

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Product Status	Obsolete
Programmable Type	EE PLD
Delay Time tpd(1) Max	7.5 ns
Voltage Supply - Internal	4.75V ~ 5.25V
Number of Logic Elements/Blocks	4
Number of Macrocells	64
Number of Gates	1250
Number of I/O	36
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm7064tc44-7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. MAX 7000S Device Features									
Feature	EPM7032S	EPM7064S	EPM7128S	EPM7160S	EPM7192S	EPM7256S			
Usable gates	600	1,250	2,500	3,200	3,750	5,000			
Macrocells	32	64	128	160	192	256			
Logic array blocks	2	4	8	10	12	16			
Maximum user I/O pins	36	68	100	104	124	164			
t _{PD} (ns)	5	5	6	6	7.5	7.5			
t _{su} (ns)	2.9	2.9	3.4	3.4	4.1	3.9			
t _{FSU} (ns)	2.5	2.5	2.5	2.5	3	3			
t_{CO1} (ns)	3.2	3.2	4	3.9	4.7	4.7			
f _{CNT} (MHz)	175.4	175.4	147.1	149.3	125.0	128.2			

...and More Features

- Open-drain output option in MAX 7000S devices
- Programmable macrocell flipflops with individual clear, preset, clock, and clock enable controls
- Programmable power-saving mode for a reduction of over 50% in each macrocell
- Configurable expander product-term distribution, allowing up to 32 product terms per macrocell
- 44 to 208 pins available in plastic J-lead chip carrier (PLCC), ceramic pin-grid array (PGA), plastic quad flat pack (PQFP), power quad flat pack (RQFP), and 1.0-mm thin quad flat pack (TQFP) packages
- Programmable security bit for protection of proprietary designs
- 3.3-V or 5.0-V operation
 - MultiVoltTM I/O interface operation, allowing devices to interface with 3.3-V or 5.0-V devices (MultiVolt I/O operation is not available in 44-pin packages)
 - Pin compatible with low-voltage MAX 7000A and MAX 7000B devices
- Enhanced features available in MAX 7000E and MAX 7000S devices
 - Six pin- or logic-driven output enable signals
 - Two global clock signals with optional inversion
 - Enhanced interconnect resources for improved routability
 - Fast input setup times provided by a dedicated path from I/O pin to macrocell registers
 - Programmable output slew-rate control
- Software design support and automatic place-and-route provided by Altera's development system for Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 workstations

The MAX 7000 architecture includes four dedicated inputs that can be used as general-purpose inputs or as high-speed, global control signals (clock, clear, and two output enable signals) for each macrocell and I/O pin. Figure 1 shows the architecture of EPM7032, EPM7064, and EPM7096 devices.

Figure 1. EPM7032, EPM7064 & EPM7096 Device Block Diagram

The compiler can allocate up to three sets of up to five parallel expanders automatically to the macrocells that require additional product terms. Each set of five parallel expanders incurs a small, incremental timing delay (t_{PEXP}). For example, if a macrocell requires 14 product terms, the Compiler uses the five dedicated product terms within the macrocell and allocates two sets of parallel expanders; the first set includes five product terms and the second set includes four product terms, increasing the total delay by $2 \times t_{PEXP}$.

Two groups of 8 macrocells within each LAB (e.g., macrocells 1 through 8 and 9 through 16) form two chains to lend or borrow parallel expanders. A macrocell borrows parallel expanders from lowernumbered macrocells. For example, macrocell 8 can borrow parallel expanders from macrocell 7, from macrocells 7 and 6, or from macrocells 7, 6, and 5. Within each group of 8, the lowest-numbered macrocell can only lend parallel expanders and the highest-numbered macrocell can only borrow them. Figure 6 shows how parallel expanders can be borrowed from a neighboring macrocell.

Figure 6. Parallel Expanders

Unused product terms in a macrocell can be allocated to a neighboring macrocell.

Figure 8. I/O Control Block of MAX 7000 Devices

EPM7032, EPM7064 & EPM7096 Devices

Note:

(1) The open-drain output option is available only in MAX 7000S devices.

Programming Times

The time required to implement each of the six programming stages can be broken into the following two elements:

- A pulse time to erase, program, or read the EEPROM cells.
- A shifting time based on the test clock (TCK) frequency and the number of TCK cycles to shift instructions, address, and data into the device.

