E·XFL

Intel - EPM7096QC100-12 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Details	
Product Status	Obsolete
Programmable Type	EE PLD
Delay Time tpd(1) Max	12 ns
Voltage Supply - Internal	4.75V ~ 5.25V
Number of Logic Elements/Blocks	6
Number of Macrocells	96
Number of Gates	1800
Number of I/O	76
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-PQFP (20x14)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm7096qc100-12

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MAX 7000 devices contain from 32 to 256 macrocells that are combined into groups of 16 macrocells, called logic array blocks (LABs). Each macrocell has a programmable-AND/fixed-OR array and a configurable register with independently programmable clock, clock enable, clear, and preset functions. To build complex logic functions, each macrocell can be supplemented with both shareable expander product terms and highspeed parallel expander product terms to provide up to 32 product terms per macrocell.

The MAX 7000 family provides programmable speed/power optimization. Speed-critical portions of a design can run at high speed/full power, while the remaining portions run at reduced speed/low power. This speed/power optimization feature enables the designer to configure one or more macrocells to operate at 50% or lower power while adding only a nominal timing delay. MAX 7000E and MAX 7000S devices also provide an option that reduces the slew rate of the output buffers, minimizing noise transients when non-speed-critical signals are switching. The output drivers of all MAX 7000 devices (except 44-pin devices) can be set for either 3.3-V or 5.0-V operation, allowing MAX 7000 devices to be used in mixed-voltage systems.

The MAX 7000 family is supported by Altera development systems, which are integrated packages that offer schematic, text—including VHDL, Verilog HDL, and the Altera Hardware Description Language (AHDL)— and waveform design entry, compilation and logic synthesis, simulation and timing analysis, and device programming. The software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry-standard PC- and UNIX-workstation-based EDA tools. The software runs on Windows-based PCs, as well as Sun SPARCstation, and HP 9000 Series 700/800 workstations.

-

For more information on development tools, see the MAX+PLUS II Programmable Logic Development System & Software Data Sheet and the Quartus Programmable Logic Development System & Software Data Sheet.

Functional Description

The MAX 7000 architecture includes the following elements:

- Logic array blocks
- Macrocells
- Expander product terms (shareable and parallel)
- Programmable interconnect array
- I/O control blocks

Figure 2 shows the architecture of MAX 7000E and MAX 7000S devices.

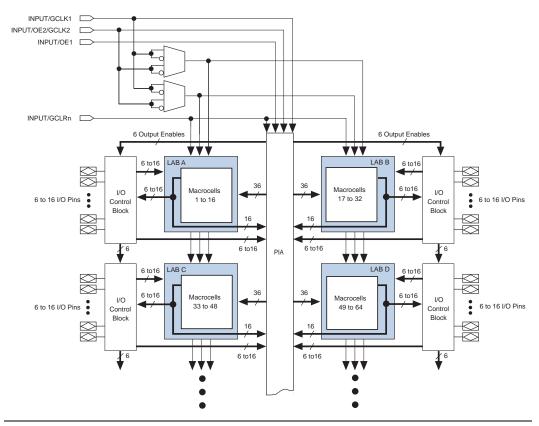
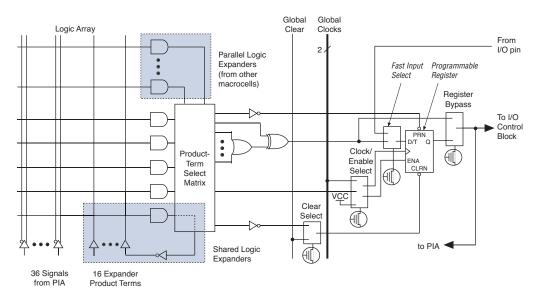


Figure 2. MAX 7000E & MAX 7000S Device Block Diagram

Logic Array Blocks


The MAX 7000 device architecture is based on the linking of highperformance, flexible, logic array modules called logic array blocks (LABs). LABs consist of 16-macrocell arrays, as shown in Figures 1 and 2. Multiple LABs are linked together via the programmable interconnect array (PIA), a global bus that is fed by all dedicated inputs, I/O pins, and macrocells. Each LAB is fed by the following signals:

- **3**6 signals from the PIA that are used for general logic inputs
- Global controls that are used for secondary register functions
- Direct input paths from I/O pins to the registers that are used for fast setup times for MAX 7000E and MAX 7000S devices

