

Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Obsolete
Programmable Type	EE PLD
Delay Time tpd(1) Max	10 ns
Voltage Supply - Internal	4.75V ~ 5.25V
Number of Logic Elements/Blocks	6
Number of Macrocells	96
Number of Gates	1800
Number of I/O	76
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-PQFP (20x14)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm7096qc100-10

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The MAX 7000E devices—including the EPM7128E, EPM7160E, EPM7192E, and EPM7256E devices—have several enhanced features: additional global clocking, additional output enable controls, enhanced interconnect resources, fast input registers, and a programmable slew rate.

In-system programmable MAX 7000 devices—called MAX 7000S devices—include the EPM7032S, EPM7064S, EPM7128S, EPM7160S, EPM7192S, and EPM7256S devices. MAX 7000S devices have the enhanced features of MAX 7000E devices as well as JTAG BST circuitry in devices with 128 or more macrocells, ISP, and an open-drain output option. See Table 4.

Table 4. MAX 7000 Device Feat	Table 4. MAX 7000 Device Features							
Feature	EPM7032 EPM7064 EPM7096	All MAX 7000E Devices	All MAX 7000S Devices					
ISP via JTAG interface			✓					
JTAG BST circuitry			√ (1)					
Open-drain output option			✓					
Fast input registers		✓	✓					
Six global output enables		✓	✓					
Two global clocks		✓	✓					
Slew-rate control		✓	✓					
MultiVolt interface (2)	✓	✓	✓					
Programmable register	✓	✓	✓					
Parallel expanders	✓	✓	✓					
Shared expanders	✓	✓	✓					
Power-saving mode	✓	✓	✓					
Security bit	✓	✓	✓					
PCI-compliant devices available	✓	✓	✓					

Notes:

- (1) Available only in EPM7128S, EPM7160S, EPM7192S, and EPM7256S devices only.
- (2) The MultiVolt I/O interface is not available in 44-pin packages.

The MAX 7000 architecture supports 100% TTL emulation and high-density integration of SSI, MSI, and LSI logic functions. The MAX 7000 architecture easily integrates multiple devices ranging from PALs, GALs, and 22V10s to MACH and pLSI devices. MAX 7000 devices are available in a wide range of packages, including PLCC, PGA, PQFP, RQFP, and TQFP packages. See Table 5.

Table 5. M.	Table 5. MAX 7000 Maximum User I/O Pins Note (1)											
Device	44- Pin PLCC	44- Pin PQFP	44- Pin TQFP	68- Pin PLCC	84- Pin PLCC	100- Pin PQFP	100- Pin TQFP	160- Pin PQFP	160- Pin PGA	192- Pin PGA	208- Pin PQFP	208- Pin RQFP
EPM7032	36	36	36									
EPM7032S	36		36									
EPM7064	36		36	52	68	68						
EPM7064S	36		36		68		68					
EPM7096				52	64	76						
EPM7128E					68	84		100				
EPM7128S					68	84	84 (2)	100				
EPM7160E					64	84		104				
EPM7160S					64		84 (2)	104				
EPM7192E								124	124			
EPM7192S								124				
EPM7256E								132 (2)		164		164
EPM7256S											164 (2)	164

Notes:

- When the JTAG interface in MAX 7000S devices is used for either boundary-scan testing or for ISP, four I/O pins become JTAG pins.
- (2) Perform a complete thermal analysis before committing a design to this device package. For more information, see the Operating Requirements for Altera Devices Data Sheet.

MAX 7000 devices use CMOS EEPROM cells to implement logic functions. The user-configurable MAX 7000 architecture accommodates a variety of independent combinatorial and sequential logic functions. The devices can be reprogrammed for quick and efficient iterations during design development and debug cycles, and can be programmed and erased up to 100 times.

When the tri-state buffer control is connected to ground, the output is tri-stated (high impedance) and the I/O pin can be used as a dedicated input. When the tri-state buffer control is connected to V_{CC} , the output is enabled.

The MAX 7000 architecture provides dual I/O feedback, in which macrocell and pin feedbacks are independent. When an I/O pin is configured as an input, the associated macrocell can be used for buried logic.