By combining the pulse and shift times for each of the programming stages, the program or verify time can be derived as a function of the TCK frequency, the number of devices, and specific target device(s). Because different ISP-capable devices have a different number of EEPROM cells, both the total fixed and total variable times are unique for a single device.

Programming a Single MAX 7000S Device

The time required to program a single MAX 7000S device in-system can be calculated from the following formula:

$$t_{PROG} = t_{PPULSE} + \frac{Cycle_{PTCK}}{f_{TCK}}$$
where: t_{PROG} = Programming time
 t_{PPULSE} = Sum of the fixed times to erase, program, and
verify the EEPROM cells
 $Cycle_{PTCK}$ = Number of TCK cycles to program a device
 f_{TCK} = TCK frequency

The ISP times for a stand-alone verification of a single MAX 7000S device can be calculated from the following formula:

$$t_{VER} = t_{VPULSE} + \frac{Cycle_{VTCK}}{f_{TCK}}$$
where: t_{VER} = Verify time
 t_{VPULSE} = Sum of the fixed times to verify the EEPROM cells
 $Cycle_{VTCK}$ = Number of TCK cycles to verify a device

The programming times described in Tables 6 through 8 are associated

Table 6. MAX 7000S t _{PULSE} & Cycle _{TCK} Values								
Device	Programming		Stand-Alone	e Verification				
	t _{PPULSE} (s)	Cycle _{PTCK}	t _{VPULSE} (s)	Cycle _{VTCK}				
EPM7032S	4.02	342,000	0.03	200,000				
EPM7064S	4.50	504,000	0.03	308,000				
EPM7128S	5.11	832,000	0.03	528,000				
EPM7160S	5.35	1,001,000	0.03	640,000				
EPM7192S	5.71	1,192,000	0.03	764,000				
EPM7256S	6.43	1,603,000	0.03	1,024,000				

with the worst-case method using the enhanced ISP algorithm.

Tables 7 and 8 show the in-system programming and stand alone verification times for several common test clock frequencies.

Table 7. MAX 7000S In-System Programming Times for Different Test Clock Frequencies									
Device		f _{TCK}							Units
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz	
EPM7032S	4.06	4.09	4.19	4.36	4.71	5.73	7.44	10.86	S
EPM7064S	4.55	4.60	4.76	5.01	5.51	7.02	9.54	14.58	S
EPM7128S	5.19	5.27	5.52	5.94	6.77	9.27	13.43	21.75	S
EPM7160S	5.45	5.55	5.85	6.35	7.35	10.35	15.36	25.37	S
EPM7192S	5.83	5.95	6.30	6.90	8.09	11.67	17.63	29.55	S
EPM7256S	6.59	6.75	7.23	8.03	9.64	14.45	22.46	38.49	S

Table 8. MAX 7000S Stand-Alone Verification Times for Different Test Clock Frequencies

Device		f _{TCK}							Units
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz	
EPM7032S	0.05	0.07	0.13	0.23	0.43	1.03	2.03	4.03	S
EPM7064S	0.06	0.09	0.18	0.34	0.64	1.57	3.11	6.19	S
EPM7128S	0.08	0.14	0.29	0.56	1.09	2.67	5.31	10.59	S
EPM7160S	0.09	0.16	0.35	0.67	1.31	3.23	6.43	12.83	S
EPM7192S	0.11	0.18	0.41	0.79	1.56	3.85	7.67	15.31	S
EPM7256S	0.13	0.24	0.54	1.06	2.08	5.15	10.27	20.51	S

The instruction register length of MAX 7000S devices is 10 bits. Tables 10 and 11 show the boundary-scan register length and device IDCODE information for MAX 7000S devices.

Table 10. MAX 7000S Boundary-Scan Register Length					
Device	Boundary-Scan Register Length				
EPM7032S	1 (1)				
EPM7064S	1 (1)				
EPM7128S	288				
EPM7160S	312				
EPM7192S	360				
EPM7256S	480				

Note:

 This device does not support JTAG boundary-scan testing. Selecting either the EXTEST or SAMPLE/PRELOAD instruction will select the one-bit bypass register.

