



Welcome to **E-XFL.COM** 

**Understanding Embedded - CPLDs (Complex Programmable Logic Devices)** 

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

# **Applications of Embedded - CPLDs**

| Details                         |                                                            |
|---------------------------------|------------------------------------------------------------|
| Product Status                  | Obsolete                                                   |
| Programmable Type               | EE PLD                                                     |
| Delay Time tpd(1) Max           | 15 ns                                                      |
| Voltage Supply - Internal       | 4.75V ~ 5.25V                                              |
| Number of Logic Elements/Blocks | 8                                                          |
| Number of Macrocells            | 128                                                        |
| Number of Gates                 | 2500                                                       |
| Number of I/O                   | 68                                                         |
| Operating Temperature           | 0°C ~ 70°C (TA)                                            |
| Mounting Type                   | Surface Mount                                              |
| Package / Case                  | 84-LCC (J-Lead)                                            |
| Supplier Device Package         | 84-PLCC (29.31x29.31)                                      |
| Purchase URL                    | https://www.e-xfl.com/product-detail/intel/epm7128elc84-15 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| Table 2. MAX             | 7000S Device I | Features - |          |          |          |          |
|--------------------------|----------------|------------|----------|----------|----------|----------|
| Feature                  | EPM7032S       | EPM7064S   | EPM7128S | EPM7160S | EPM7192S | EPM7256S |
| Usable gates             | 600            | 1,250      | 2,500    | 3,200    | 3,750    | 5,000    |
| Macrocells               | 32             | 64         | 128      | 160      | 192      | 256      |
| Logic array blocks       | 2              | 4          | 8        | 10       | 12       | 16       |
| Maximum<br>user I/O pins | 36             | 68         | 100      | 104      | 124      | 164      |
| t <sub>PD</sub> (ns)     | 5              | 5          | 6        | 6        | 7.5      | 7.5      |
| t <sub>SU</sub> (ns)     | 2.9            | 2.9        | 3.4      | 3.4      | 4.1      | 3.9      |
| t <sub>FSU</sub> (ns)    | 2.5            | 2.5        | 2.5      | 2.5      | 3        | 3        |
| t <sub>CO1</sub> (ns)    | 3.2            | 3.2        | 4        | 3.9      | 4.7      | 4.7      |
| f <sub>CNT</sub> (MHz)   | 175.4          | 175.4      | 147.1    | 149.3    | 125.0    | 128.2    |

# ...and More Features

- Open-drain output option in MAX 7000S devices
- Programmable macrocell flipflops with individual clear, preset, clock, and clock enable controls
- Programmable power-saving mode for a reduction of over 50% in each macrocell
- Configurable expander product-term distribution, allowing up to 32 product terms per macrocell
- 44 to 208 pins available in plastic J-lead chip carrier (PLCC), ceramic pin-grid array (PGA), plastic quad flat pack (PQFP), power quad flat pack (RQFP), and 1.0-mm thin quad flat pack (TQFP) packages
- Programmable security bit for protection of proprietary designs
- 3.3-V or 5.0-V operation
  - MultiVolt<sup>TM</sup> I/O interface operation, allowing devices to interface with 3.3-V or 5.0-V devices (MultiVolt I/O operation is not available in 44-pin packages)
  - Pin compatible with low-voltage MAX 7000A and MAX 7000B devices
- Enhanced features available in MAX 7000E and MAX 7000S devices
  - Six pin- or logic-driven output enable signals
  - Two global clock signals with optional inversion
  - Enhanced interconnect resources for improved routability
  - Fast input setup times provided by a dedicated path from I/O pin to macrocell registers
  - Programmable output slew-rate control
- Software design support and automatic place-and-route provided by Altera's development system for Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 workstations

- Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, and VeriBest
- Programming support
  - Altera's Master Programming Unit (MPU) and programming hardware from third-party manufacturers program all MAX 7000 devices
  - The BitBlaster<sup>TM</sup> serial download cable, ByteBlasterMV<sup>TM</sup> parallel port download cable, and MasterBlaster<sup>TM</sup> serial/universal serial bus (USB) download cable program MAX 7000S devices

# General Description

The MAX 7000 family of high-density, high-performance PLDs is based on Altera's second-generation MAX architecture. Fabricated with advanced CMOS technology, the EEPROM-based MAX 7000 family provides 600 to 5,000 usable gates, ISP, pin-to-pin delays as fast as 5 ns, and counter speeds of up to 175.4 MHz. MAX 7000S devices in the -5, -6, -7, and -10 speed grades as well as MAX 7000 and MAX 7000E devices in -5, -6, -7, -10P, and -12P speed grades comply with the PCI Special Interest Group (PCI SIG) *PCI Local Bus Specification, Revision 2.2.* See Table 3 for available speed grades.