In-System Programmability (ISP)

MAX 7000S devices are in-system programmable via an industry-standard 4-pin Joint Test Action Group (JTAG) interface (IEEE Std. 1149.1-1990). ISP allows quick, efficient iterations during design development and debugging cycles. The MAX 7000S architecture internally generates the high programming voltage required to program EEPROM cells, allowing in-system programming with only a single 5.0 V power supply. During in-system programming, the I/O pins are tri-stated and pulled-up to eliminate board conflicts. The pull-up value is nominally 50 k%.

ISP simplifies the manufacturing flow by allowing devices to be mounted on a printed circuit board with standard in-circuit test equipment before they are programmed. MAX 7000S devices can be programmed by downloading the information via in-circuit testers (ICT), embedded processors, or the Altera MasterBlaster, ByteBlasterMV, ByteBlaster, BitBlaster download cables. (The ByteBlaster cable is obsolete and is replaced by the ByteBlasterMV cable, which can program and configure 2.5-V, 3.3-V, and 5.0-V devices.) Programming the devices after they are placed on the board eliminates lead damage on high-pin-count packages (e.g., QFP packages) due to device handling and allows devices to be reprogrammed after a system has already shipped to the field. For example, product upgrades can be performed in the field via software or modem.

In-system programming can be accomplished with either an adaptive or constant algorithm. An adaptive algorithm reads information from the unit and adapts subsequent programming steps to achieve the fastest possible programming time for that unit. Because some in-circuit testers cannot support an adaptive algorithm, Altera offers devices tested with a constant algorithm. Devices tested to the constant algorithm have an "F" suffix in the ordering code.

The JamTM Standard Test and Programming Language (STAPL) can be used to program MAX 7000S devices with in-circuit testers, PCs, or embedded processor.

Programming Times

The time required to implement each of the six programming stages can be broken into the following two elements:

- A pulse time to erase, program, or read the EEPROM cells.
- A shifting time based on the test clock (TCK) frequency and the number of TCK cycles to shift instructions, address, and data into the device.

By combining the pulse and shift times for each of the programming stages, the program or verify time can be derived as a function of the TCK frequency, the number of devices, and specific target device(s). Because different ISP-capable devices have a different number of EEPROM cells, both the total fixed and total variable times are unique for a single device.

Programming a Single MAX 7000S Device

The time required to program a single MAX 7000S device in-system can be calculated from the following formula:

$$t_{PROG} = t_{PPULSE} + \frac{Cycle_{PTCK}}{f_{TCK}}$$

where: t_{PROG} = Programming time t_{PPULSE} = Sum of the fixed times to erase, program, and

verify the EEPROM cells

 $Cycle_{PTCK}$ = Number of TCK cycles to program a device

= TCK frequency

The ISP times for a stand-alone verification of a single MAX 7000S device can be calculated from the following formula:

$$t_{VER} = t_{VPULSE} + \frac{Cycle_{VTCK}}{f_{TCK}}$$

where: t_{VER} = Verify time

 t_{VPULSE} = Sum of the fixed times to verify the EEPROM cells

 $Cycle_{VTCK}$ = Number of TCK cycles to verify a device

By using an external 5.0-V pull-up resistor, output pins on MAX 7000S devices can be set to meet 5.0-V CMOS input voltages. When $V_{\rm CCIO}$ is 3.3 V, setting the open drain option will turn off the output pull-up transistor, allowing the external pull-up resistor to pull the output high enough to meet 5.0-V CMOS input voltages. When $V_{\rm CCIO}$ is 5.0 V, setting the output drain option is not necessary because the pull-up transistor will already turn off when the pin exceeds approximately 3.8 V, allowing the external pull-up resistor to pull the output high enough to meet 5.0-V CMOS input voltages.

Slew-Rate Control

The output buffer for each MAX 7000E and MAX 7000S I/O pin has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A faster slew rate provides high-speed transitions for high-performance systems. However, these fast transitions may introduce noise transients into the system. A slow slew rate reduces system noise, but adds a nominal delay of 4 to 5 ns. In MAX 7000E devices, when the Turbo Bit is turned off, the slew rate is set for low noise performance. For MAX 7000S devices, each I/O pin has an individual EEPROM bit that controls the slew rate, allowing designers to specify the slew rate on a pin-by-pin basis.