Macrocells

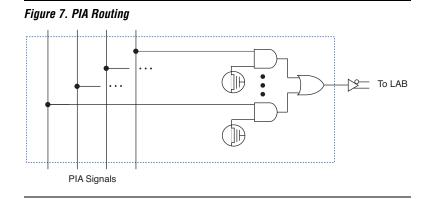
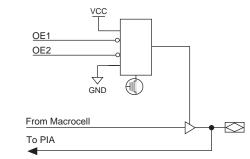

The MAX 7000 macrocell can be individually configured for either sequential or combinatorial logic operation. The macrocell consists of three functional blocks: the logic array, the product-term select matrix, and the programmable register. The macrocell of EPM7032, EPM7064, and EPM7096 devices is shown in Figure 3.

Figure 3. EPM7032, EPM7064 & EPM7096 Device Macrocell

Programmable Interconnect Array

Logic is routed between LABs via the programmable interconnect array (PIA). This global bus is a programmable path that connects any signal source to any destination on the device. All MAX 7000 dedicated inputs, I/O pins, and macrocell outputs feed the PIA, which makes the signals available throughout the entire device. Only the signals required by each LAB are actually routed from the PIA into the LAB. Figure 7 shows how the PIA signals are routed into the LAB. An EEPROM cell controls one input to a 2-input AND gate, which selects a PIA signal to drive into the LAB.


While the routing delays of channel-based routing schemes in masked or FPGAs are cumulative, variable, and path-dependent, the MAX 7000 PIA has a fixed delay. The PIA thus eliminates skew between signals and makes timing performance easy to predict.

I/O Control Blocks

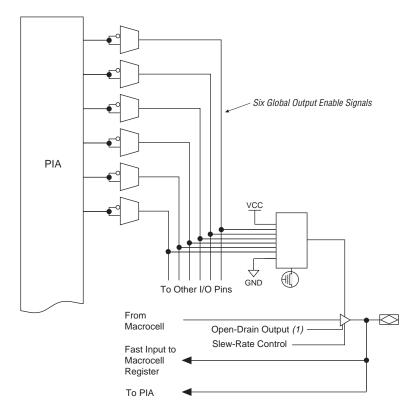

The I/O control block allows each I/O pin to be individually configured for input, output, or bidirectional operation. All I/O pins have a tri-state buffer that is individually controlled by one of the global output enable signals or directly connected to ground or V_{CC} . Figure 8 shows the I/O control block for the MAX 7000 family. The I/O control block of EPM7032, EPM7064, and EPM7096 devices has two global output enable signals that are driven by two dedicated active-low output enable pins (OE1 and OE2). The I/O control block of MAX 7000E and MAX 7000S devices has six global output enable signals that are driven by the true or complement of two output enable signals, a subset of the I/O pins, or a subset of the I/O macrocells.

Figure 8. I/O Control Block of MAX 7000 Devices

EPM7032, EPM7064 & EPM7096 Devices

Note:

(1) The open-drain output option is available only in MAX 7000S devices.

The instruction register length of MAX 7000S devices is 10 bits. Tables 10 and 11 show the boundary-scan register length and device IDCODE information for MAX 7000S devices.

Table 10. MAX 7000S Boundary-Scan Register Length				
Device Boundary-Scan Register Length				
EPM7032S	1 (1)			
EPM7064S	1 (1)			
EPM7128S	288			
EPM7160S	312			
EPM7192S	360			
EPM7256S	480			

Note:

 This device does not support JTAG boundary-scan testing. Selecting either the EXTEST or SAMPLE/PRELOAD instruction will select the one-bit bypass register.

Table 11. 32-Bit MAX 7000 Device IDCODE Note (1)							
Device		IDCODE (32 Bits)					
	Version (4 Bits)	Part Number (16 Bits)	Manufacturer's Identity (11 Bits)	1 (1 Bit) (2)			
EPM7032S	0000	0111 0000 0011 0010	00001101110	1			
EPM7064S	0000	0111 0000 0110 0100	00001101110	1			
EPM7128S	0000	0111 0001 0010 1000	00001101110	1			
EPM7160S	0000	0111 0001 0110 0000	00001101110	1			
EPM7192S	0000	0111 0001 1001 0010	00001101110	1			
EPM7256S	0000	0111 0010 0101 0110	00001101110	1			

Notes:

(1) The most significant bit (MSB) is on the left.

(2) The least significant bit (LSB) for all JTAG IDCODEs is 1.

devices.

