Welcome to **E-XFL.COM** **Understanding Embedded - CPLDs (Complex Programmable Logic Devices)** Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware. ## **Applications of Embedded - CPLDs** | Details | | |---------------------------------|---| | Product Status | Obsolete | | Programmable Type | EE PLD | | Delay Time tpd(1) Max | 10 ns | | Voltage Supply - Internal | 4.75V ~ 5.25V | | Number of Logic Elements/Blocks | 6 | | Number of Macrocells | 96 | | Number of Gates | 1800 | | Number of I/O | 52 | | Operating Temperature | 0°C ~ 70°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 68-LCC (J-Lead) | | Supplier Device Package | 68-PLCC (24x24) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epm7096lc68-10 | | | | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong | Table 2. MAX | 7000S Device I | Features - | | | | | |------------------------|----------------|------------|----------|----------|----------|----------| | Feature | EPM7032S | EPM7064S | EPM7128S | EPM7160S | EPM7192S | EPM7256S | | Usable gates | 600 | 1,250 | 2,500 | 3,200 | 3,750 | 5,000 | | Macrocells | 32 | 64 | 128 | 160 | 192 | 256 | | Logic array blocks | 2 | 4 | 8 | 10 | 12 | 16 | | Maximum user I/O pins | 36 | 68 | 100 | 104 | 124 | 164 | | t _{PD} (ns) | 5 | 5 | 6 | 6 | 7.5 | 7.5 | | t _{SU} (ns) | 2.9 | 2.9 | 3.4 | 3.4 | 4.1 | 3.9 | | t _{FSU} (ns) | 2.5 | 2.5 | 2.5 | 2.5 | 3 | 3 | | t _{CO1} (ns) | 3.2 | 3.2 | 4 | 3.9 | 4.7 | 4.7 | | f _{CNT} (MHz) | 175.4 | 175.4 | 147.1 | 149.3 | 125.0 | 128.2 | # ...and More Features - Open-drain output option in MAX 7000S devices - Programmable macrocell flipflops with individual clear, preset, clock, and clock enable controls - Programmable power-saving mode for a reduction of over 50% in each macrocell - Configurable expander product-term distribution, allowing up to 32 product terms per macrocell - 44 to 208 pins available in plastic J-lead chip carrier (PLCC), ceramic pin-grid array (PGA), plastic quad flat pack (PQFP), power quad flat pack (RQFP), and 1.0-mm thin quad flat pack (TQFP) packages - Programmable security bit for protection of proprietary designs - 3.3-V or 5.0-V operation - MultiVoltTM I/O interface operation, allowing devices to interface with 3.3-V or 5.0-V devices (MultiVolt I/O operation is not available in 44-pin packages) - Pin compatible with low-voltage MAX 7000A and MAX 7000B devices - Enhanced features available in MAX 7000E and MAX 7000S devices - Six pin- or logic-driven output enable signals - Two global clock signals with optional inversion - Enhanced interconnect resources for improved routability - Fast input setup times provided by a dedicated path from I/O pin to macrocell registers - Programmable output slew-rate control - Software design support and automatic place-and-route provided by Altera's development system for Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 workstations ## Shareable Expanders Each LAB has 16 shareable expanders that can be viewed as a pool of uncommitted single product terms (one from each macrocell) with inverted outputs that feed back into the logic array. Each shareable expander can be used and shared by any or all macrocells in the LAB to build complex logic functions. A small delay (t_{SEXP}) is incurred when shareable expanders are used. Figure 5 shows how shareable expanders can feed multiple macrocells. Figure 5. Shareable Expanders Shareable expanders can be shared by any or all macrocells in an LAB. ## Parallel Expanders Parallel expanders are unused product terms that can be allocated to a neighboring macrocell to implement fast, complex logic functions. Parallel expanders allow up to 20 product terms to directly feed the macrocell OR logic, with five product terms provided by the macrocell and 15 parallel expanders provided by neighboring macrocells