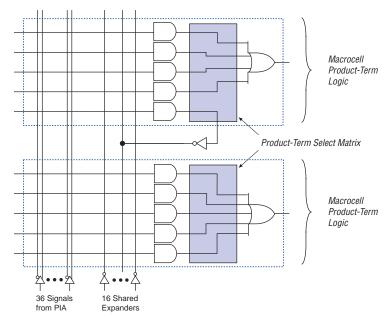
| Device   | Speed Grade |          |          |          |          |          |          |          |          |          |  |  |
|----------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|--|
|          | -5          | -6       | -7       | -10P     | -10      | -12P     | -12      | -15      | -15T     | -20      |  |  |
| EPM7032  |             | <b>✓</b> | <b>✓</b> |          | <b>✓</b> |          | <b>✓</b> | <b>✓</b> | <b>✓</b> |          |  |  |
| EPM7032S | <b>✓</b>    | <b>✓</b> | <b>✓</b> |          | <b>✓</b> |          |          |          |          |          |  |  |
| EPM7064  |             | <b>✓</b> | <b>✓</b> |          | ~        |          | <b>✓</b> | <b>✓</b> |          |          |  |  |
| EPM7064S | <b>✓</b>    | <b>✓</b> | <b>✓</b> |          | ~        |          |          |          |          |          |  |  |
| EPM7096  |             |          | <b>✓</b> |          | ~        |          | <b>✓</b> | <b>✓</b> |          |          |  |  |
| EPM7128E |             |          | <b>✓</b> | <b>✓</b> | ~        |          | <b>✓</b> | <b>✓</b> |          | <b>✓</b> |  |  |
| EPM7128S |             | <b>✓</b> | <b>✓</b> |          | ~        |          |          | <b>✓</b> |          |          |  |  |
| EPM7160E |             |          |          | <b>✓</b> | <b>✓</b> |          | <b>✓</b> | <b>✓</b> |          | <b>✓</b> |  |  |
| EPM7160S |             | <b>✓</b> | <b>✓</b> |          | ~        |          |          | <b>✓</b> |          |          |  |  |
| EPM7192E |             |          |          |          |          | <b>✓</b> | <b>✓</b> | <b>✓</b> |          | <b>✓</b> |  |  |
| EPM7192S |             |          | <b>✓</b> |          | <b>✓</b> |          |          | <b>✓</b> |          |          |  |  |
| EPM7256E |             |          |          |          |          | <b>✓</b> | <b>✓</b> | <b>✓</b> |          | <b>✓</b> |  |  |
| EPM7256S |             |          | <b>✓</b> |          | <b>✓</b> |          |          | <b>✓</b> |          |          |  |  |

The MAX 7000E devices—including the EPM7128E, EPM7160E, EPM7192E, and EPM7256E devices—have several enhanced features: additional global clocking, additional output enable controls, enhanced interconnect resources, fast input registers, and a programmable slew rate.

In-system programmable MAX 7000 devices—called MAX 7000S devices—include the EPM7032S, EPM7064S, EPM7128S, EPM7160S, EPM7192S, and EPM7256S devices. MAX 7000S devices have the enhanced features of MAX 7000E devices as well as JTAG BST circuitry in devices with 128 or more macrocells, ISP, and an open-drain output option. See Table 4.

| Table 4. MAX 7000 Device Feat   | ures                          |                             |                             |
|---------------------------------|-------------------------------|-----------------------------|-----------------------------|
| Feature                         | EPM7032<br>EPM7064<br>EPM7096 | All<br>MAX 7000E<br>Devices | All<br>MAX 7000S<br>Devices |
| ISP via JTAG interface          |                               |                             | ✓                           |
| JTAG BST circuitry              |                               |                             | <b>√</b> (1)                |
| Open-drain output option        |                               |                             | <b>✓</b>                    |
| Fast input registers            |                               | <b>✓</b>                    | ✓                           |
| Six global output enables       |                               | <b>✓</b>                    | ✓                           |
| Two global clocks               |                               | ✓                           | ✓                           |
| Slew-rate control               |                               | <b>✓</b>                    | <b>✓</b>                    |
| MultiVolt interface (2)         | ✓                             | <b>✓</b>                    | <b>✓</b>                    |
| Programmable register           | ✓                             | <b>✓</b>                    | ✓                           |
| Parallel expanders              | <b>✓</b>                      | ✓                           | ✓                           |
| Shared expanders                | <b>✓</b>                      | <b>✓</b>                    | ✓                           |
| Power-saving mode               | ✓                             | ✓                           | ✓                           |
| Security bit                    | ✓                             | ✓                           | ✓                           |
| PCI-compliant devices available | ✓                             | ✓                           | ✓                           |

#### Notes:


- (1) Available only in EPM7128S, EPM7160S, EPM7192S, and EPM7256S devices only.
- (2) The MultiVolt I/O interface is not available in 44-pin packages.

# Shareable Expanders

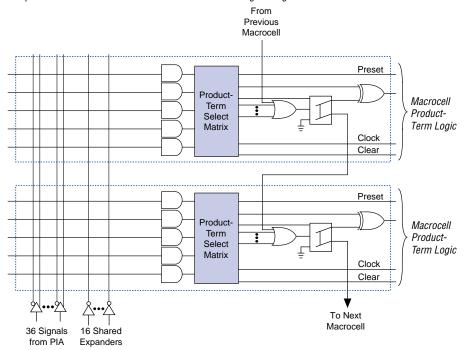
Each LAB has 16 shareable expanders that can be viewed as a pool of uncommitted single product terms (one from each macrocell) with inverted outputs that feed back into the logic array. Each shareable expander can be used and shared by any or all macrocells in the LAB to build complex logic functions. A small delay ( $t_{SEXP}$ ) is incurred when shareable expanders are used. Figure 5 shows how shareable expanders can feed multiple macrocells.