Figure 9 shows the timing requirements for the JTAG signals.

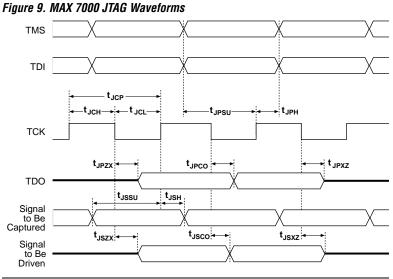


Table 12 shows the JTAG timing parameters and values for MAX 7000S

Table 1	Table 12. JTAG Timing Parameters & Values for MAX 7000S Devices							
Symbol	Parameter	Min	Мах	Unit				
t _{JCP}	TCK clock period	100		ns				
t _{JCH}	TCK clock high time	50		ns				
t _{JCL}	TCK clock low time	50		ns				
t _{JPSU}	JTAG port setup time	20		ns				
t _{JPH}	JTAG port hold time	45		ns				
t _{JPCO}	JTAG port clock to output		25	ns				
t _{JPZX}	JTAG port high impedance to valid output		25	ns				
t _{JPXZ}	JTAG port valid output to high impedance		25	ns				
t _{JSSU}	Capture register setup time	20		ns				
t _{JSH}	Capture register hold time	45		ns				
t _{JSCO}	Update register clock to output		25	ns				
t _{JSZX}	Update register high impedance to valid output		25	ns				
t _{JSXZ}	Update register valid output to high impedance		25	ns				

For more information, see *Application Note* 39 (IEEE 1149.1 (JTAG) *Boundary-Scan Testing in Altera Devices*).

Operating Conditions

Tables 13 through 18 provide information about absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for 5.0-V MAX 7000 devices.

Table 13. MAX 7000 5.0-V Device Absolute Maximum Ratings Note (1)

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	Supply voltage	With respect to ground (2)	-2.0	7.0	V
VI	DC input voltage		-2.0	7.0	V
I _{OUT}	DC output current, per pin		-25	25	mA
T _{STG}	Storage temperature	No bias	-65	150	°C
T _{AMB}	Ambient temperature	Under bias	-65	135	°C
TJ	Junction temperature	Ceramic packages, under bias		150	°C
		PQFP and RQFP packages, under bias		135	°C

Table 1	Table 14. MAX 7000 5.0-V Device Recommended Operating Conditions							
Symbol	Parameter	Conditions	Min	Мах	Unit			
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4), (5)	4.75 (4.50)	5.25 (5.50)	V			
V _{CCIO}	Supply voltage for output drivers, 5.0-V operation	(3), (4)	4.75 (4.50)	5.25 (5.50)	V			
	Supply voltage for output drivers, 3.3-V operation	(3), (4), (6)	3.00 (3.00)	3.60 (3.60)	V			
V _{CCISP}	Supply voltage during ISP	(7)	4.75	5.25	V			
VI	Input voltage		-0.5 (8)	V _{CCINT} + 0.5	V			
Vo	Output voltage		0	V _{CCIO}	V			
T _A	Ambient temperature	For commercial use	0	70	°C			
		For industrial use	-40	85	°C			
TJ	Junction temperature	For commercial use	0	90	°C			
		For industrial use	-40	105	°C			
t _R	Input rise time			40	ns			
t _F	Input fall time			40	ns			

Table 15. MAX 7000 5.0-V Device DC Operating Conditions Note (9)							
Symbol	Parameter	Conditions	Min	Max	Unit		
V _{IH}	High-level input voltage		2.0	V _{CCINT} + 0.5	V		
V _{IL}	Low-level input voltage		-0.5 (8)	0.8	V		
V _{OH}	5.0-V high-level TTL output voltage	$I_{OH} = -4 \text{ mA DC}, V_{CCIO} = 4.75 \text{ V} (10)$	2.4		V		
	3.3-V high-level TTL output voltage	$I_{OH} = -4 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V} (10)$	2.4		V		
	3.3-V high-level CMOS output voltage	I_{OH} = -0.1 mA DC, V_{CCIO} = 3.0 V (10)	V _{CCIO} – 0.2		V		
V _{OL}	5.0-V low-level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 4.75 V (11)		0.45	V		
	3.3-V low-level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 3.00 V (11)		0.45	V		
	3.3-V low-level CMOS output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 3.0 V(11)		0.2	V		
I _I	Leakage current of dedicated input pins	$V_{I} = -0.5$ to 5.5 V (11)	-10	10	μΑ		
I _{OZ}	I/O pin tri-state output off-state current	V _I = -0.5 to 5.5 V (11), (12)	-40	40	μA		