in the LAB. # Programmable Interconnect Array Logic is routed between LABs via the programmable interconnect array (PIA). This global bus is a programmable path that connects any signal source to any destination on the device. All MAX 7000 dedicated inputs, I/O pins, and macrocell outputs feed the PIA, which makes the signals available throughout the entire device. Only the signals required by each LAB are actually routed from the PIA into the LAB. Figure 7 shows how the PIA signals are routed into the LAB. An EEPROM cell controls one input to a 2-input AND gate, which selects a PIA signal to drive into the LAB. Figure 7. PIA Routing While the routing delays of channel-based routing schemes in masked or FPGAs are cumulative, variable, and path-dependent, the MAX 7000 PIA has a fixed delay. The PIA thus eliminates skew between signals and makes timing performance easy to predict. ## I/O Control Blocks The I/O control block allows each I/O pin to be individually configured for input, output, or bidirectional operation. All I/O pins have a tri-state buffer that is individually controlled by one of the global output enable signals or directly connected to ground or V_{CC}. Figure 8 shows the I/O control block for the MAX 7000 family. The I/O control block of EPM7032, EPM7064, and EPM7096 devices has two global output enable signals that are driven by two dedicated active-low output enable pins (OE1 and OE2). The I/O control block of MAX 7000E and MAX 7000S devices has six global output enable signals that are driven by the true or complement of two output enable signals, a subset of the I/O pins, or a subset of the I/O macrocells. By using an external 5.0-V pull-up resistor, output pins on MAX 7000S devices can be set to meet 5.0-V CMOS input voltages. When $V_{\rm CCIO}$ is 3.3 V, setting the open drain option will turn off the output pull-up transistor, allowing the external pull-up resistor to pull the output high enough to meet 5.0-V CMOS input voltages. When $V_{\rm CCIO}$ is 5.0 V, setting the output drain option is not necessary because the pull-up transistor will already turn off when the pin exceeds approximately 3.8 V, allowing the external pull-up resistor to pull the output high enough to meet 5.0-V CMOS input voltages. ## Slew-Rate Control The output buffer for each MAX 7000E and MAX 7000S I/O pin has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A faster slew rate provides high-speed transitions for high-performance systems. However, these fast transitions may introduce noise transients into the system. A slow slew rate reduces system noise, but adds a nominal delay of 4 to 5 ns. In MAX 7000E devices, when the Turbo Bit is turned off, the slew rate is set for low noise performance. For MAX 7000S devices, each I/O pin has an individual EEPROM bit that controls the slew rate, allowing designers to specify the slew rate on a pin-by-pin basis. # Programming with External Hardware MAX 7000 devices can be programmed on Windows-based PCs with the Altera Logic Programmer card, the Master Programming Unit (MPU), and the appropriate device adapter. The MPU performs a continuity check to ensure adequate electrical contact between the adapter and the device. For more information, see the *Altera Programming Hardware Data Sheet*. The Altera development system can use text- or waveform-format test vectors created with the Text Editor or Waveform Editor to test the programmed device. For added design verification, designers can perform functional testing to compare the functional behavior of a MAX 7000 device with the results of simulation. Moreover, Data I/O, BP Microsystems, and other programming hardware manufacturers also provide programming support for Altera devices. For more information, see the *Programming Hardware Manufacturers*. The instruction