Programming with External Hardware

MAX 7000 devices can be programmed on Windows-based PCs with the Altera Logic Programmer card, the Master Programming Unit (MPU), and the appropriate device adapter. The MPU performs a continuity check to ensure adequate electrical contact between the adapter and the device.

For more information, see the *Altera Programming Hardware Data Sheet*.

The Altera development system can use text- or waveform-format test vectors created with the Text Editor or Waveform Editor to test the programmed device. For added design verification, designers can perform functional testing to compare the functional behavior of a MAX 7000 device with the results of simulation. Moreover, Data I/O, BP Microsystems, and other programming hardware manufacturers also provide programming support for Altera devices.

For more information, see the *Programming Hardware Manufacturers*.

IEEE Std. 1149.1 (JTAG) Boundary-Scan Support

MAX 7000 devices support JTAG BST circuitry as specified by IEEE Std. 1149.1-1990. Table 9 describes the JTAG instructions supported by the MAX 7000 family. The pin-out tables (see the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information) show the location of the JTAG control pins for each device. If the JTAG interface is not required, the JTAG pins are available as user I/O pins.

Table 9. MAX 7000 J	ITAG Instruction	s
JTAG Instruction	Devices	Description
SAMPLE/PRELOAD	EPM7128S EPM7160S EPM7192S	Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern output at the device pins.
	EPM7256S	pattern output at the device pins.
EXTEST	EPM7128S EPM7160S EPM7192S EPM7256S	Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins.
BYPASS	EPM7032S EPM7064S EPM7128S EPM7160S EPM7192S EPM7256S	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through a selected device to adjacent devices during normal device operation.
IDCODE	EPM7032S EPM7064S EPM7128S EPM7160S EPM7192S EPM7256S	Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be serially shifted out of TDO.
ISP Instructions	EPM7032S EPM7064S EPM7128S EPM7160S EPM7192S EPM7256S	These instructions are used when programming MAX 7000S devices via the JTAG ports with the MasterBlaster, ByteBlasterMV, BitBlaster download cable, or using a Jam File (.jam), Jam Byte-Code file (.jbc), or Serial Vector Format file (.svf) via an embedded processor or test equipment.

Operating Conditions

Tables 13 through 18 provide information about absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for 5.0-V MAX 7000 devices.

Table 1	Table 13. MAX 7000 5.0-V Device Absolute Maximum Ratings Note (1)									
Symbol	Parameter	Conditions	Min	Max	Unit					
V _{CC}	Supply voltage	With respect to ground (2)	-2.0	7.0	V					
VI	DC input voltage		-2.0	7.0	V					
I _{OUT}	DC output current, per pin		-25	25	mA					
T _{STG}	Storage temperature	No bias	-65	150	° C					
T _{AMB}	Ambient temperature	Under bias	-65	135	° C					
TJ	Junction temperature	Ceramic packages, under bias		150	°C					
		PQFP and RQFP packages, under bias		135	°C					

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4), (5)	4.75 (4.50)	5.25 (5.50)	V
V _{CCIO}	Supply voltage for output drivers, 5.0-V operation	(3), (4)	4.75 (4.50)	5.25 (5.50)	V
	Supply voltage for output drivers, 3.3-V operation	(3), (4), (6)	3.00 (3.00)	3.60 (3.60)	V
V _{CCISP}	Supply voltage during ISP	(7)	4.75	5.25	V
V _I	Input voltage		-0.5 (8)	V _{CCINT} + 0.5	V
Vo	Output voltage		0	V _{CCIO}	V
T _A	Ambient temperature	For commercial use	0	70	°C
		For industrial use	-40	85	°C
TJ	Junction temperature	For commercial use	0	90	°C
		For industrial use	-40	105	° C
t _R	Input rise time			40	ns
t _F	Input fall time			40	ns