Table 11. 32-Bit MAX 7000 Device IDCODE Note (1)								
Device		IDCODE (32 Bits)						
	Version (4 Bits)	Part Number (16 Bits)	Manufacturer's Identity (11 Bits)	1 (1 Bit) (2)				
EPM7032S	0000	0111 0000 0011 0010	00001101110	1				
EPM7064S	0000	0111 0000 0110 0100	00001101110	1				
EPM7128S	0000	0111 0001 0010 1000	00001101110	1				
EPM7160S	0000	0111 0001 0110 0000	00001101110	1				
EPM7192S	0000	0111 0001 1001 0010	00001101110	1				
EPM7256S	0000	0111 0010 0101 0110	00001101110	1				

Notes:

(1) The most significant bit (MSB) is on the left.

(2) The least significant bit (LSB) for all JTAG IDCODEs is 1.

devices.

Figure 9 shows the timing requirements for the JTAG signals.

Table 12 shows the JTAG timing parameters and values for MAX 7000S

Table 1	Table 12. JTAG Timing Parameters & Values for MAX 7000S Devices							
Symbol	Parameter	Min	Max	Unit				
t _{JCP}	TCK clock period	100		ns				
t _{JCH}	TCK clock high time	50		ns				
t _{JCL}	TCK clock low time	50		ns				
t _{JPSU}	JTAG port setup time	20		ns				
t _{JPH}	JTAG port hold time	45		ns				
t _{JPCO}	JTAG port clock to output		25	ns				
t _{JPZX}	JTAG port high impedance to valid output		25	ns				
t _{JPXZ}	JTAG port valid output to high impedance		25	ns				
t _{JSSU}	Capture register setup time	20		ns				
t _{JSH}	Capture register hold time	45		ns				
t _{JSCO}	Update register clock to output		25	ns				
t _{JSZX}	Update register high impedance to valid output		25	ns				
t _{JSXZ}	Update register valid output to high impedance		25	ns				

For more information, see *Application Note* 39 (IEEE 1149.1 (JTAG) *Boundary-Scan Testing in Altera Devices*).

Operating Conditions

Tables 13 through 18 provide information about absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for 5.0-V MAX 7000 devices.

Table 13. MAX 7000 5.0-V Device Absolute Maximum Ratings Note (1)

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	Supply voltage	With respect to ground (2)	-2.0	7.0	V
VI	DC input voltage		-2.0	7.0	V
I _{OUT}	DC output current, per pin		-25	25	mA
T _{STG}	Storage temperature	No bias	-65	150	°C
T _{AMB}	Ambient temperature	Under bias	-65	135	°C
TJ	Junction temperature	Ceramic packages, under bias		150	°C
		PQFP and RQFP packages, under bias		135	°C

Table 1	Table 14. MAX 7000 5.0-V Device Recommended Operating Conditions									
Symbol	Parameter	Conditions	Min	Max	Unit					
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4), (5)	4.75 (4.50)	5.25 (5.50)	V					
V _{CCIO}	Supply voltage for output drivers, 5.0-V operation	(3), (4)	4.75 (4.50)	5.25 (5.50)	V					
	Supply voltage for output drivers, 3.3-V operation	(3), (4), (6)	3.00 (3.00)	3.60 (3.60)	V					
V _{CCISP}	Supply voltage during ISP	(7)	4.75	5.25	V					
VI	Input voltage		-0.5 (8)	V _{CCINT} + 0.5	V					
Vo	Output voltage		0	V _{CCIO}	V					
T _A	Ambient temperature	For commercial use	0	70	°C					
		For industrial use	-40	85	°C					
TJ	Junction temperature	For commercial use	0	90	°C					
		For industrial use	-40	105	°C					
t _R	Input rise time			40	ns					
t _F	Input fall time			40	ns					

Table 15. MAX 7000 5.0-V Device DC Operating Conditions Note (9)								
Symbol	Parameter	Conditions	Min	Max	Unit			
V _{IH}	High-level input voltage		2.0	V _{CCINT} + 0.5	V			
V _{IL}	Low-level input voltage		-0.5 (8)	0.8	V			
V _{OH}	5.0-V high-level TTL output voltage	I_{OH} = -4 mA DC, V_{CCIO} = 4.75 V (10)	2.4		V			
	3.3-V high-level TTL output voltage	$I_{OH} = -4 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V} (10)$	2.4		V			
	3.3-V high-level CMOS output voltage	$I_{OH} = -0.1 \text{ mA DC}, V_{CCIO} = 3.0 \text{ V} (10)$	V _{CCIO} – 0.2		V			
V _{OL}	5.0-V low-level TTL output voltage	I_{OL} = 12 mA DC, V_{CCIO} = 4.75 V (11)		0.45	V			
	3.3-V low-level TTL output voltage	I_{OL} = 12 mA DC, V_{CCIO} = 3.00 V (11)		0.45	V			
	3.3-V low-level CMOS output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 3.0 V(11)		0.2	V			
II.	Leakage current of dedicated input pins	$V_{I} = -0.5$ to 5.5 V (11)	-10	10	μA			
I _{OZ}	I/O pin tri-state output off-state current	V _I = -0.5 to 5.5 V (11), (12)	-40	40	μA			