Table 1	Table 16. MAX 7000 5.0-V Device Capacitance: EPM7032, EPM7064 & EPM7096 Devices Note (13)						
Symbol	Parameter	Conditions	Min	Max	Unit		
CIN	Input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		12	pF		
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		12	pF		

Table 17. MAX 7000 5.0-V Device Capacitance: MAX 7000E Devices Note (13)							
Symbol	Parameter	Conditions	Min	Max	Unit		
C _{IN}	Input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		15	pF		
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		15	pF		

Table 18. MAX 7000 5.0-V Device Capacitance: MAX 7000S Devices Note (13)							
Symbol	Parameter	Conditions	Min	Max	Unit		
CIN	Dedicated input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF		
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		10	pF		

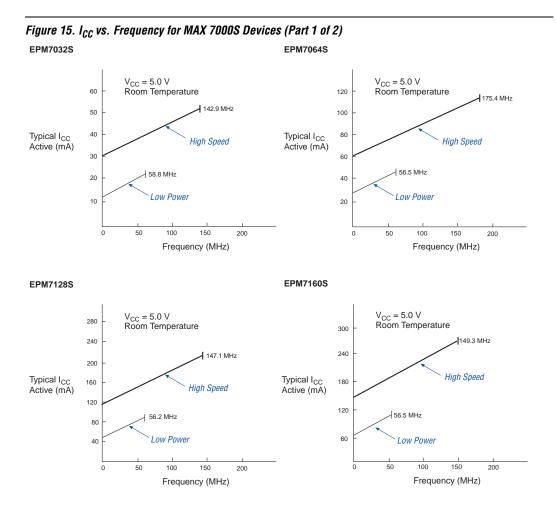
.

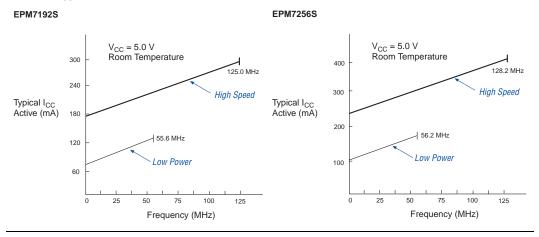
Tables 19 through 26 show the MAX 7000 and MAX 7000E AC $\,$ operating conditions.

Symbol	Parameter	Conditions	-6 Spee	d Grade	-7 Spee	d Grade	Unit
			Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF		6.0		7.5	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		6.0		7.5	ns
t _{SU}	Global clock setup time		5.0		6.0		ns
t _H	Global clock hold time		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input	(2)	2.5		3.0		ns
t _{FH}	Global clock hold time of fast input	(2)	0.5		0.5		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		4.0		4.5	ns
t _{CH}	Global clock high time		2.5		3.0		ns
t _{CL}	Global clock low time		2.5		3.0		ns
t _{ASU}	Array clock setup time		2.5		3.0		ns
t _{AH}	Array clock hold time		2.0		2.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		6.5		7.5	ns
t _{ACH}	Array clock high time		3.0		3.0		ns
t _{ACL}	Array clock low time		3.0		3.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	3.0		3.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF (4)	1.0		1.0		ns
t _{CNT}	Minimum global clock period			6.6		8.0	ns
^f сnт	Maximum internal global clock frequency	(5)	151.5		125.0		MHz
t _{ACNT}	Minimum array clock period			6.6		8.0	ns
facnt	Maximum internal array clock frequency	(5)	151.5		125.0		MHz
f _{MAX}	Maximum clock frequency	(6)	200		166.7		MHz