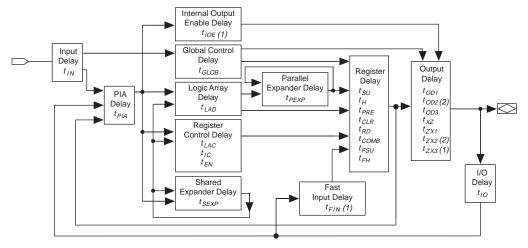

Symbol	Parameter	Conditions	Min	Max	Unit
V _{IH}	High-level input voltage		2.0	V _{CCINT} + 0.5	V
V _{IL}	Low-level input voltage		-0.5 (8)	0.8	V
V _{OH}	5.0-V high-level TTL output voltage	$I_{OH} = -4 \text{ mA DC}, V_{CCIO} = 4.75 \text{ V} (10)$	2.4		V
	3.3-V high-level TTL output voltage	$I_{OH} = -4 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V } (10)$	2.4		V
	3.3-V high-level CMOS output voltage	$I_{OH} = -0.1 \text{ mA DC}, V_{CCIO} = 3.0 \text{ V } (10)$	V _{CCIO} - 0.2		V
V _{OL}	5.0-V low-level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 4.75 V (11)		0.45	V
	3.3-V low-level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 3.00 V (11)		0.45	V
	3.3-V low-level CMOS output voltage	$I_{OL} = 0.1 \text{ mA DC}, V_{CCIO} = 3.0 V(11)$		0.2	V
I _I	Leakage current of dedicated input pins	V _I = -0.5 to 5.5 V (11)	-10	10	μА
l _{OZ}	I/O pin tri-state output off-state current	V _I = -0.5 to 5.5 V (11), (12)	-40	40	μА

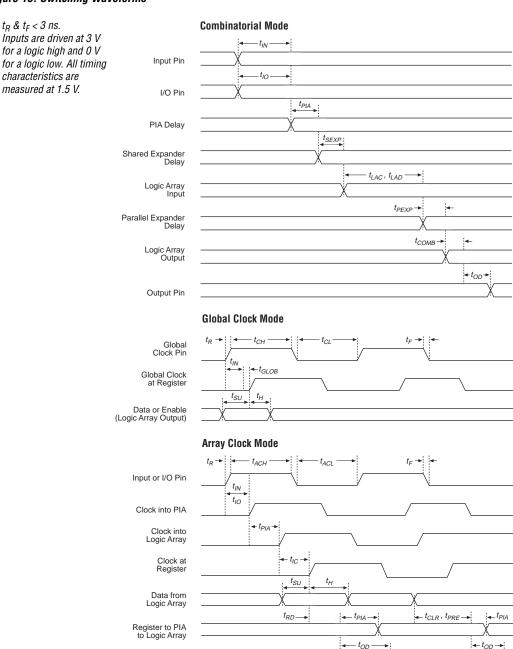
Table 1	able 16. MAX 7000 5.0-V Device Capacitance: EPM7032, EPM7064 & EPM7096 Devices Note (13)				
Symbol	Parameter Conditions Min				Unit
C _{IN}	Input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		12	pF
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		12	pF

Table 1	7. MAX 7000 5.0-V Device Capa	acitance: MAX 7000E Devices Note	(13)		
Symbol	Parameter	Conditions	Min	Max	Unit
C _{IN}	Input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		15	pF
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		15	pF

Table 1	8. MAX 7000 5.0-V Device Capa	ncitance: MAX 7000S Devices Note	(13)		
Symbol	Parameter	Conditions	Min	Max	Unit
C _{IN}	Dedicated input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		10	pF

Figure 12. MAX 7000 Timing Model

Notes:


- (1) Only available in MAX 7000E and MAX 7000S devices.
- (2) Not available in 44-pin devices.

The timing characteristics of any signal path can be derived from the timing model and parameters of a particular device. External timing parameters, which represent pin-to-pin timing delays, can be calculated as the sum of internal parameters. Figure 13 shows the internal timing relationship of internal and external delay parameters.

For more infomration, see *Application Note* 94 (Understanding MAX 7000 *Timing*).

Figure 13. Switching Waveforms

30 Altera Corporation

Register Output to Pin

Tables 19 through 26 show the MAX 7000 and MAX 7000E AC operating conditions.

