Welcome to **E-XFL.COM** Understanding <u>Embedded - CPLDs (Complex Programmable Logic Devices)</u> Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware. ## **Applications of Embedded - CPLDs** | Details | | |---------------------------------|--| | Product Status | Obsolete | | Programmable Type | EE PLD | | Delay Time tpd(1) Max | 20 ns | | Voltage Supply - Internal | 4.5V ~ 5.5V | | Number of Logic Elements/Blocks | 8 | | Number of Macrocells | 128 | | Number of Gates | 2500 | | Number of I/O | 68 | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 84-LCC (J-Lead) | | Supplier Device Package | 84-PLCC (29.31x29.31) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epm7128eli84-20 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong - Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, and VeriBest - Programming support - Altera's Master Programming Unit (MPU) and programming hardware from third-party manufacturers program all MAX 7000 devices - The BitBlasterTM serial download cable, ByteBlasterMVTM parallel port download cable, and MasterBlasterTM serial/universal serial bus (USB) download cable program MAX 7000S devices # General Description The MAX 7000 family of high-density, high-performance PLDs is based on Altera's second-generation MAX architecture. Fabricated with advanced CMOS technology, the EEPROM-based MAX 7000 family provides 600 to 5,000 usable gates, ISP, pin-to-pin delays as fast as 5 ns, and counter speeds of up to 175.4 MHz. MAX 7000S devices in the -5, -6, -7, and -10 speed grades as well as MAX 7000 and MAX 7000E devices in -5, -6, -7, -10P, and -12P speed grades comply with the PCI Special Interest Group (PCI SIG) *PCI Local Bus Specification, Revision 2.2.* See Table 3 for available speed grades. | Device | Speed Grade | | | | | | | | | | | |----------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--| | | -5 | -6 | -7 | -10P | -10 | -12P | -12 | -15 | -15T | -20 | | | EPM7032 | | ✓ | ✓ | | ✓ | | ✓ | ✓ | ✓ | | | | EPM7032S | ✓ | ✓ | ✓ | | ✓ | | | | | | | | EPM7064 | | ✓ | ✓ | | ~ | | ✓ | ✓ | | | | | EPM7064S | ✓ | ✓ | ✓ | | ~ | | | | | | | | EPM7096 | | | ✓ | | ~ | | ✓ | ✓ | | | | | EPM7128E | | | ✓ | ✓ | ~ | | ✓ | ✓ | | ✓ | | | EPM7128S | | ✓ | ✓ | | ✓ | | | ✓ | | | | | EPM7160E | | | | ✓ | ✓ | | ✓ | ✓ | | ✓ | | | EPM7160S | | ✓ | ✓ | | ~ | | | ✓ | | | | | EPM7192E | | | | | | ✓ | ✓ | ✓ | | ✓ | | | EPM7192S | | | ✓ | | ✓ | | | ✓ | | | | | EPM7256E | | | | | | ✓ | ✓ | ✓ | | ✓ | | | EPM7256S | | | ✓ | | ✓ | | | ✓ | | | | The MAX 7000E devices—including the EPM7128E, EPM7160E, EPM7192E, and EPM7256E devices—have several enhanced features: additional global clocking, additional output enable controls, enhanced interconnect resources, fast input registers, and a programmable slew rate. In-system programmable MAX 7000 devices—called MAX 7000S devices—include the EPM7032S, EPM7064S, EPM7128S, EPM7160S, EPM7192S, and EPM7256S devices. MAX 7000S devices have the enhanced features of MAX 7000E devices as well as JTAG BST circuitry in devices with 128 or more macrocells, ISP, and an open-drain output option. See Table 4. | Table 4. MAX 7000 Device Feat | ures | | | |---------------------------------|-------------------------------|-----------------------------|-----------------------------| | Feature | EPM7032
EPM7064
EPM7096 | All
MAX 7000E
Devices | All
MAX 7000S