register length of MAX 7000S devices is 10 bits. Tables 10 and 11 show the boundary-scan register length and device IDCODE information for MAX 7000S devices. | Table 10. MAX 7000S Boundary-Scan Register Length | | | | | | | | | | |---|-------------------------------|--|--|--|--|--|--|--|--| | Device | Boundary-Scan Register Length | | | | | | | | | | EPM7032S | 1 (1) | | | | | | | | | | EPM7064S | 1 (1) | | | | | | | | | | EPM7128S | 288 | | | | | | | | | | EPM7160S | 312 | | | | | | | | | | EPM7192S | 360 | | | | | | | | | | EPM7256S | 480 | | | | | | | | | ### Note: (1) This device does not support JTAG boundary-scan testing. Selecting either the EXTEST or SAMPLE/PRELOAD instruction will select the one-bit bypass register. | Table 11. 32 | ?-Bit MAX 7 | 000 Device IDCODE No | te (1) | | | | | | | | | | |-------------------------|---------------------|-----------------------|--------------------------------------|------------------|--|--|--|--|--|--|--|--| | Device IDCODE (32 Bits) | | | | | | | | | | | | | | | Version
(4 Bits) | Part Number (16 Bits) | Manufacturer's
Identity (11 Bits) | 1 (1 Bit)
(2) | | | | | | | | | | EPM7032S | 0000 | 0111 0000 0011 0010 | 00001101110 | 1 | | | | | | | | | | EPM7064S | 0000 | 0111 0000 0110 0100 | 00001101110 | 1 | | | | | | | | | | EPM7128S | 0000 | 0111 0001 0010 1000 | 00001101110 | 1 | | | | | | | | | | EPM7160S | 0000 | 0111 0001 0110 0000 | 00001101110 | 1 | | | | | | | | | | EPM7192S | 0000 | 0111 0001 1001 0010 | 00001101110 | 1 | | | | | | | | | | EPM7256S | 0000 | 0111 0010 0101 0110 | 00001101110 | 1 | | | | | | | | | #### Notes: - (1) The most significant bit (MSB) is on the left. - (2) The least significant bit (LSB) for all JTAG IDCODEs is 1. ## Figure 13. Switching Waveforms 30 Altera Corporation Register Output to Pin Tables 19 through 26 show the MAX 7000 and MAX 7000E AC operating conditions. | Symbol | Parameter | Conditions | -6 Speed Grade | | -7 Spee | Unit | | |-------------------|--|----------------|----------------|-----|---------|------|-----| | | | | Min | Max | Min | Max | | | t _{PD1} | Input to non-registered output | C1 = 35 pF | | 6.0 | | 7.5 | ns | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF | | 6.0 | | 7.5 | ns | | t _{SU} | Global clock setup time | | 5.0 | | 6.0 | | ns | | t _H | Global clock hold time | | 0.0 | | 0.0 | | ns | | t _{FSU} | Global clock setup time of fast input | (2) | 2.5 | | 3.0 | | ns | | t _{FH} | Global clock hold time of fast input | (2) | 0.5 | | 0.5 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 4.0 | | 4.5 | ns | | t _{CH} | Global clock high time | | 2.5 | | 3.0 | | ns | | t _{CL} | Global clock low time | | 2.5 | | 3.0 | | ns | | t _{ASU} | Array clock setup time | | 2.5 | | 3.0 | | ns | | t _{AH} | Array clock hold time | | 2.0 | | 2.0 | | ns | | t _{ACO1} | Array clock to output delay | C1 = 35 pF | | 6.5 | | 7.5 | ns | | t _{ACH} | Array clock high time | | 3.0 | | 3.0 | | ns | | t _{ACL} | Array clock low time | | 3.0 | | 3.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | (3) | 3.0 | | 3.0 | | ns | | t _{ODH} | Output data hold time after clock | C1 = 35 pF (4) | 1.0 | | 1.0 | | ns | | t _{CNT} | Minimum global clock period | | | 6.6 | | 8.0 | ns | | f _{CNT} | Maximum internal global clock frequency | (5) | 151.5 | | 125.0 | | MHz | | t _{ACNT} | Minimum array clock period | | | 6.6 | | 8.0 | ns | | f _{ACNT} | Maximum internal array clock frequency | (5) | 151.5 | | 125.0 | | MHz | | f _{MAX} | Maximum clock frequency | (6) | 200 | | 166.7 | | MHz | | Symbol | Parameter | Conditions | Speed | Grade -6 | Speed (| Grade -7 | Unit | |-------------------|---|----------------|-------|----------|---------|----------|------| | | | | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.4 | | 0.5 | ns | | t_{IO} | I/O input pad and buffer delay | | | 0.4 | | 0.5 | ns | | t _{FIN} | Fast input delay | (2) | | 0.8 | | 1.0 | ns | | t _{SEXP} | Shared expander delay | | | 3.5 | | 4.0 | ns | | t_{PEXP} | Parallel expander delay | | | 0.8 | | 0.8 | ns | | t_{LAD} | Logic array delay | | | 2.0 | | 3.0 | ns | | t _{LAC} | Logic control array delay | | | 2.0 | | 3.0 | ns | | t _{IOE} | Internal output enable delay | (2) | | | | 2.0 | ns | | t _{OD1} | Output buffer and pad delay