Table 19	. MAX 7000 & MAX 7000E Extern	al Timing Para	meters	Note (1)				
Symbol	Parameter	Conditions	-6 Speed Grade		-7 Speed Grade		Unit	
				Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF		6.0		7.5	ns	
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		6.0		7.5	ns	
t _{SU}	Global clock setup time		5.0		6.0		ns	
t _H	Global clock hold time		0.0		0.0		ns	
t _{FSU}	Global clock setup time of fast input	(2)	2.5		3.0		ns	
t _{FH}	Global clock hold time of fast input	(2)	0.5		0.5		ns	
t _{CO1}	Global clock to output delay	C1 = 35 pF		4.0		4.5	ns	
t _{CH}	Global clock high time		2.5		3.0		ns	
t _{CL}	Global clock low time		2.5		3.0		ns	
t _{ASU}	Array clock setup time		2.5		3.0		ns	
t _{AH}	Array clock hold time		2.0		2.0		ns	
t _{ACO1}	Array clock to output delay	C1 = 35 pF		6.5		7.5	ns	
t _{ACH}	Array clock high time		3.0		3.0		ns	
t _{ACL}	Array clock low time		3.0		3.0		ns	
t _{CPPW}	Minimum pulse width for clear and preset	(3)	3.0		3.0		ns	
t _{ODH}	Output data hold time after clock	C1 = 35 pF (4)	1.0		1.0		ns	
t _{CNT}	Minimum global clock period			6.6		8.0	ns	
f _{CNT}	Maximum internal global clock frequency	(5)	151.5		125.0		MHz	
t _{ACNT}	Minimum array clock period			6.6		8.0	ns	
f _{ACNT}	Maximum internal array clock frequency	(5)	151.5		125.0		MHz	
f _{MAX}	Maximum clock frequency	(6)	200		166.7		MHz	

Symbol	Parameter	Conditions	Speed	Grade -6	Speed (Unit	
			Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.4		0.5	ns
t_{IO}	I/O input pad and buffer delay			0.4		0.5	ns
t _{FIN}	Fast input delay	(2)		0.8		1.0	ns
t _{SEXP}	Shared expander delay			3.5		4.0	ns
t_{PEXP}	Parallel expander delay			0.8		0.8	ns
t_{LAD}	Logic array delay			2.0		3.0	ns
t _{LAC}	Logic control array delay			2.0		3.0	ns
t _{IOE}	Internal output enable delay	(2)				2.0	ns
t _{OD1}	Output buffer and pad delay Slow slew rate = off, V _{CCIO} = 5.0 V	C1 = 35 pF		2.0		2.0	ns
t _{OD2}	Output buffer and pad delay Slow slew rate = off, V _{CCIO} = 3.3 V	C1 = 35 pF (7)		2.5		2.5	ns
t _{OD3}	Output buffer and pad delay Slow slew rate = on, V _{CCIO} = 5.0 V or 3.3 V	C1 = 35 pF (2)		7.0		7.0	ns
t _{ZX1}	Output buffer enable delay Slow slew rate = off, V _{CCIO} = 5.0 V	C1 = 35 pF		4.0		4.0	ns
t _{ZX2}	Output buffer enable delay Slow slew rate = off, V _{CCIO} = 3.3 V	C1 = 35 pF (7)		4.5		4.5	ns
t _{ZX3}	Output buffer enable delay Slow slew rate = on V _{CCIO} = 5.0 V or 3.3 V	C1 = 35 pF (2)		9.0		9.0	ns
t_{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0	ns
t_{SU}	Register setup time		3.0		3.0		ns
t_H	Register hold time		1.5		2.0		ns
t _{FSU}	Register setup time of fast input	(2)	2.5		3.0		ns
t_{FH}	Register hold time of fast input	(2)	0.5		0.5		ns
t_{RD}	Register delay			0.8		1.0	ns
t _{COMB}	Combinatorial delay			0.8		1.0	ns
t _{IC}	Array clock delay			2.5		3.0	ns
t _{EN}	Register enable time			2.0		3.0	ns
t _{GLOB}	Global control delay			0.8		1.0	ns
t _{PRE}	Register preset time			2.0		2.0	ns
t _{CLR}	Register clear time			2.0		2.0	ns
t _{PIA}	PIA delay			0.8		1.0	ns
t_{LPA}	Low-power adder	(8)		10.0		10.0	ns