Devices | | ISP via JTAG interface | | | ✓ | | JTAG BST circuitry | | | √ (1) | | Open-drain output option | | | ✓ | | Fast input registers | | ✓ | ✓ | | Six global output enables | | ✓ | ✓ | | Two global clocks | | ✓ | ✓ | | Slew-rate control | | ✓ | ✓ | | MultiVolt interface (2) | ✓ | ✓ | ✓ | | Programmable register | ✓ | ✓ | ✓ | | Parallel expanders | ✓ | ✓ | ✓ | | Shared expanders | ✓ | ✓ | ✓ | | Power-saving mode | ✓ | ✓ | ✓ | | Security bit | ✓ | ✓ | ✓ | | PCI-compliant devices available | ✓ | ✓ | ✓ | ### Notes: - (1) Available only in EPM7128S, EPM7160S, EPM7192S, and EPM7256S devices only. - (2) The MultiVolt I/O interface is not available in 44-pin packages. The MAX 7000 architecture supports 100% TTL emulation and high-density integration of SSI, MSI, and LSI logic functions. The MAX 7000 architecture easily integrates multiple devices ranging from PALs, GALs, and 22V10s to MACH and pLSI devices. MAX 7000 devices are available in a wide range of packages, including PLCC, PGA, PQFP, RQFP, and TQFP packages. See Table 5. | Table 5. M. | AX 7000 |) Maxim | um Use | r I/O Pii | ıs N | ote (1) | | | | | | | |-------------|--------------------|--------------------|--------------------|--------------------|--------------------|---------------------|---------------------|---------------------|--------------------|--------------------|---------------------|---------------------| | Device | 44-
Pin
PLCC | 44-
Pin
PQFP | 44-
Pin
TQFP | 68-
Pin
PLCC | 84-
Pin
PLCC | 100-
Pin
PQFP | 100-
Pin
TQFP | 160-
Pin
PQFP | 160-
Pin
PGA | 192-
Pin
PGA | 208-
Pin
PQFP | 208-
Pin
RQFP | | EPM7032 | 36 | 36 | 36 | | | | | | | | | | | EPM7032S | 36 | | 36 | | | | | | | | | | | EPM7064 | 36 | | 36 | 52 | 68 | 68 | | | | | | | | EPM7064S | 36 | | 36 | | 68 | | 68 | | | | | | | EPM7096 | | | | 52 | 64 | 76 | | | | | | | | EPM7128E | | | | | 68 | 84 | | 100 | | | | | | EPM7128S | | | | | 68 | 84 | 84 (2) | 100 | | | | | | EPM7160E | | | | | 64 | 84 | | 104 | | | | | | EPM7160S | | | | | 64 | | 84 (2) | 104 | | | | | | EPM7192E | | | | | | | | 124 | 124 | | | | | EPM7192S | | | | | | | | 124 | | | | | | EPM7256E | | | | | | | | 132 (2) | | 164 | | 164 | | EPM7256S | | | | | | | | | | | 164 (2) | 164 | #### Notes: - When the JTAG interface in MAX 7000S devices is used for either boundary-scan testing or for ISP, four I/O pins become JTAG pins. - (2) Perform a complete thermal analysis before committing a design to this device package. For more information, see the Operating Requirements for Altera Devices Data Sheet. MAX 7000 devices use CMOS EEPROM cells to implement logic functions. The user-configurable MAX 7000 architecture accommodates a variety of independent combinatorial and sequential logic functions. The devices can be reprogrammed for quick and efficient iterations during design development and debug cycles, and can be programmed and erased up to 100 times. ## Programmable Interconnect Array Logic is routed between LABs via the programmable interconnect array (PIA). This global bus is a programmable path that connects any signal source to any destination on the device. All MAX 7000 dedicated inputs, I/O pins, and macrocell outputs feed the PIA, which makes the signals available throughout the entire device. Only the signals required by each LAB are actually routed from the PIA into the LAB. Figure 7 shows how the PIA signals are routed into the LAB. An EEPROM cell controls one input to a 2-input AND gate, which selects a PIA signal to drive into the LAB. Figure 7. PIA Routing While the routing delays of channel-based routing schemes in masked or FPGAs are cumulative, variable, and path-dependent, the MAX 7000 PIA has a fixed delay. The PIA thus eliminates skew between signals and makes timing performance easy to predict. ### I/O Control Blocks The I/O control block allows each I/O pin to be individually configured for input, output, or bidirectional operation. All I/O pins have a tri-state buffer that is individually controlled by one of the global output enable signals or directly connected to ground or V_{CC}. Figure 8 shows the I/O control block for the MAX 7000 family. The I/O control block of EPM7032, EPM7064, and EPM7096 devices has two global output enable signals that are driven by two