Slow slew rate = off, V _{CCIO} = 5.0 V | C1 = 35 pF | | 2.0 | | 2.0 | ns | | t _{OD2} | Output buffer and pad delay
Slow slew rate = off, V _{CCIO} = 3.3 V | C1 = 35 pF (7) | | 2.5 | | 2.5 | ns | | t _{OD3} | Output buffer and pad delay
Slow slew rate = on,
V _{CCIO} = 5.0 V or 3.3 V | C1 = 35 pF (2) | | 7.0 | | 7.0 | ns | | t _{ZX1} | Output buffer enable delay
Slow slew rate = off, V _{CCIO} = 5.0 V | C1 = 35 pF | | 4.0 | | 4.0 | ns | | t _{ZX2} | Output buffer enable delay
Slow slew rate = off, V _{CCIO} = 3.3 V | C1 = 35 pF (7) | | 4.5 | | 4.5 | ns | | t _{ZX3} | Output buffer enable delay
Slow slew rate = on
V _{CCIO} = 5.0 V or 3.3 V | C1 = 35 pF (2) | | 9.0 | | 9.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 4.0 | ns | | t_{SU} | Register setup time | | 3.0 | | 3.0 | | ns | | t_H | Register hold time | | 1.5 | | 2.0 | | ns | | t _{FSU} | Register setup time of fast input | (2) | 2.5 | | 3.0 | | ns | | t_{FH} | Register hold time of fast input | (2) | 0.5 | | 0.5 | | ns | | t_{RD} | Register delay | | | 0.8 | | 1.0 | ns | | t _{COMB} | Combinatorial delay | | | 0.8 | | 1.0 | ns | | t _{IC} | Array clock delay | | | 2.5 | | 3.0 | ns | | t _{EN} | Register enable time | | | 2.0 | | 3.0 | ns | | t _{GLOB} | Global control delay | | | 0.8 | | 1.0 | ns | | t _{PRE} | Register preset time | | | 2.0 | | 2.0 | ns | | t _{CLR} | Register clear time | | | 2.0 | | 2.0 | ns | | t _{PIA} | PIA delay | | | 0.8 | | 1.0 | ns | | t_{LPA} | Low-power adder | (8) | | 10.0 | | 10.0 | ns | | Table 2 | 23. MAX 7000 & MAX 7000E Ext | ernal Timing Param | eters Note | e (1) | | | | | | | |-------------------|--|--------------------|-------------------|-----------|-------|-----------------------|-----|--|--|--| | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | | | | | MAX 700 | 0E (-12P) | | 00 (-12)
DOE (-12) | - | | | | | | | | Min | Max | Min | Max | | | | | | t _{PD1} | Input to non-registered output | C1 = 35 pF | | 12.0 | | 12.0 | ns | | | | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF | | 12.0 | | 12.0 | ns | | | | | t _{SU} | Global clock setup time | | 7.0 | | 10.0 | | ns | | | | | t _H | Global clock hold time | | 0.0 | | 0.0 | | ns | | | | | t _{FSU} | Global clock setup time of fast input | (2) | 3.0 | | 3.0 | | ns | | | | | t _{FH} | Global clock hold time of fast input | (2) | 0.0 | | 0.0 | | ns | | | | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 6.0 | | 6.0 | ns | | | | | t _{CH} | Global clock high time | | 4.0 | | 4.0 | | ns | | | | | t _{CL} | Global clock low time | | 4.0 | | 4.0 | | ns | | | | | t _{ASU} | Array clock setup time | | 3.0 | | 4.0 | | ns | | | | | t _{AH} | Array clock hold time | | 4.0 | | 4.0 | | ns | | | | | t _{ACO1} | Array clock to output delay | C1 = 35 pF | | 12.0 | | 12.0 | ns | | | | | t _{ACH} | Array clock high time | | 5.0 | | 5.0 | | ns | | | | | t _{ACL} | Array clock low time | | 5.0 | | 5.0 | | ns | | | | | t _{CPPW} | Minimum pulse width for clear and preset | (3) | 5.0 | | 5.0 | | ns | | | | | t _{ODH} | Output data hold time after clock | C1 = 35 pF (4) | 1.0 | | 1.0 | | ns | | | | | t _{CNT} | Minimum global clock period | | | 11.0 | | 11.0 | ns | | | | | f _{CNT} | Maximum internal global clock frequency | (5) | 90.9 | | 90.9 | | MHz | | | | | t _{ACNT} | Minimum array clock period | | | 11.0 | | 11.0 | ns | | | | | f _{ACNT} | Maximum internal array clock