Table 2	21. MAX 7000 & MAX 7000E Ext	ernal Timing Param	eters Note	(1)						
Symbol	Parameter	Conditions		Speed Grade						
			MAX 700	OE (-10P)	MAX 70	-				
			Min	Max	Min	Max				
t _{PD1}	Input to non-registered output	C1 = 35 pF		10.0		10.0	ns			
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		10.0		10.0	ns			
t _{SU}	Global clock setup time		7.0		8.0		ns			
t _H	Global clock hold time		0.0		0.0		ns			
t _{FSU}	Global clock setup time of fast input	(2)	3.0		3.0		ns			
t _{FH}	Global clock hold time of fast input	(2)	0.5		0.5		ns			
t _{CO1}	Global clock to output delay	C1 = 35 pF		5.0		5	ns			
t _{CH}	Global clock high time		4.0		4.0		ns			
t _{CL}	Global clock low time		4.0		4.0		ns			
t _{ASU}	Array clock setup time		2.0		3.0		ns			
t _{AH}	Array clock hold time		3.0		3.0		ns			
t _{ACO1}	Array clock to output delay	C1 = 35 pF		10.0		10.0	ns			
t _{ACH}	Array clock high time		4.0		4.0		ns			
t _{ACL}	Array clock low time		4.0		4.0		ns			
t _{CPPW}	Minimum pulse width for clear and preset	(3)	4.0		4.0		ns			
t _{ODH}	Output data hold time after clock	C1 = 35 pF (4)	1.0		1.0		ns			
t _{CNT}	Minimum global clock period			10.0		10.0	ns			
f _{CNT}	Maximum internal global clock frequency	(5)	100.0		100.0		MHz			
t _{ACNT}	Minimum array clock period			10.0		10.0	ns			
f _{ACNT}	Maximum internal array clock frequency	(5)	100.0		100.0		MHz			
f _{MAX}	Maximum clock frequency	(6)	125.0		125.0		MHz			

Table 23. MAX 7000 & MAX 7000E External Timing Parameters Note (1)										
Symbol	Parameter	Conditions	Speed Grade							
			MAX 700	0E (-12P)	MAX 70					
			Min	Max	Min	Max				
t _{PD1}	Input to non-registered output	C1 = 35 pF		12.0		12.0	ns			
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		12.0		12.0	ns			
t _{SU}	Global clock setup time		7.0		10.0		ns			
t _H	Global clock hold time		0.0		0.0		ns			
t _{FSU}	Global clock setup time of fast input	(2)	3.0		3.0		ns			
t _{FH}	Global clock hold time of fast input	(2)	0.0		0.0		ns			
t _{CO1}	Global clock to output delay	C1 = 35 pF		6.0		6.0	ns			
t _{CH}	Global clock high time		4.0		4.0		ns			
t _{CL}	Global clock low time		4.0		4.0		ns			
t _{ASU}	Array clock setup time		3.0		4.0		ns			
t _{AH}	Array clock hold time		4.0		4.0		ns			
t _{ACO1}	Array clock to output delay	C1 = 35 pF		12.0		12.0	ns			
t _{ACH}	Array clock high time		5.0		5.0		ns			
t _{ACL}	Array clock low time		5.0		5.0		ns			
t _{CPPW}	Minimum pulse width for clear and preset	(3)	5.0		5.0		ns			
t _{ODH}	Output data hold time after clock	C1 = 35 pF (4)	1.0		1.0		ns			
t _{CNT}	Minimum global clock period			11.0		11.0	ns			
f _{CNT}	Maximum internal global clock frequency	(5)	90.9		90.9		MHz			
t _{ACNT}	Minimum array clock period			11.0		11.0	ns			
f _{ACNT}	Maximum internal array clock frequency	(5)	90.9		90.9		MHz			
f _{MAX}	Maximum clock frequency	(6)	125.0		125.0		MHz			