Table 16. MAX 7000 5.0-V Device Capacitance: EPM7032, EPM7064 & EPM7096 Devices					
Symbol	Parameter	Conditions	Min	Max	Unit
CIN	Input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		12	pF
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		12	pF

Table 1	Table 17. MAX 7000 5.0-V Device Capacitance: MAX 7000E Devices Note (13)									
Symbol	Max	Unit								
C _{IN}	Input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		15	pF					
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		15	pF					

Table 1	Table 18. MAX 7000 5.0-V Device Capacitance: MAX 7000S Devices Note (13)							
Symbol	Parameter	Conditions	Min	Max	Unit			
CIN	Dedicated input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF			
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		10	pF			

.

Tables 19 through 26 show the MAX 7000 and MAX 7000E AC $\,$ operating conditions.

Table 19	Table 19. MAX 7000 & MAX 7000E External Timing Parameters Note (1)								
Symbol	Parameter	Conditions	-6 Spee	d Grade	-7 Spee	Unit			
			Min	Max	Min	Max			
t _{PD1}	Input to non-registered output	C1 = 35 pF		6.0		7.5	ns		
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		6.0		7.5	ns		
t _{SU}	Global clock setup time		5.0		6.0		ns		
t _H	Global clock hold time		0.0		0.0		ns		
t _{FSU}	Global clock setup time of fast input	(2)	2.5		3.0		ns		
t _{FH}	Global clock hold time of fast input	(2)	0.5		0.5		ns		
t _{CO1}	Global clock to output delay	C1 = 35 pF		4.0		4.5	ns		
t _{CH}	Global clock high time		2.5		3.0		ns		
t _{CL}	Global clock low time		2.5		3.0		ns		
t _{ASU}	Array clock setup time		2.5		3.0		ns		
t _{AH}	Array clock hold time		2.0		2.0		ns		
t _{ACO1}	Array clock to output delay	C1 = 35 pF		6.5		7.5	ns		
t _{ACH}	Array clock high time		3.0		3.0		ns		
t _{ACL}	Array clock low time		3.0		3.0		ns		
t _{CPPW}	Minimum pulse width for clear and preset	(3)	3.0		3.0		ns		
t _{ODH}	Output data hold time after clock	C1 = 35 pF (4)	1.0		1.0		ns		
t _{CNT}	Minimum global clock period			6.6		8.0	ns		
f _{CNT}	Maximum internal global clock frequency	(5)	151.5		125.0		MHz		
t _{ACNT}	Minimum array clock period			6.6		8.0	ns		
f _{acnt}	Maximum internal array clock frequency	(5)	151.5		125.0		MHz		
f _{MAX}	Maximum clock frequency	(6)	200		166.7		MHz		