frequency | (5) | 90.9 | | 90.9 | | MHz | | | | | f _{MAX} | Maximum clock frequency | (6) | 125.0 | | 125.0 | | MHz | | | | | Table 2 | 5. MAX 7000 & MAX 7000E | External Timing I | Paramete | ers / | lote (1) | | | | | |-------------------|------------------------------------------|-------------------|----------|-------|----------|-------|------|------|------| | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | | | | | - | -15 | | -15T | | -20 | | | | | | Min | Max | Min | Max | Min | Max | | | t _{PD1} | Input to non-registered output | C1 = 35 pF | | 15.0 | | 15.0 | | 20.0 | ns | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF | | 15.0 | | 15.0 | | 20.0 | ns | | t _{SU} | Global clock setup time | | 11.0 | | 11.0 | | 12.0 | | ns | | t _H | Global clock hold time | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{FSU} | Global clock setup time of fast input | (2) | 3.0 | | - | | 5.0 | | ns | | t _{FH} | Global clock hold time of fast input | (2) | 0.0 | | - | | 0.0 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 8.0 | | 8.0 | | 12.0 | ns | | t _{CH} | Global clock high time | | 5.0 | | 6.0 | | 6.0 | | ns | | t _{CL} | Global clock low time | | 5.0 | | 6.0 | | 6.0 | | ns | | t _{ASU} | Array clock setup time | | 4.0 | | 4.0 | | 5.0 | | ns | | t _{AH} | Array clock hold time | | 4.0 | | 4.0 | | 5.0 | | ns | | t _{ACO1} | Array clock to output delay | C1 = 35 pF | | 15.0 | | 15.0 | | 20.0 | ns | | t _{ACH} | Array clock high time | | 6.0 | | 6.5 | | 8.0 | | ns | | t _{ACL} | Array clock low time | | 6.0 | | 6.5 | | 8.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | (3) | 6.0 | | 6.5 | | 8.0 | | ns | | t _{ODH} | Output data hold time after clock | C1 = 35 pF (4) | 1.0 | | 1.0 | | 1.0 | | ns | | t _{CNT} | Minimum global clock period | | | 13.0 | | 13.0 | | 16.0 | ns | | f _{CNT} | Maximum internal global clock frequency | (5) | 76.9 | | 76.9 | | 62.5 | | MHz | | t _{ACNT} | Minimum array clock period | | | 13.0 | | 13.0 | | 16.0 | ns | | f _{ACNT} | Maximum internal array clock frequency | (5) | 76.9 | | 76.9 | | 62.5 | | MHz | | f _{MAX} | Maximum clock frequency | (6) | 100 | | 83.3 | _ | 83.3 | _ | MHz | - (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms. - (2) This parameter applies to MAX 7000E devices only. - This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path. - (4) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking. - (5) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (6) The f_{MAX} values represent the highest frequency for pipelined data. - (7) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use. - (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells running in the low-power mode. Tables 27 and 28 show the EPM7032S AC operating conditions. | Table 2 | 77. EPM7032\$ External Time | ing Parameter | s (Part | 1 of 2 |) No | ote (1) | | | | | | |-------------------|------------------------------------------|----------------|-------------|--------|-------------|---------|-------|-----|-------|------|-----| | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | | | | | | - | 5 | - | 6 | - | 7 | -1 | 10 | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{PD1} | Input to non-registered output | C1 = 35 pF | | 5.0 | | 6.0 | | 7.5 | | 10.0 | ns | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF | | 5.0 | | 6.0 | | 7.5 | | 10.0 | ns | | t _{SU} | Global clock setup time | | 2.9 | | 4.0 | | 5.0 | | 7.0 | | ns | | t _H | Global clock hold time | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{FSU} | Global clock setup time of fast input | | 2.5 | | 2.5 | | 2.5 | | 3.0 | | ns | | t _{FH} | Global clock hold time of fast input | | 0.0 | | 0.0 | | 0.0 | | 0.5 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 3.2 | | 3.5 | | 4.3 | | 5.0 | ns | | t _{CH} | Global clock high time | | 2.0 | | 2.5 | | 3.0 | | 4.0 | | ns | | t _{CL} | Global clock low time | | 2.0 | | 2.5 | | 3.0 | | 4.0 | | ns | | t _{ASU} | Array clock setup time | | 0.7 | | 0.9 | | 1.1 | | 2.0 | | ns | | t _{AH} | Array clock hold time | | 1.8 | | 2.1 | | 2.7 | | 3.0 | | ns | | t _{ACO1} | Array clock to output delay | C1 = 35 pF | | 5.4 | | 6.6 | | 8.2 | | 10.0 | ns | | t _{ACH} | Array clock high time | | 2.5 | | 2.5 | | 3.0 | | 4.0 | | ns | | t _{ACL} | Array clock low time | | 2.5 | | 2.5 | | 3.0 | | 4.