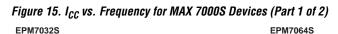
Notes to tables:

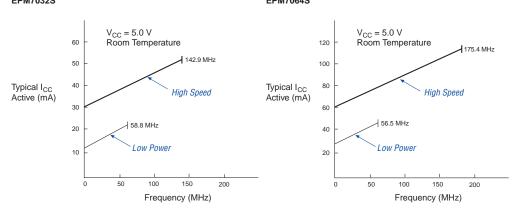
- (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This parameter applies to MAX 7000E devices only.
- This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (4) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (5) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (6) The f_{MAX} values represent the highest frequency for pipelined data.
- (7) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells running in the low-power mode.

Tables 27 and 28 show the EPM7032S AC operating conditions.

Table 27. EPM7032S External Timing Parameters (Part 1 of 2) Note (1)												
Symbol	Parameter	Conditions	Speed Grade									
			-5		-6		-7		-10		•	
			Min	Max	Min	Max	Min	Max	Min	Max		
t _{PD1}	Input to non-registered output	C1 = 35 pF		5.0		6.0		7.5		10.0	ns	
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		5.0		6.0		7.5		10.0	ns	
t _{SU}	Global clock setup time		2.9		4.0		5.0		7.0		ns	
t _H	Global clock hold time		0.0		0.0		0.0		0.0		ns	
t _{FSU}	Global clock setup time of fast input		2.5		2.5		2.5		3.0		ns	
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.0		0.5		ns	
t _{CO1}	Global clock to output delay	C1 = 35 pF		3.2		3.5		4.3		5.0	ns	
t _{CH}	Global clock high time		2.0		2.5		3.0		4.0		ns	
t _{CL}	Global clock low time		2.0		2.5		3.0		4.0		ns	
t _{ASU}	Array clock setup time		0.7		0.9		1.1		2.0		ns	
t _{AH}	Array clock hold time		1.8		2.1		2.7		3.0		ns	
t _{ACO1}	Array clock to output delay	C1 = 35 pF		5.4		6.6		8.2		10.0	ns	
t _{ACH}	Array clock high time		2.5		2.5		3.0		4.0		ns	
t _{ACL}	Array clock low time		2.5		2.5		3.0		4.0		ns	
t _{CPPW}	Minimum pulse width for clear and preset	(2)	2.5		2.5		3.0		4.0		ns	
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		1.0		ns	
t _{CNT}	Minimum global clock period			5.7		7.0		8.6		10.0	ns	
f _{CNT}	Maximum internal global clock frequency	(4)	175.4		142.9		116.3		100.0		MHz	
t _{ACNT}	Minimum array clock period			5.7		7.0		8.6		10.0	ns	