Figure 5. Shareable Expanders

Shareable expanders can be shared by any or all macrocells in an LAB.



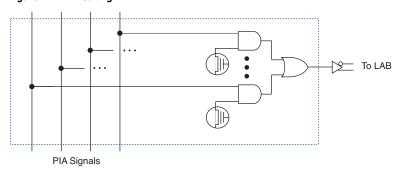
## Parallel Expanders


Parallel expanders are unused product terms that can be allocated to a neighboring macrocell to implement fast, complex logic functions. Parallel expanders allow up to 20 product terms to directly feed the macrocell OR logic, with five product terms provided by the macrocell and 15 parallel expanders provided by neighboring macrocells in the LAB.

The compiler can allocate up to three sets of up to five parallel expanders automatically to the macrocells that require additional product terms. Each set of five parallel expanders incurs a small, incremental timing delay ( $t_{PEXP}$ ). For example, if a macrocell requires 14 product terms, the Compiler uses the five dedicated product terms within the macrocell and allocates two sets of parallel expanders; the first set includes five product terms and the second set includes four product terms, increasing the total delay by  $2 \times t_{PEXP}$ .

Two groups of 8 macrocells within each LAB (e.g., macrocells 1 through 8 and 9 through 16) form two chains to lend or borrow parallel expanders. A macrocell borrows parallel expanders from lower-numbered macrocells. For example, macrocell 8 can borrow parallel expanders from macrocell 7, from macrocells 7 and 6, or from macrocells 7, 6, and 5. Within each group of 8, the lowest-numbered macrocell can only lend parallel expanders and the highest-numbered macrocell can only borrow them. Figure 6 shows how parallel expanders can be borrowed from a neighboring macrocell.

Figure 6. Parallel Expanders


Unused product terms in a macrocell can be allocated to a neighboring macrocell.



# Programmable Interconnect Array

Logic is routed between LABs via the programmable interconnect array (PIA). This global bus is a programmable path that connects any signal source to any destination on the device. All MAX 7000 dedicated inputs, I/O pins, and macrocell outputs feed the PIA, which makes the signals available throughout the entire device. Only the signals required by each LAB are actually routed from the PIA into the LAB. Figure 7 shows how the PIA signals are routed into the LAB. An EEPROM cell controls one input to a 2-input AND gate, which selects a PIA signal to drive into the LAB.

Figure 7. PIA Routing



While the routing delays of channel-based routing schemes in masked or FPGAs are cumulative, variable, and path-dependent, the MAX 7000 PIA has a fixed delay. The PIA thus eliminates skew between signals and makes timing performance easy to predict.

## I/O Control Blocks

The I/O control block allows each I/O pin to be individually configured for input, output, or bidirectional operation. All I/O pins have a tri-state buffer that is individually controlled by one of the global output enable signals or directly connected to ground or  $V_{\rm CC}$ . Figure 8 shows the I/O control block for the MAX 7000 family. The I/O control block of EPM7032, EPM7064, and EPM7096 devices has two global output enable signals that are driven by two dedicated active-low output enable pins (OE1 and OE2). The I/O control block of MAX 7000E and MAX 7000S devices has six global output enable signals that are driven by the true or complement of two output enable signals, a subset of the I/O pins, or a subset of the I/O macrocells.

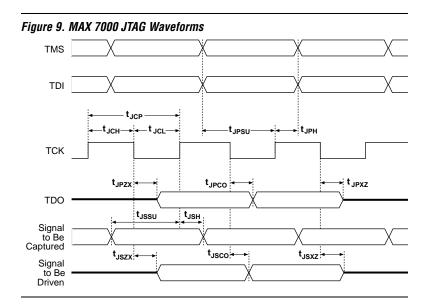



Figure 9 shows the timing requirements for the JTAG signals.

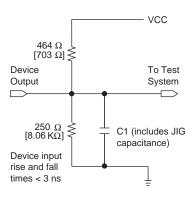
Table 12 shows the JTAG timing parameters and values for MAX 7000S devices.

| Table 1           | 2. JTAG Timing Parameters & Values for MAX 70  | 000S De | vices |      |
|-------------------|------------------------------------------------|---------|-------|------|
| Symbol            | Parameter                                      | Min     | Max   | Unit |
| t <sub>JCP</sub>  | TCK clock period                               | 100     |       | ns   |
| t <sub>JCH</sub>  | TCK clock high time                            | 50      |       | ns   |
| t <sub>JCL</sub>  | TCK clock low time                             | 50      |       | ns   |
| t <sub>JPSU</sub> | JTAG port setup time                           | 20      |       | ns   |
| t <sub>JPH</sub>  | JTAG port hold time                            | 45      |       | ns   |
| t <sub>JPCO</sub> | JTAG port clock to output                      |         | 25    | ns   |
| t <sub>JPZX</sub> | JTAG port high impedance to valid output       |         | 25    | ns   |
| t <sub>JPXZ</sub> | JTAG port valid output to high impedance       |         | 25    | ns   |
| t <sub>JSSU</sub> | Capture register setup time                    | 20      |       | ns   |
| t <sub>JSH</sub>  | Capture register hold time                     | 45      |       | ns   |
| t <sub>JSCO</sub> | Update register clock to output                |         | 25    | ns   |
| t <sub>JSZX</sub> | Update register high impedance to valid output |         | 25    | ns   |
| t <sub>JSXZ</sub> | Update register valid output to high impedance |         | 25    | ns   |



For more information, see *Application Note* 39 (*IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices*).