Γ

Symbol	Parameter	Conditions	Speed	Speed Grade -6		Grade -7	Unit
			Min	Max	Min	Max	1
t _{IN}	Input pad and buffer delay			0.4		0.5	ns
t _{IO}	I/O input pad and buffer delay			0.4		0.5	ns
t _{FIN}	Fast input delay	(2)		0.8		1.0	ns
t _{SEXP}	Shared expander delay			3.5		4.0	ns
t _{PEXP}	Parallel expander delay			0.8		0.8	ns
t _{LAD}	Logic array delay			2.0		3.0	ns
t _{LAC}	Logic control array delay			2.0		3.0	ns
t _{IOE}	Internal output enable delay	(2)				2.0	ns
t _{OD1}	Output buffer and pad delay Slow slew rate = off, V _{CCIO} = 5.0 V	C1 = 35 pF		2.0		2.0	ns
t _{OD2}	Output buffer and pad delay Slow slew rate = off, V _{CCIO} = 3.3 V	C1 = 35 pF (7)		2.5		2.5	ns
t _{OD3}	Output buffer and pad delay Slow slew rate = on, V _{CCIO} = 5.0 V or 3.3 V	C1 = 35 pF (2)		7.0		7.0	ns
t _{ZX1}	Output buffer enable delay Slow slew rate = off, $V_{CCIO} = 5.0 \text{ V}$	C1 = 35 pF		4.0		4.0	ns
t _{ZX2}	Output buffer enable delay Slow slew rate = off, $V_{CCIO} = 3.3 \text{ V}$	C1 = 35 pF (7)		4.5		4.5	ns
t _{ZX3}	Output buffer enable delay Slow slew rate = on $V_{CCIO} = 5.0 V \text{ or } 3.3 V$	C1 = 35 pF (2)		9.0		9.0	ns
t _{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0	ns
t _{SU}	Register setup time		3.0		3.0		ns
t _H	Register hold time		1.5		2.0		ns
t _{FSU}	Register setup time of fast input	(2)	2.5		3.0		ns
t _{FH}	Register hold time of fast input	(2)	0.5		0.5		ns
t _{RD}	Register delay			0.8		1.0	ns
t _{COMB}	Combinatorial delay			0.8		1.0	ns
t _{IC}	Array clock delay			2.5		3.0	ns
t _{EN}	Register enable time			2.0		3.0	ns
t _{GLOB}	Global control delay			0.8		1.0	ns
t _{PRE}	Register preset time			2.0		2.0	ns
t _{CLR}	Register clear time			2.0		2.0	ns
t _{PIA}	PIA delay			0.8		1.0	ns
t _{I PA}	Low-power adder	(8)		10.0		10.0	ns

Symbol	Parameter	Conditions		Speed	Grade	Unit	
			MAX 700	MAX 7000E (-12P)		MAX 7000 (-12) MAX 7000E (-12)	
			Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF		12.0		12.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		12.0		12.0	ns
t _{SU}	Global clock setup time		7.0		10.0		ns
t _H	Global clock hold time		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input	(2)	3.0		3.0		ns
t _{FH}	Global clock hold time of fast input	(2)	0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		6.0		6.0	ns
t _{CH}	Global clock high time		4.0		4.0		ns
t _{CL}	Global clock low time		4.0		4.0		ns
t _{ASU}	Array clock setup time		3.0		4.0		ns
t _{AH}	Array clock hold time		4.0		4.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		12.0		12.0	ns
t _{ACH}	Array clock high time		5.0		5.0		ns
t _{ACL}	Array clock low time		5.0		5.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	5.0		5.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF (4)	1.0		1.0		ns
t _{CNT}	Minimum global clock period			11.0		11.0	ns
f _{CNT}	Maximum internal global clock frequency	(5)	90.9		90.9		MHz
t _{ACNT}	Minimum array clock period			11.0		11.0	ns
f _{ACNT}	Maximum internal array clock frequency	(5)	90.9		90.9		MHz
f _{MAX}	Maximum clock frequency	(6)	125.0		125.0		MHz

Notes to tables:

- (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This parameter applies to MAX 7000E devices only.
- (3) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (4) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (5) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (6) The f_{MAX} values represent the highest frequency for pipelined data.
- (7) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells running in the low-power mode.

Tables 27 and 28 show the EPM7032S AC operating conditions.

Symbol	Parameter	Conditions				Speed	Grade)			Unit
			-	5	-	6	-	7		10	
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF		5.0		6.0		7.5		10.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		5.0		6.0		7.5		10.0	ns
t _{SU}	Global clock setup time		2.9		4.0		5.0		7.0		ns
t _H	Global clock hold time		0.0		0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input	e of fast 2.5 2.5 2.5			3.0		ns				
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.0		0.5		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		3.2		3.5		4.3		5.0	ns
t _{CH}	Global clock high time		2.0		2.5		3.0		4.0		ns
t _{CL}	Global clock low time		2.0		2.5		3.0		4.0		ns
t _{ASU}	Array clock setup time		0.7		0.9		1.1		2.0		ns
t _{AH}	Array clock hold time		1.8		2.1		2.7		3.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		5.4		6.6		8.2		10.0	ns
t _{ACH}	Array clock high time		2.5		2.5		3.0		4.0		ns
t _{ACL}	Array clock low time		2.5		2.5		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(2)	2.5		2.5		3.0		4.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		1.0		ns
t _{CNT}	Minimum global clock period			5.7		7.0		8.6		10.0	ns
f _{CNT}	Maximum internal global clock frequency	(4)	175.4		142.9		116.3		100.0		MHz
t _{ACNT}	Minimum array clock period			5.7		7.0		8.6		10.0	ns