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | (2) | 2.5 | | 2.5 | | 3.0 | | 4.0 | | ns | | t _{ODH} | Output data hold time after clock | C1 = 35 pF (3) | 1.0 | | 1.0 | | 1.0 | | 1.0 | | ns | | t _{CNT} | Minimum global clock period | | | 5.7 | | 7.0 | | 8.6 | | 10.0 | ns | | f _{CNT} | Maximum internal global clock frequency | (4) | 175.4 | | 142.9 | | 116.3 | | 100.0 | | MHz | | t _{ACNT} | Minimum array clock period | | | 5.7 | | 7.0 | | 8.6 | | 10.0 | ns | | Table 28. EPM7032S Internal Timing Parameters Note (1) | | | | | | | | | | | | |--------------------------------------------------------|-----------------|------------|-----|--------------|-----|-------|-------|------|-----|------|------| | Symbol | Parameter | Conditions | | | | Speed | Grade | | | | Unit | | | | | - | -5 -6 -7 -10 | | | | | | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{PIA} | PIA delay | (7) | | 1.1 | | 1.1 | | 1.4 | | 1.0 | ns | | t_{LPA} | Low-power adder | (8) | | 12.0 | | 10.0 | | 10.0 | | 11.0 | ns | - These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms. - (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path. - (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking. - (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (5) The f_{MAX} values represent the highest frequency for pipelined data. - (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use. - (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value. - (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode. Tables 29 and 30 show the EPM7064S AC operating conditions. | Table 2 | 9. EPM7064S External Timi | ing Parameters | (Part | 1 of 2) | No | nte (1) | | | | | | |------------------|---------------------------------------|----------------|-------|---------|-----|---------|-------|-----|-----|------|------| | Symbol | Parameter | Conditions | | | | Speed | Grade |) | | | Unit | | | | | - | -5 -6 | | - | 7 | -1 | -10 | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{PD1} | Input to non-registered output | C1 = 35 pF | | 5.0 | | 6.0 | | 7.5 | | 10.0 | ns | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF | | 5.0 | | 6.0 | | 7.5 | | 10.0 | ns | | t _{SU} | Global clock setup time | | 2.9 | | 3.6 | | 6.0 | | 7.0 | | ns | | t _H | Global clock hold time | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{FSU} | Global clock setup time of fast input | | 2.5 | | 2.5 | | 3.0 | | 3.0 | | ns | | t _{FH} | Global clock hold time of fast input | | 0.0 | | 0.0 | | 0.5 | | 0.5 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 3.2 | | 4.0 | | 4.5 | | 5.0 | ns | | t _{CH} | Global clock high time | | 2.0 | | 2.5 | | 3.0 | | 4.0 | | ns | | t _{CL} | Global clock low time | | 2.0 | | 2.5 | | 3.0 | | 4.0 | | ns | | t _{ASU} | Array clock setup time | | 0.7 | | 0.9 | | 3.0 | | 2.0 | | ns | | t _{AH} | Array clock hold time | | 1.8 | | 2.1 | | 2.0 | | 3.0 | | ns | | Table 3 | Table 34. EPM7160S Internal Timing Parameters (Part 2 of 2) Note (1) | | | | | | | | | | | | |------------------|----------------------------------------------------------------------|------------|-----|---------------|-----|-------|-------|------|-----|------|------|--| | Symbol | Parameter | Conditions | | | | Speed | Grade | | | | Unit | | | | | | - | -6 -7 -10 -15 | | | | | | | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | | t _{CLR} | Register clear time | | | 2.4 | | 3.0 | | 3.0 | | 4.0 | ns | | | t _{PIA} | PIA delay | (7) | | 1.6 | | 2.0 | | 1.0 | | 2.0 | ns | | | t _{LPA} | Low-power adder | (8) | | 11.0 | | 10.0 | | 11.0 | | 13.0 | ns | | - These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms. - (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path. - (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking. - (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (5) The f_{MAX} values represent the highest frequency for pipelined data. - (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use. - (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value. - (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells running in the low-power mode. Tables 35 and 36 show the EPM7192S AC operating conditions. | Table 35. EPM7192S External Timing Parameters (Part 1 of 2) Note (1) | | | | | | | | | | | |----------------------------------------------------------------------|---------------------------------------|------------|-----|-----|-------|-------|------|------|------|--| | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | | | | | | -7 | | -10 | | -15 | | | | | | | | Min | Max | Min | Max | Min | Max | | | | t _{PD1} | Input to non-registered output | C1 = 35 pF | | 7.5 | | 10.0 | | 15.0 | ns | | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF | | 7.5 | | 10.0 | | 15.0 | ns | | | t _{SU} | Global clock setup time | | 4.1 | | 7.0 | | 11.0 | | ns | | | t _H | Global clock hold time | | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{FSU} | Global clock setup time of fast input | | 3.0 | | 3.0 | | 3.0 | | ns | | | t _{FH} | Global clock hold time of fast input | | 0.0 | | 0.5 | | 0.0 | | ns | | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 4.7 | | 5.0 | | 8.0 | ns | | | t _{CH} | Global clock high time | | 3.0 | | 4.0 | | 5.0 | | ns | | | t _{CL} | Global clock low time | | 3.0 | | 4.0 | | 5.0 | | ns | | | t _{ASU} | Array clock setup time | | 1.0 | | 2.0 | | 4.0 | | ns | | | Table 35. EPM7192S External Timing Parameters (Part 2 of 2) Note (1) | | | | | | | | | | |----------------------------------------------------------------------|------------------------------------------|----------------|-------|-----|-------|------|-------|------|-----| | Symbol | Parameter | Conditions | | | Speed | | Unit | | | | | | | -7 | | -10 | | -15 | | | | | | | Min | Max | Min | Max | Min | Max | | | t _{AH} | Array clock hold time | | 1.8 | | 3.0 | | 4.0 | | ns | | t _{ACO1} | Array clock to output delay | C1 = 35 pF | | 7.8 | | 10.0 | | 15.0 | ns | | t _{ACH} | Array clock high time | | 3.0 | | 4.0 | | 6.0 | | ns | | t _{ACL} | Array clock low time | | 3.0 | | 4.0 | | 6.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | (2) | 3.0 | | 4.0 | | 6.0 | | ns | | t _{ODH} | Output data hold time after clock | C1 = 35 pF (3) | 1.0 | | 1.0 | | 1.0 | | ns | | t _{CNT} | Minimum global clock period | | | 8.0 | | 10.0 | | 13.0 | ns | | f _{CNT} | Maximum internal global clock frequency | (4) | 125.0 | | 100.0 | | 76.9 | | MHz | | t _{ACNT} | Minimum array clock period | | | 8.0 | | 10.0 | | 13.0 | ns | | f _{ACNT} | Maximum internal array clock frequency | (4) | 125.0 | | 100.0 | | 76.9 | | MHz | | f _{MAX} | Maximum clock frequency | (5) | 166.7 | | 125.0 | | 100.0 | | MHz | | Table 36. EPM7192S Internal Timing Parameters (Part 1 of 2) Note (1) | | | | | | | | | | |----------------------------------------------------------------------|--------------------------------|----------------|-----|-------------|-----|-----|-----|------|----| | Symbol | Parameter | Conditions | | Speed Grade | | | | | | | | | | -7 | | -10 | | -15 | | 1 | | | | | Min | Max | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.3 | | 0.5 | | 2.0 | ns | | t _{IO} | I/O