# **Design Security**


All MAX 7000 devices contain a programmable security bit that controls access to the data programmed into the device. When this bit is programmed, a proprietary design implemented in the device cannot be copied or retrieved. This feature provides a high level of design security because programmed data within EEPROM cells is invisible. The security bit that controls this function, as well as all other programmed data, is reset only when the device is reprogrammed.

# **Generic Testing**

Each MAX 7000 device is functionally tested. Complete testing of each programmable EEPROM bit and all internal logic elements ensures 100% programming yield. AC test measurements are taken under conditions equivalent to those shown in Figure 10. Test patterns can be used and then erased during early stages of the production flow.

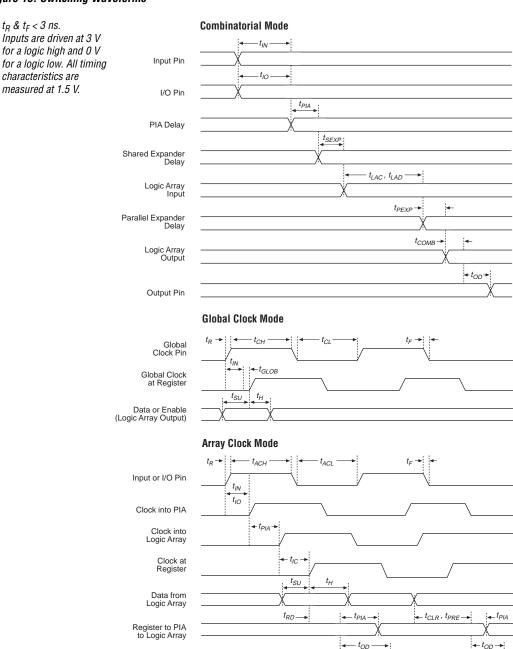
## Figure 10. MAX 7000 AC Test Conditions

Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast ground-current transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground. significant reductions in observable noise immunity can result. Numbers in brackets are for 2.5-V devices and outputs. Numbers without brackets are for 3.3-V devices and outputs.



# QFP Carrier & Development Socket

MAX 7000 and MAX 7000E devices in QFP packages with 100 or more pins are shipped in special plastic carriers to protect the QFP leads. The carrier is used with a prototype development socket and special programming hardware available from Altera. This carrier technology makes it possible to program, test, erase, and reprogram a device without exposing the leads to mechanical stress.




For detailed information and carrier dimensions, refer to the *QFP Carrier* & *Development Socket Data Sheet*.



MAX 7000S devices are not shipped in carriers.

# Figure 13. Switching Waveforms



30 Altera Corporation

Register Output to Pin

| Table 2           | 21. MAX 7000 & MAX 7000E Ext             | ernal Timing Param | neters Note | (1)         |       |                        |     |  |  |  |
|-------------------|------------------------------------------|--------------------|-------------|-------------|-------|------------------------|-----|--|--|--|
| Symbol            | Parameter                                | Conditions         |             | Speed Grade |       |                        |     |  |  |  |
|                   |                                          |                    | MAX 700     | OE (-10P)   |       | 000 (-10)<br>00E (-10) |     |  |  |  |
|                   |                                          |                    | Min         | Max         | Min   | Max                    |     |  |  |  |
| t <sub>PD1</sub>  | Input to non-registered output           | C1 = 35 pF         |             | 10.0        |       | 10.0                   | ns  |  |  |  |
| t <sub>PD2</sub>  | I/O input to non-registered output       | C1 = 35 pF         |             | 10.0        |       | 10.0                   | ns  |  |  |  |
| t <sub>SU</sub>   | Global clock setup time                  |                    | 7.0         |             | 8.0   |                        | ns  |  |  |  |
| t <sub>H</sub>    | Global clock hold time                   |                    | 0.0         |             | 0.0   |                        | ns  |  |  |  |
| t <sub>FSU</sub>  | Global clock setup time of fast input    | (2)                | 3.0         |             | 3.0   |                        | ns  |  |  |  |
| t <sub>FH</sub>   | Global clock hold time of fast input     | (2)                | 0.5         |             | 0.5   |                        | ns  |  |  |  |
| t <sub>CO1</sub>  | Global clock to output delay             | C1 = 35 pF         |             | 5.0         |       | 5                      | ns  |  |  |  |
| t <sub>CH</sub>   | Global clock high time                   |                    | 4.0         |             | 4.0   |                        | ns  |  |  |  |
| t <sub>CL</sub>   | Global clock low time                    |                    | 4.0         |             | 4.0   |                        | ns  |  |  |  |
| t <sub>ASU</sub>  | Array clock setup time                   |                    | 2.0         |             | 3.0   |                        | ns  |  |  |  |
| t <sub>AH</sub>   | Array clock hold time                    |                    | 3.0         |             | 3.0   |                        | ns  |  |  |  |
| t <sub>ACO1</sub> | Array clock to output delay              | C1 = 35 pF         |             | 10.0        |       | 10.0                   | ns  |  |  |  |
| t <sub>ACH</sub>  | Array clock high time                    |                    | 4.0         |             | 4.0   |                        | ns  |  |  |  |
| t <sub>ACL</sub>  | Array clock low time                     |                    | 4.0         |             | 4.0   |                        | ns  |  |  |  |
| t <sub>CPPW</sub> | Minimum pulse width for clear and preset | (3)                | 4.0         |             | 4.0   |                        | ns  |  |  |  |
| t <sub>ODH</sub>  | Output data hold time after clock        | C1 = 35 pF (4)     | 1.0         |             | 1.0   |                        | ns  |  |  |  |
| t <sub>CNT</sub>  | Minimum global clock period              |                    |             | 10.0        |       | 10.0                   | ns  |  |  |  |
| f <sub>CNT</sub>  | Maximum internal global clock frequency  | (5)                | 100.0       |             | 100.0 |                        | MHz |  |  |  |
| t <sub>ACNT</sub> | Minimum array clock period               |                    |             | 10.0        |       | 10.0                   | ns  |  |  |  |
| f <sub>ACNT</sub> | Maximum internal array clock frequency   | (5)                | 100.0       |             | 100.0 |                        | MHz |  |  |  |
| f <sub>MAX</sub>  | Maximum clock frequency                  | (6)                | 125.0       |             | 125.0 |                        | MHz |  |  |  |