Table 2	Table 28. EPM7032S Internal Timing Parameters Note (1)										
Symbol	Parameter	Conditions	Speed Grade L						Unit		
			-	5	-6		-7		-10		
			Min	Max	lax Min Max			Max	Min	Max	
t _{PIA}	PIA delay	(7)		1.1		1.1		1.4		1.0	ns
t _{LPA}	Low-power adder	(8)		12.0		10.0		10.0		11.0	ns

Notes to tables:

- (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells running in the low-power mode.

Tables 29 and 30 show the EPM7064S AC operating conditions.

Table 2	Table 29. EPM7064S External Timing Parameters (Part 1 of 2) Note (1)										
Symbol	Parameter	Conditions	s Speed Grade							Unit	
			-	5	-	-6		7	-10		
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF		5.0		6.0		7.5		10.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		5.0		6.0		7.5		10.0	ns
t _{SU}	Global clock setup time		2.9		3.6		6.0		7.0		ns
t _H	Global clock hold time		0.0		0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		2.5		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.5		0.5		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		3.2		4.0		4.5		5.0	ns
t _{CH}	Global clock high time		2.0		2.5		3.0		4.0		ns
t _{CL}	Global clock low time		2.0		2.5		3.0		4.0		ns
t _{ASU}	Array clock setup time		0.7		0.9		3.0		2.0		ns
t _{AH}	Array clock hold time		1.8		2.1		2.0		3.0		ns

Notes to tables:

- (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells running in the low-power mode.

Power Consumption

Supply power (P) versus frequency (f_{MAX} in MHz) for MAX 7000 devices is calculated with the following equation:

$$P = P_{INT} + P_{IO} = I_{CCINT} \times V_{CC} + P_{IO}$$

The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note* 74 (*Evaluating Power for Altera Devices*).

The I_{CCINT} value, which depends on the switching frequency and the application logic, is calculated with the following equation:

 $I_{CCINT} =$

 $A \times MC_{TON} + B \times (MC_{DEV} - MC_{TON}) + C \times MC_{USED} \times f_{MAX} \times tog_{LC}$

The parameters in this equation are shown below:

MC _{TON}	=	Number of macrocells with the Turbo Bit option turned on,
		as reported in the MAX+PLUS II Report File (.rpt)
MC _{DEV}	=	Number of macrocells in the device
MC _{USED}	=	Total number of macrocells in the design, as reported
		in the MAX+PLUS II Report File (.rpt)
f _{MAX}	=	Highest clock frequency to the device
tog _{LC}	=	Average ratio of logic cells toggling at each clock
		(typically 0.125)
A, B, C	=	Constants, shown in Table 39

Table 39. MAX 7000 I _{CC} Equation Constants								
Device	Α	В	C					
EPM7032	1.87	0.52	0.144					
EPM7064	1.63	0.74	0.144					
EPM7096	1.63	0.74	0.144					
EPM7128E	1.17	0.54	0.096					
EPM7160E	1.17	0.54	0.096					
EPM7192E	1.17	0.54	0.096					
EPM7256E	1.17	0.54	0.096					
EPM7032S	0.93	0.40	0.040					
EPM7064S	0.93	0.40	0.040					
EPM7128S	0.93	0.40	0.040					
EPM7160S	0.93	0.40	0.040					
EPM7192S	0.93	0.40	0.040					
EPM7256S	0.93	0.40	0.040					

This calculation provides an I_{CC} estimate based on typical conditions using a pattern of a 16-bit, loadable, enabled, up/down counter in each LAB with no output load. Actual I_{CC} values should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions.

Figure 15. I_{CC} vs. Frequency for MAX 7000S Devices (Part 2 of 2)

Device Pin-Outs

See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information.

Figure 21. 192-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

Figure 22. 208-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 www.altera.com Applications Hotline: (800) 800-EPLD Literature Services: literature@altera.com Copyright © 2005 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability

arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Altera Corporation