Symbol	Parameter	Conditions	Speed Grade				Unit
			MAX 700	OE (-12P)		00 (-12) DOE (-12)	
			Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			1.0		2.0	ns
t _{IO}	I/O input pad and buffer delay			1.0		2.0	ns
t _{FIN}	Fast input delay	(2)		1.0		1.0	ns
t _{SEXP}	Shared expander delay			7.0		7.0	ns
t _{PEXP}	Parallel expander delay			1.0		1.0	ns
t _{LAD}	Logic array delay			7.0		5.0	ns
t _{LAC}	Logic control array delay			5.0		5.0	ns
t _{IOE}	Internal output enable delay	(2)		2.0		2.0	ns
t _{OD1}	Output buffer and pad delay Slow slew rate = off $V_{CCIO} = 5.0 V$	C1 = 35 pF		1.0		3.0	ns
t _{OD2}	Output buffer and pad delay Slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF (7)		2.0		4.0	ns
t _{OD3}	Output buffer and pad delay Slow slew rate = on V _{CCIO} = 5.0 V or 3.3 V	C1 = 35 pF (2)		5.0		7.0	ns
t _{ZX1}	Output buffer enable delay Slow slew rate = off $V_{CCIO} = 5.0 V$	C1 = 35 pF		6.0		6.0	ns
t _{ZX2}	Output buffer enable delay Slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF (7)		7.0		7.0	ns
t _{ZX3}	Output buffer enable delay Slow slew rate = on $V_{CCIO} = 5.0 V \text{ or } 3.3 V$	C1 = 35 pF (2)		10.0		10.0	ns
t _{XZ}	Output buffer disable delay	C1 = 5 pF		6.0		6.0	ns
t _{SU}	Register setup time		1.0		4.0		ns
t _H	Register hold time		6.0		4.0		ns
t _{FSU}	Register setup time of fast input	(2)	4.0		2.0		ns
t _{FH}	Register hold time of fast input	(2)	0.0		2.0		ns
t _{RD}	Register delay			2.0		1.0	ns
t _{COMB}	Combinatorial delay			2.0		1.0	ns
t _{IC}	Array clock delay			5.0		5.0	ns
t _{EN}	Register enable time			7.0		5.0	ns
t _{GLOB}	Global control delay			2.0		0.0	ns
t _{PRE}	Register preset time			4.0		3.0	ns
t _{CLR}	Register clear time			4.0		3.0	ns
t _{PIA}	PIA delay			1.0		1.0	ns
t _{LPA}	Low-power adder	(8)		12.0		12.0	ns

Symbol	Parameter	Conditions	Speed Grade						
			-7		-10		-15		
			Min	Мах	Min	Max	Min	Max	1
t _{AH}	Array clock hold time		1.8		3.0		4.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		7.8		10.0		15.0	ns
t _{ACH}	Array clock high time		3.0		4.0		6.0		ns
t _{ACL}	Array clock low time		3.0		4.0		6.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(2)	3.0		4.0		6.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		ns
t _{CNT}	Minimum global clock period			8.0		10.0		13.0	ns
f _{CNT}	Maximum internal global clock frequency	(4)	125.0		100.0		76.9		MHz
t _{ACNT}	Minimum array clock period			8.0		10.0		13.0	ns
f _{acnt}	Maximum internal array clock frequency	(4)	125.0		100.0		76.9		MHz
f _{MAX}	Maximum clock frequency	(5)	166.7		125.0		100.0		MHz