- (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This parameter applies to MAX 7000E devices only.
- This minimum pulse width for preset and clear applies for both global clear and array controls. The  $t_{LPA}$  parameter must be added to this minimum width if the clear or reset signal incorporates the  $t_{LAD}$  parameter into the signal path.
- (4) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (5) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (6) The  $f_{MAX}$  values represent the highest frequency for pipelined data.
- (7) Operating conditions:  $V_{CCIO} = 3.3 \text{ V} \pm 10\%$  for commercial and industrial use.
- (8) The  $t_{LPA}$  parameter must be added to the  $t_{LAD}$ ,  $t_{LAC}$ ,  $t_{IC}$ ,  $t_{EN}$ ,  $t_{SEXP}$ ,  $t_{ACL}$ , and  $t_{CPPW}$  parameters for macrocells running in the low-power mode.

Tables 27 and 28 show the EPM7032S AC operating conditions.

| Table 2           | 77. EPM7032\$ External Time              | ing Parameters | s (Part     | 1 of 2 | ) N   | ote (1) |       |     |       |      |      |
|-------------------|------------------------------------------|----------------|-------------|--------|-------|---------|-------|-----|-------|------|------|
| Symbol            | Parameter                                | Conditions     | Speed Grade |        |       |         |       |     |       |      | Unit |
|                   |                                          |                | -           | 5      | -6    |         | -7    |     | -1    | 10   |      |
|                   |                                          |                | Min         | Max    | Min   | Max     | Min   | Max | Min   | Max  |      |
| t <sub>PD1</sub>  | Input to non-registered output           | C1 = 35 pF     |             | 5.0    |       | 6.0     |       | 7.5 |       | 10.0 | ns   |
| t <sub>PD2</sub>  | I/O input to non-registered output       | C1 = 35 pF     |             | 5.0    |       | 6.0     |       | 7.5 |       | 10.0 | ns   |
| t <sub>SU</sub>   | Global clock setup time                  |                | 2.9         |        | 4.0   |         | 5.0   |     | 7.0   |      | ns   |
| t <sub>H</sub>    | Global clock hold time                   |                | 0.0         |        | 0.0   |         | 0.0   |     | 0.0   |      | ns   |
| t <sub>FSU</sub>  | Global clock setup time of fast input    |                | 2.5         |        | 2.5   |         | 2.5   |     | 3.0   |      | ns   |
| t <sub>FH</sub>   | Global clock hold time of fast input     |                | 0.0         |        | 0.0   |         | 0.0   |     | 0.5   |      | ns   |
| t <sub>CO1</sub>  | Global clock to output delay             | C1 = 35 pF     |             | 3.2    |       | 3.5     |       | 4.3 |       | 5.0  | ns   |
| t <sub>CH</sub>   | Global clock high time                   |                | 2.0         |        | 2.5   |         | 3.0   |     | 4.0   |      | ns   |
| t <sub>CL</sub>   | Global clock low time                    |                | 2.0         |        | 2.5   |         | 3.0   |     | 4.0   |      | ns   |
| t <sub>ASU</sub>  | Array clock setup time                   |                | 0.7         |        | 0.9   |         | 1.1   |     | 2.0   |      | ns   |
| t <sub>AH</sub>   | Array clock hold time                    |                | 1.8         |        | 2.1   |         | 2.7   |     | 3.0   |      | ns   |
| t <sub>ACO1</sub> | Array clock to output delay              | C1 = 35 pF     |             | 5.4    |       | 6.6     |       | 8.2 |       | 10.0 | ns   |
| t <sub>ACH</sub>  | Array clock high time                    |                | 2.5         |        | 2.5   |         | 3.0   |     | 4.0   |      | ns   |
| t <sub>ACL</sub>  | Array clock low time                     |                | 2.5         |        | 2.5   |         | 3.0   |     | 4.0   |      | ns   |
| t <sub>CPPW</sub> | Minimum pulse width for clear and preset | (2)            | 2.5         |        | 2.5   |         | 3.0   |     | 4.0   |      | ns   |
| t <sub>ODH</sub>  | Output data hold time after clock        | C1 = 35 pF (3) | 1.0         |        | 1.0   |         | 1.0   |     | 1.0   |      | ns   |
| t <sub>CNT</sub>  | Minimum global clock period              |                |             | 5.7    |       | 7.0     |       | 8.6 |       | 10.0 | ns   |
| f <sub>CNT</sub>  | Maximum internal global clock frequency  | (4)            | 175.4       |        | 142.9 |         | 116.3 |     | 100.0 |      | MHz  |
| t <sub>ACNT</sub> | Minimum array clock period               |                |             | 5.7    |       | 7.0     |       | 8.6 |       | 10.0 | ns   |