Symbol	Parameter	Conditions	Speed Grade									
			-6		-7		-10		-15			
			Min	Max	Min	Max	Min	Max	Min	Max	-	
t _{IN}	Input pad and buffer delay			0.2		0.5		0.5		2.0	ns	
t _{IO}	I/O input pad and buffer delay			0.2		0.5		0.5		2.0	ns	
t _{FIN}	Fast input delay			2.6		1.0		1.0		2.0	ns	
t _{SEXP}	Shared expander delay			3.7		4.0		5.0		8.0	ns	
t _{PEXP}	Parallel expander delay			1.1		0.8		0.8		1.0	ns	
t_{LAD}	Logic array delay			3.0		3.0		5.0		6.0	ns	
t_{LAC}	Logic control array delay			3.0		3.0		5.0		6.0	ns	
t _{IOE}	Internal output enable delay			0.7		2.0		2.0		3.0	ns	
t _{OD1}	Output buffer and pad delay	C1 = 35 pF		0.4		2.0		1.5		4.0	ns	
t _{OD2}	Output buffer and pad delay	C1 = 35 pF (6)		0.9		2.5		2.0		5.0	ns	
t _{OD3}	Output buffer and pad delay	C1 = 35 pF		5.4		7.0		5.5		8.0	ns	
t _{ZX1}	Output buffer enable delay	C1 = 35 pF		4.0		4.0		5.0		6.0	ns	
t _{ZX2}	Output buffer enable delay	C1 = 35 pF (6)		4.5		4.5		5.5		7.0	ns	
t_{ZX3}	Output buffer enable delay	C1 = 35 pF		9.0		9.0		9.0		10.0	ns	
t_{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		5.0		6.0	ns	
t _{SU}	Register setup time		1.0		3.0		2.0		4.0		ns	
t _H	Register hold time		1.7		2.0		5.0		4.0		ns	
t _{FSU}	Register setup time of fast input		1.9		3.0		3.0		2.0		ns	
t _{FH}	Register hold time of fast input		0.6		0.5		0.5		1.0		ns	
t_{RD}	Register delay			1.4		1.0		2.0		1.0	ns	
t _{COMB}	Combinatorial delay			1.0		1.0		2.0		1.0	ns	
t _{IC}	Array clock delay			3.1		3.0		5.0		6.0	ns	
t _{EN}	Register enable time			3.0		3.0		5.0		6.0	ns	
t_{GLOB}	Global control delay			2.0		1.0		1.0		1.0	ns	
t _{PRE}	Register preset time			2.4		2.0		3.0		4.0	ns	
t _{CLR}	Register clear time			2.4		2.0		3.0		4.0	ns	
t_{PIA}	PIA delay	(7)		1.4		1.0		1.0		2.0	ns	
t_{LPA}	Low-power adder	(8)		11.0		10.0		11.0		13.0	ns	


Notes to tables:


- These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode.

Tables 33 and 34 show the EPM7160S AC operating conditions.

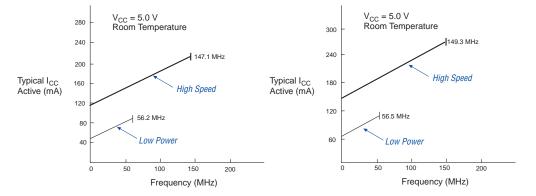
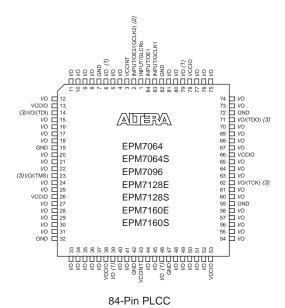

Table 33. EPM7160S External Timing Parameters (Part 1 of 2) Note (1)											
Symbol	Parameter	Conditions Speed Grade									
			-6		-7		-1	0 -1		15	
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns
t _{SU}	Global clock setup time		3.4		4.2		7.0		11.0		ns
t _H	Global clock hold time		0.0		0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.5		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		3.9		4.8		5		8	ns
t _{CH}	Global clock high time		3.0		3.0		4.0		5.0		ns
t _{CL}	Global clock low time		3.0		3.0		4.0		5.0		ns
t _{ASU}	Array clock setup time		0.9		1.1		2.0		4.0		ns
t _{AH}	Array clock hold time		1.7		2.1		3.0		4.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		6.4		7.9		10.0		15.0	ns
t _{ACH}	Array clock high time		3.0		3.0		4.0		6.0		ns
t _{ACL}	Array clock low time		3.0		3.0		4.0		6.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(2)	2.5		3.0		4.0		6.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		1.0		ns
t _{CNT}	Minimum global clock period			6.7		8.2		10.0		13.0	ns
f _{CNT}	Maximum internal global clock frequency	(4)	149.3		122.0		100.0		76.9		MHz

Figure 15 shows typical supply current versus frequency for MAX 7000S devices.



EPM7128S EPM7160S

Figure 18. 84-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

Notes:

- (1) Pins 6, 39, 46, and 79 are no-connect (N.C.) pins on EPM7096, EPM7160E, and EPM7160S devices.
- (2) The pin functions shown in parenthesis are only available in MAX 7000E and MAX 7000S devices.
- (3) JTAG ports are available in MAX 7000S devices only.

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 www.altera.com Applications Hotline: (800) 800-EPLD Literature Services: literature@altera.com Copyright © 2005 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

I.S. EN ISO 9001