input pad and buffer delay | | | 0.3 | | 0.5 | | 2.0 | ns | | t _{FIN} | Fast input delay | | | 3.2 | | 1.0 | | 2.0 | ns | | t _{SEXP} | Shared expander delay | | | 4.2 | | 5.0 | | 8.0 | ns | | t _{PEXP} | Parallel expander delay | | | 1.2 | | 0.8 | | 1.0 | ns | | t_{LAD} | Logic array delay | | | 3.1 | | 5.0 | | 6.0 | ns | | t _{LAC} | Logic control array delay | | | 3.1 | | 5.0 | | 6.0 | ns | | t _{IOE} | Internal output enable delay | | | 0.9 | | 2.0 | | 3.0 | ns | | t _{OD1} | Output buffer and pad delay | C1 = 35 pF | | 0.5 | | 1.5 | | 4.0 | ns | | t _{OD2} | Output buffer and pad delay | C1 = 35 pF (6) | | 1.0 | | 2.0 | | 5.0 | ns | | t _{OD3} | Output buffer and pad delay | C1 = 35 pF | | 5.5 | | 5.5 | | 7.0 | ns | | t_{ZX1} | Output buffer enable delay | C1 = 35 pF | | 4.0 | | 5.0 | | 6.0 | ns | | t _{ZX2} | Output buffer enable delay | C1 = 35 pF (6) | | 4.5 | | 5.5 | | 7.0 | ns | | t _{ZX3} | Output buffer enable delay | C1 = 35 pF | | 9.0 | | 9.0 | | 10.0 | ns | | t _{XZ} | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 5.0 | | 6.0 | ns | | t _{SU} | Register setup time | | 1.1 | | 2.0 | | 4.0 | | ns | | Table 36. EPM7192S Internal Timing Parameters (Part 2 of 2) Note (1) | | | | | | | | | | |----------------------------------------------------------------------|-----------------------------------|------------|-----|-------------|-----|------|-----|------|----| | Symbol | l Parameter | Conditions | | Speed Grade | | | | | | | | | | -7 | | -10 | | -15 | | | | | | | Min | Max | Min | Max | Min | Max | 1 | | t _H | Register hold time | | 1.7 | | 3.0 | | 4.0 | | ns | | t _{FSU} | Register setup time of fast input | | 2.3 | | 3.0 | | 2.0 | | ns | | t _{FH} | Register hold time of fast input | | 0.7 | | 0.5 | | 1.0 | | ns | | t _{RD} | Register delay | | | 1.4 | | 2.0 | | 1.0 | ns | | t _{COMB} | Combinatorial delay | | | 1.2 | | 2.0 | | 1.0 | ns | | t_{IC} | Array clock delay | | | 3.2 | | 5.0 | | 6.0 | ns | | t _{EN} | Register enable time | | | 3.1 | | 5.0 | | 6.0 | ns | | t_{GLOB} | Global control delay | | | 2.5 | | 1.0 | | 1.0 | ns | | t _{PRE} | Register preset time | | | 2.7 | | 3.0 | | 4.0 | ns | | t _{CLR} | Register clear time | | | 2.7 | | 3.0 | | 4.0 | ns | | t _{PIA} | PIA delay | (7) | | 2.4 | | 1.0 | | 2.0 | ns | | t_{LPA} | Low-power adder | (8) | | 10.0 | | 11.0 | | 13.0 | ns | - These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms. - (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path. - (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking. - (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (5) The f_{MAX} values represent the highest frequency for pipelined data. - (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use. - (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value. - (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode. Figure 14. I_{CC} vs. Frequency for MAX 7000 Devices (Part 2 of 2) Figure 15. I_{CC} vs. Frequency for MAX 7000S Devices (Part 2 of 2) # Device Pin-Outs See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information. Figure 17. 68-Pin Package Pin-Out Diagram Package outlines not drawn to scale. ### Notes: - The pin functions shown in parenthesis are only available in MAX 7000E and MAX 7000S devices. - (2) JTAG ports are available in MAX 7000S devices only. ## Figure 18. 84-Pin Package Pin-Out Diagram Package outline not drawn to scale. ### Notes: - (1) Pins 6, 39, 46, and 79 are no-connect (N.C.) pins on EPM7096, EPM7160E, and EPM7160S devices. - (2) The pin functions shown in parenthesis are only available in MAX 7000E and MAX 7000S devices. - (3) JTAG ports are available in MAX 7000S devices only. # Figure 21. 192-Pin Package Pin-Out Diagram Package outline not drawn to scale. Figure 22. 208-Pin Package Pin-Out Diagram Package outline not drawn to scale.