| Table 28. EPM7032S Internal Timing Parameters Note (1) |                 |            |     |      |     |       |       |      |     |      |      |
|--------------------------------------------------------|-----------------|------------|-----|------|-----|-------|-------|------|-----|------|------|
| Symbol                                                 | Parameter       | Conditions |     |      |     | Speed | Grade |      |     |      | Unit |
|                                                        |                 |            | -   | 5    | -6  |       |       | 7    | -1  | 0    |      |
|                                                        |                 |            | Min | Max  | Min | Max   | Min   | Max  | Min | Max  |      |
| $t_{PIA}$                                              | PIA delay       | (7)        |     | 1.1  |     | 1.1   |       | 1.4  |     | 1.0  | ns   |
| $t_{LPA}$                                              | Low-power adder | (8)        |     | 12.0 |     | 10.0  |       | 10.0 |     | 11.0 | ns   |

- (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t<sub>LPA</sub> parameter must be added to this minimum width if the clear or reset signal incorporates the t<sub>LAD</sub> parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The  $f_{MAX}$  values represent the highest frequency for pipelined data.
- (6) Operating conditions:  $V_{CCIO} = 3.3 \text{ V} \pm 10\%$  for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The  $t_{LPA}$  parameter must be added to the  $t_{LAD}$ ,  $t_{LAC}$ ,  $t_{IC}$ ,  $t_{EN}$ ,  $t_{SEXP}$ ,  $\mathbf{t_{ACL}}$ , and  $\mathbf{t_{CPPW}}$  parameters for macrocells running in the low-power mode.

Tables 29 and 30 show the EPM7064S AC operating conditions.

| Table 2          | Table 29. EPM7064S External Timing Parameters (Part 1 of 2) Note (1) |            |             |     |     |     |     |     |     |      |      |
|------------------|----------------------------------------------------------------------|------------|-------------|-----|-----|-----|-----|-----|-----|------|------|
| Symbol           | Parameter                                                            | Conditions | Speed Grade |     |     |     |     |     |     |      | Unit |
|                  |                                                                      |            | -           | 5   | -6  |     | -7  |     | -10 |      |      |
|                  |                                                                      |            | Min         | Max | Min | Max | Min | Max | Min | Max  |      |
| t <sub>PD1</sub> | Input to non-registered output                                       | C1 = 35 pF |             | 5.0 |     | 6.0 |     | 7.5 |     | 10.0 | ns   |
| t <sub>PD2</sub> | I/O input to non-registered output                                   | C1 = 35 pF |             | 5.0 |     | 6.0 |     | 7.5 |     | 10.0 | ns   |
| t <sub>SU</sub>  | Global clock setup time                                              |            | 2.9         |     | 3.6 |     | 6.0 |     | 7.0 |      | ns   |
| t <sub>H</sub>   | Global clock hold time                                               |            | 0.0         |     | 0.0 |     | 0.0 |     | 0.0 |      | ns   |
| t <sub>FSU</sub> | Global clock setup time of fast input                                |            | 2.5         |     | 2.5 |     | 3.0 |     | 3.0 |      | ns   |
| t <sub>FH</sub>  | Global clock hold time of fast input                                 |            | 0.0         |     | 0.0 |     | 0.5 |     | 0.5 |      | ns   |
| t <sub>CO1</sub> | Global clock to output delay                                         | C1 = 35 pF |             | 3.2 |     | 4.0 |     | 4.5 |     | 5.0  | ns   |
| t <sub>CH</sub>  | Global clock high time                                               |            | 2.0         |     | 2.5 |     | 3.0 |     | 4.0 |      | ns   |
| t <sub>CL</sub>  | Global clock low time                                                |            | 2.0         |     | 2.5 |     | 3.0 |     | 4.0 |      | ns   |
| t <sub>ASU</sub> | Array clock setup time                                               |            | 0.7         |     | 0.9 |     | 3.0 |     | 2.0 |      | ns   |
| t <sub>AH</sub>  | Array clock hold time                                                |            | 1.8         |     | 2.1 |     | 2.0 |     | 3.0 |      | ns   |

- These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t<sub>LPA</sub> parameter must be added to this minimum width if the clear or reset signal incorporates the t<sub>LAD</sub> parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The  $f_{MAX}$  values represent the highest frequency for pipelined data.
- (6) Operating conditions:  $V_{CCIO} = 3.3 \text{ V} \pm 10\%$  for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The  $t_{LPA}$  parameter must be added to the  $t_{LAD}$ ,  $t_{LAC}$ ,  $t_{IC}$ ,  $t_{EN}$ ,  $t_{SEXP}$ ,  $\mathbf{t_{ACL}}$ , and  $\mathbf{t_{CPPW}}$  parameters for macrocells running in the low-power mode.