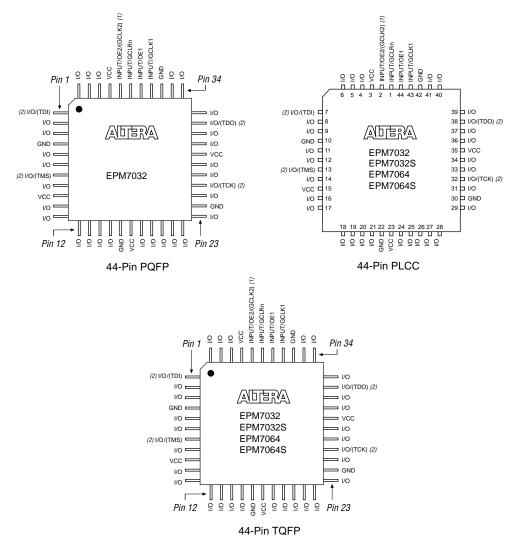

Table 36. EPM7192S Internal Timing Parameters (Part 1 of 2) Note (1)									
Symbol	Parameter	Conditions	Speed Grade						Unit
			-7		-10		-15		
			Min	Max	Min	Max	Min	Max	1
t _{IN}	Input pad and buffer delay			0.3		0.5		2.0	ns
t _{IO}	I/O input pad and buffer delay			0.3		0.5		2.0	ns
t _{FIN}	Fast input delay			3.2		1.0		2.0	ns
t _{SEXP}	Shared expander delay			4.2		5.0		8.0	ns
t _{PEXP}	Parallel expander delay			1.2		0.8		1.0	ns
t _{LAD}	Logic array delay			3.1		5.0		6.0	ns
t _{LAC}	Logic control array delay			3.1		5.0		6.0	ns
t _{IOE}	Internal output enable delay			0.9		2.0		3.0	ns
t _{OD1}	Output buffer and pad delay	C1 = 35 pF		0.5		1.5		4.0	ns
t _{OD2}	Output buffer and pad delay	C1 = 35 pF (6)		1.0		2.0		5.0	ns
t _{OD3}	Output buffer and pad delay	C1 = 35 pF		5.5		5.5		7.0	ns
t _{ZX1}	Output buffer enable delay	C1 = 35 pF		4.0		5.0		6.0	ns
t _{ZX2}	Output buffer enable delay	C1 = 35 pF (6)		4.5		5.5		7.0	ns
t _{ZX3}	Output buffer enable delay	C1 = 35 pF		9.0		9.0		10.0	ns
t _{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		5.0		6.0	ns
t _{SU}	Register setup time		1.1		2.0		4.0		ns

Symbol	Parameter	Conditions	Speed Grade						
			-7		-10		-15		
			Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF		7.5		10.0		15.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		7.5		10.0		15.0	ns
t _{SU}	Global clock setup time		3.9		7.0		11.0		ns
t _H	Global clock hold time		0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		3.0		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.5		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		4.7		5.0		8.0	ns
t _{CH}	Global clock high time		3.0		4.0		5.0		ns
t _{CL}	Global clock low time		3.0		4.0		5.0		ns
t _{ASU}	Array clock setup time		0.8		2.0		4.0		ns
t _{AH}	Array clock hold time		1.9		3.0		4.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		7.8		10.0		15.0	ns
t _{ACH}	Array clock high time		3.0		4.0		6.0		ns
t _{ACL}	Array clock low time		3.0		4.0		6.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(2)	3.0		4.0		6.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		ns
t _{CNT}	Minimum global clock period			7.8		10.0		13.0	ns
fcnt	Maximum internal global clock frequency	(4)	128.2		100.0		76.9		MHz
t _{ACNT}	Minimum array clock period			7.8		10.0		13.0	ns
f _{acnt}	Maximum internal array clock frequency	(4)	128.2		100.0		76.9		MHz
f _{MAX}	Maximum clock frequency	(5)	166.7		125.0		100.0		MHz

Tables 37 and 38 show the EPM7256S AC operating conditions.

Figure 15 shows typical supply current versus frequency for MAX 7000S devices.

Figure 15. I_{CC} vs. Frequency for MAX 7000S Devices (Part 2 of 2)

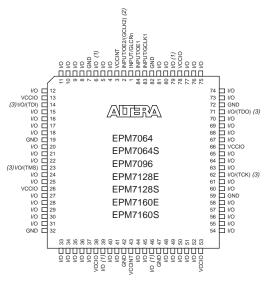

Device Pin-Outs

See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information.

Figures 16 through 22 show the package pin-out diagrams for MAX 7000 devices.

Figure 16. 44-Pin Package Pin-Out Diagram

Package outlines not drawn to scale.



Notes:

- (1) The pin functions shown in parenthesis are only available in MAX 7000E and MAX 7000S devices.
- (2) JTAG ports are available in MAX 7000S devices only.

Figure 18. 84-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

84-Pin PLCC

Notes:

- (1) Pins 6, 39, 46, and 79 are no-connect (N.C.) pins on EPM7096, EPM7160E, and EPM7160S devices.
- (2) The pin functions shown in parenthesis are only available in MAX 7000E and MAX 7000S devices.
- (3) JTAG ports are available in MAX 7000S devices only.

Figure 21. 192-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

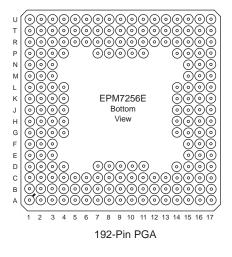
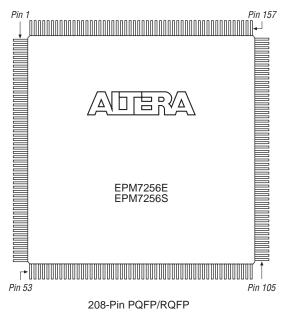



Figure 22. 208-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 www.altera.com Applications Hotline: (800) 800-EPLD Literature Services: literature@altera.com Copyright © 2005 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability

arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Altera Corporation