinatorial delay			1.2		2.0		1.0	ns
t _{IC}	Array clock delay			3.2		5.0		6.0	ns
t _{EN}	Register enable time			3.1		5.0		6.0	ns
t _{GLOB}	Global control delay			2.5		1.0		1.0	ns
t _{PRE}	Register preset time			2.7		3.0		4.0	ns
t _{CLR}	Register clear time			2.7		3.0		4.0	ns
t _{PIA}	PIA delay	(7)		2.4		1.0		2.0	ns
t _{LPA}	Low-power adder	(8)		10.0		11.0		13.0	ns

Notes to tables:

- (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells running in the low-power mode.

Symbol	Parameter	Conditions	Speed Grade						
			-	7	-10		-15		
			Min	Max	Min	Max	Min	Max	1
t _{IN}	Input pad and buffer delay			0.3		0.5		2.0	ns
t _{IO}	I/O input pad and buffer delay			0.3		0.5		2.0	ns
t _{FIN}	Fast input delay			3.4		1.0		2.0	ns
t _{SEXP}	Shared expander delay			3.9		5.0		8.0	ns
t _{PEXP}	Parallel expander delay			1.1		0.8		1.0	ns
t _{LAD}	Logic array delay			2.6		5.0		6.0	ns
t _{LAC}	Logic control array delay			2.6		5.0		6.0	ns
t _{IOE}	Internal output enable delay			0.8		2.0		3.0	ns
t _{OD1}	Output buffer and pad delay	C1 = 35 pF		0.5		1.5		4.0	ns
t _{OD2}	Output buffer and pad delay	C1 = 35 pF (6)		1.0		2.0		5.0	ns
t _{OD3}	Output buffer and pad delay	C1 = 35 pF		5.5		5.5		8.0	ns
t _{ZX1}	Output buffer enable delay	C1 = 35 pF		4.0		5.0		6.0	ns
t _{ZX2}	Output buffer enable delay	C1 = 35 pF (6)		4.5		5.5		7.0	ns
t _{ZX3}	Output buffer enable delay	C1 = 35 pF		9.0		9.0		10.0	ns
t _{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		5.0		6.0	ns
t _{SU}	Register setup time		1.1		2.0		4.0		ns
t _H	Register hold time		1.6		3.0		4.0		ns
t _{FSU}	Register setup time of fast input		2.4		3.0		2.0		ns
t _{FH}	Register hold time of fast input		0.6		0.5		1.0		ns
t _{RD}	Register delay			1.1		2.0		1.0	ns
t _{COMB}	Combinatorial delay			1.1		2.0		1.0	ns
t _{IC}	Array clock delay			2.9		5.0		6.0	ns
t _{EN}	Register enable time			2.6		5.0		6.0	ns
t _{GLOB}	Global control delay			2.8		1.0		1.0	ns
t _{PRE}	Register preset time			2.7		3.0		4.0	ns
t _{CLR}	Register clear time			2.7		3.0		4.0	ns
t _{PIA}	PIA delay	(7)		3.0		1.0		2.0	ns
t _{LPA}	Low-power adder	(8)		10.0		11.0		13.0	ns

Notes to tables:

- (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells running in the low-power mode.

Power Consumption

Supply power (P) versus frequency (f_{MAX} in MHz) for MAX 7000 devices is calculated with the following equation:

$$P = P_{INT} + P_{IO} = I_{CCINT} \times V_{CC} + P_{IO}$$

The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note* 74 (*Evaluating Power for Altera Devices*).

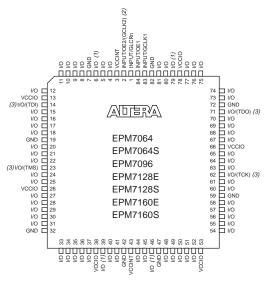

The I_{CCINT} value, which depends on the switching frequency and the application logic, is calculated with the following equation:

 $I_{CCINT} =$

 $A \times MC_{TON} + B \times (MC_{DEV} - MC_{TON}) + C \times MC_{USED} \times f_{MAX} \times tog_{LC}$

The parameters in this equation are shown below:

MC _{TON}	=	Number of macrocells with the Turbo Bit option turned on,
		as reported in the MAX+PLUS II Report File (.rpt)
MC _{DEV}	=	Number of macrocells in the device
MC _{USED}	=	Total number of macrocells in the design, as reported
		in the MAX+PLUS II Report File (.rpt)
f _{MAX}	=	Highest clock frequency to the device
togLC	=	Average ratio of logic cells toggling at each clock
		(typically 0.125)
A, B, C	=	Constants, shown in Table 39


Figure 15. I_{CC} vs. Frequency for MAX 7000S Devices (Part 2 of 2)

Device Pin-Outs

See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information.

Figure 18. 84-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

84-Pin PLCC

Notes:

- (1) Pins 6, 39, 46, and 79 are no-connect (N.C.) pins on EPM7096, EPM7160E, and EPM7160S devices.
- (2) The pin functions shown in parenthesis are only available in MAX 7000E and MAX 7000S devices.
- (3) JTAG ports are available in MAX 7000S devices only.