Tables 33 and 34 show the EPM7160S AC operating conditions.

| Table 3           | Table 33. EPM7160S External Timing Parameters (Part 1 of 2) Note (1) |                |                        |     |       |     |       |      |      |      |      |
|-------------------|----------------------------------------------------------------------|----------------|------------------------|-----|-------|-----|-------|------|------|------|------|
| Symbol            | Parameter                                                            | Conditions     | Conditions Speed Grade |     |       |     |       |      |      |      | Unit |
|                   |                                                                      |                | -6                     |     | -7    |     | -10   |      | -1   | 15   |      |
|                   |                                                                      |                | Min                    | Max | Min   | Max | Min   | Max  | Min  | Max  |      |
| t <sub>PD1</sub>  | Input to non-registered output                                       | C1 = 35 pF     |                        | 6.0 |       | 7.5 |       | 10.0 |      | 15.0 | ns   |
| t <sub>PD2</sub>  | I/O input to non-registered output                                   | C1 = 35 pF     |                        | 6.0 |       | 7.5 |       | 10.0 |      | 15.0 | ns   |
| t <sub>SU</sub>   | Global clock setup time                                              |                | 3.4                    |     | 4.2   |     | 7.0   |      | 11.0 |      | ns   |
| t <sub>H</sub>    | Global clock hold time                                               |                | 0.0                    |     | 0.0   |     | 0.0   |      | 0.0  |      | ns   |
| t <sub>FSU</sub>  | Global clock setup time of fast input                                |                | 2.5                    |     | 3.0   |     | 3.0   |      | 3.0  |      | ns   |
| t <sub>FH</sub>   | Global clock hold time of fast input                                 |                | 0.0                    |     | 0.0   |     | 0.5   |      | 0.0  |      | ns   |
| t <sub>CO1</sub>  | Global clock to output delay                                         | C1 = 35 pF     |                        | 3.9 |       | 4.8 |       | 5    |      | 8    | ns   |
| t <sub>CH</sub>   | Global clock high time                                               |                | 3.0                    |     | 3.0   |     | 4.0   |      | 5.0  |      | ns   |
| t <sub>CL</sub>   | Global clock low time                                                |                | 3.0                    |     | 3.0   |     | 4.0   |      | 5.0  |      | ns   |
| t <sub>ASU</sub>  | Array clock setup time                                               |                | 0.9                    |     | 1.1   |     | 2.0   |      | 4.0  |      | ns   |
| t <sub>AH</sub>   | Array clock hold time                                                |                | 1.7                    |     | 2.1   |     | 3.0   |      | 4.0  |      | ns   |
| t <sub>ACO1</sub> | Array clock to output delay                                          | C1 = 35 pF     |                        | 6.4 |       | 7.9 |       | 10.0 |      | 15.0 | ns   |
| t <sub>ACH</sub>  | Array clock high time                                                |                | 3.0                    |     | 3.0   |     | 4.0   |      | 6.0  |      | ns   |
| t <sub>ACL</sub>  | Array clock low time                                                 |                | 3.0                    |     | 3.0   |     | 4.0   |      | 6.0  |      | ns   |
| t <sub>CPPW</sub> | Minimum pulse width for clear and preset                             | (2)            | 2.5                    |     | 3.0   |     | 4.0   |      | 6.0  |      | ns   |
| t <sub>ODH</sub>  | Output data hold time after clock                                    | C1 = 35 pF (3) | 1.0                    |     | 1.0   |     | 1.0   |      | 1.0  |      | ns   |
| t <sub>CNT</sub>  | Minimum global clock period                                          |                |                        | 6.7 |       | 8.2 |       | 10.0 |      | 13.0 | ns   |
| f <sub>CNT</sub>  | Maximum internal global clock frequency                              | (4)            | 149.3                  |     | 122.0 |     | 100.0 |      | 76.9 |      | MHz  |

- These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t<sub>LPA</sub> parameter must be added to this minimum width if the clear or reset signal incorporates the t<sub>LAD</sub> parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The  $f_{MAX}$  values represent the highest frequency for pipelined data.
- (6) Operating conditions:  $V_{CCIO} = 3.3 \text{ V} \pm 10\%$  for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The  $t_{LPA}$  parameter must be added to the  $t_{LAD}$ ,  $t_{LAC}$ ,  $t_{IC}$ ,  $t_{EN}$ ,  $t_{SEXP}$ ,  $\mathbf{t_{ACL}}$ , and  $\mathbf{t_{CPPW}}$  parameters for macrocells running in the low-power mode.

# Power Consumption

Supply power (P) versus frequency ( $f_{MAX}$  in MHz) for MAX 7000 devices is calculated with the following equation:

$$P = P_{INT} + P_{IO} = I_{CCINT} \times V_{CC} + P_{IO}$$

The  $P_{IO}$  value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note* 74 (*Evaluating Power for Altera Devices*).

The I<sub>CCINT</sub> value, which depends on the switching frequency and the application logic, is calculated with the following equation:

$$I_{CCINT} =$$

$$A \times MC_{TON} + B \times (MC_{DEV} - MC_{TON}) + C \times MC_{USED} \times f_{MAX} \times tog_{USED}$$

The parameters in this equation are shown below:

 $MC_{TON}$  = Number of macrocells with the Turbo Bit option turned on,

as reported in the MAX+PLUS II Report File (.rpt)

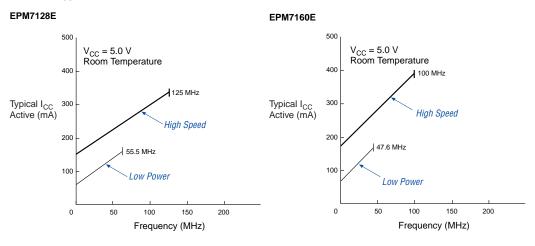
 $MC_{DEV}$  = Number of macrocells in the device

 $MC_{LISED}$  = Total number of macrocells in the design, as reported

in the MAX+PLUS II Report File (.rpt)

 $f_{MAX}$  = Highest clock frequency to the device

tog<sub>LC</sub> = Average ratio of logic cells toggling at each clock


(typically 0.125)

A, B, C = Constants, shown in Table 39

| Table 39. MAX 7000 I <sub>CC</sub> E | quation Constants |      |       |
|--------------------------------------|-------------------|------|-------|
| Device                               | Α                 | В    | С     |
| EPM7032                              | 1.87              | 0.52 | 0.144 |
| EPM7064                              | 1.63              | 0.74 | 0.144 |
| EPM7096                              | 1.63              | 0.74 | 0.144 |
| EPM7128E                             | 1.17              | 0.54 | 0.096 |
| EPM7160E                             | 1.17              | 0.54 | 0.096 |
| EPM7192E                             | 1.17              | 0.54 | 0.096 |
| EPM7256E                             | 1.17              | 0.54 | 0.096 |
| EPM7032S                             | 0.93              | 0.40 | 0.040 |
| EPM7064S                             | 0.93              | 0.40 | 0.040 |
| EPM7128S                             | 0.93              | 0.40 | 0.040 |
| EPM7160S                             | 0.93              | 0.40 | 0.040 |
| EPM7192S                             | 0.93              | 0.40 | 0.040 |
| EPM7256S                             | 0.93              | 0.40 | 0.040 |

This calculation provides an  $I_{CC}$  estimate based on typical conditions using a pattern of a 16-bit, loadable, enabled, up/down counter in each LAB with no output load. Actual  $I_{CC}$  values should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions.

Figure 14. I<sub>CC</sub> vs. Frequency for MAX 7000 Devices (Part 2 of 2)



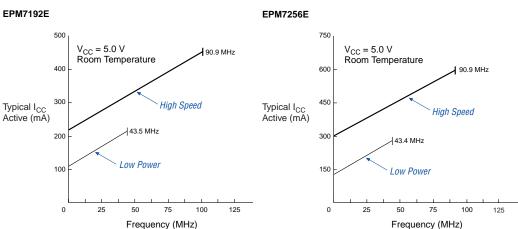
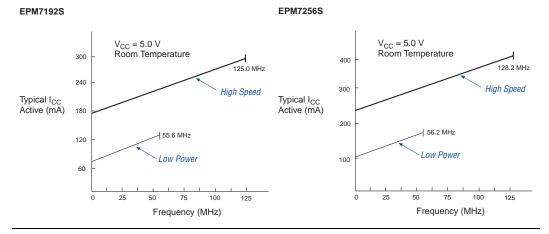
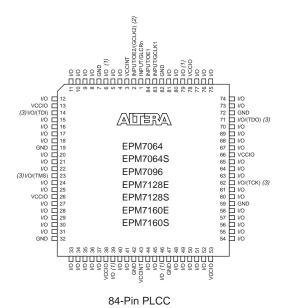




Figure 15. I<sub>CC</sub> vs. Frequency for MAX 7000S Devices (Part 2 of 2)




# Device Pin-Outs

See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information.

## Figure 18. 84-Pin Package Pin-Out Diagram

Package outline not drawn to scale.



#### Notes:

- (1) Pins 6, 39, 46, and 79 are no-connect (N.C.) pins on EPM7096, EPM7160E, and EPM7160S devices.
- (2) The pin functions shown in parenthesis are only available in MAX 7000E and MAX 7000S devices.
- (3) JTAG ports are available in MAX 7000S devices only.

# Revision History

The information contained in the *MAX 7000 Programmable Logic Device Family Data Sheet* version 6.7 supersedes information published in previous versions. The following changes were made in the *MAX 7000 Programmable Logic Device Family Data Sheet* version 6.7:

## Version 6.7

The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.7:

Reference to AN 88: Using the Jam Language for ISP & ICR via an Embedded Processor has been replaced by AN 122: Using Jam STAPL for ISP & ICR via an Embedded Processor.

# Version 6.6

The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.6:

- Added Tables 6 through 8.
- Added "Programming Sequence" section on page 17 and "Programming Times" section on page 18.

# Version 6.5

The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.5:

Updated text on page 16.

## Version 6.4

The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.4:

Added Note (5) on page 28.

## Version 6.3

The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.3:

■ Updated the "Open-Drain Output Option (MAX 7000S Devices Only)" section on page 20.



101 Innovation Drive San Jose, CA 95134 (408) 544-7000 www.altera.com Applications Hotline: (800) 800-EPLD Literature Services: literature@altera.com Copyright © 2005 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

I.S. EN ISO 9001