dedicated active-low output enable pins (OE1 and OE2). The I/O control block of MAX 7000E and MAX 7000S devices has six global output enable signals that are driven by the true or complement of two output enable signals, a subset of the I/O pins, or a subset of the I/O macrocells. Figure 8. I/O Control Block of MAX 7000 Devices ## EPM7032, EPM7064 & EPM7096 Devices ### MAX 7000E & MAX 7000S Devices ### Note: (1) The open-drain output option is available only in MAX 7000S devices. The programming times described in Tables 6 through 8 are associated with the worst-case method using the enhanced ISP algorithm. | Table 6. MAX 7000S t _{PU} | _{LSE} & Cycle _{TCK} Values | 3 | | | | | | | |------------------------------------|--|-----------------------|-------------------------|-----------------------|--|--|--|--| | Device | Programming Stand-Alone Verification | | | | | | | | | | t _{PPULSE} (s) | Cycle _{PTCK} | t _{VPULSE} (s) | Cycle _{VTCK} | | | | | | EPM7032S | 4.02 | 342,000 | 0.03 | 200,000 | | | | | | EPM7064S | 4.50 | 504,000 | 0.03 | 308,000 | | | | | | EPM7128S | 5.11 | 832,000 | 0.03 | 528,000 | | | | | | EPM7160S | 5.35 | 1,001,000 | 0.03 | 640,000 | | | | | | EPM7192S | 5.71 | 1,192,000 | 0.03 | 764,000 | | | | | | EPM7256S | 6.43 | 1,603,000 | 0.03 | 1,024,000 | | | | | Tables 7 and 8 show the in-system programming and stand alone verification times for several common test clock frequencies. | Table 7. MAX 7000S In-System Programming Times for Different Test Clock Frequencies | | | | | | | | | | | |---|--------|------------------|-------|-------|---------|---------|---------|--------|---|--| | Device | | f _{TCK} | | | | | | | | | | | 10 MHz | 5 MHz | 2 MHz | 1 MHz | 500 kHz | 200 kHz | 100 kHz | 50 kHz | | | | EPM7032S | 4.06 | 4.09 | 4.19 | 4.36 | 4.71 | 5.73 | 7.44 | 10.86 | s | | | EPM7064S | 4.55 | 4.60 | 4.76 | 5.01 | 5.51 | 7.02 | 9.54 | 14.58 | S | | | EPM7128S | 5.19 | 5.27 | 5.52 | 5.94 | 6.77 | 9.27 | 13.43 | 21.75 | S | | | EPM7160S | 5.45 | 5.55 | 5.85 | 6.35 | 7.35 | 10.35 | 15.36 | 25.37 | S | | | EPM7192S | 5.83 | 5.95 | 6.30 | 6.90 | 8.09 | 11.67 | 17.63 | 29.55 | S | | | EPM7256S | 6.59 | 6.75 | 7.23 | 8.03 | 9.64 | 14.45 | 22.46 | 38.49 | S | | | Table 8. MAX | ble 8. MAX 7000S Stand-Alone Verification Times for Different Test Clock Frequencies | | | | | | | | | | | |--------------|--|------------------|-------|-------|---------|---------|---------|--------|---|--|--| | Device | | f _{TCK} | | | | | | | | | | | | 10 MHz | 5 MHz | 2 MHz | 1 MHz | 500 kHz | 200 kHz | 100 kHz | 50 kHz | | | | | EPM7032S | 0.05 | 0.07 | 0.13 | 0.23 | 0.43 | 1.03 | 2.03 | 4.03 | s | | | | EPM7064S | 0.06 | 0.09 | 0.18 | 0.34 | 0.64 | 1.57 | 3.11 | 6.19 | S | | | | EPM7128S | 0.08 | 0.14 | 0.29 | 0.56 | 1.09 | 2.67 | 5.31 | 10.59 | S | | | | EPM7160S | 0.09 | 0.16 | 0.35 | 0.67 | 1.31 | 3.23 | 6.43 | 12.83 | S | | | | EPM7192S | 0.11 | 0.18 | 0.41 | 0.79 | 1.56 | 3.85 | 7.67 | 15.31 | S | | | | EPM7256S | 0.13 | 0.24 | 0.54 | 1.06 | 2.08 | 5.15 | 10.27 | 20.51 | S | | | By using an external 5.0-V pull-up resistor, output pins on MAX 7000S devices can be set to meet 5.0-V CMOS input voltages. When $V_{\rm CCIO}$ is 3.3 V, setting the open drain option will turn off the output pull-up transistor, allowing the external pull-up resistor to pull the output high enough to meet 5.0-V CMOS input voltages. When $V_{\rm CCIO}$ is 5.0 V, setting the output drain option is not necessary because the pull-up transistor will already turn off when the pin exceeds approximately 3.8 V, allowing the external pull-up resistor to pull the output high enough to meet 5.0-V CMOS input voltages. ### Slew-Rate Control The output buffer for each MAX 7000E and MAX 7000S I/O pin has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A faster slew rate provides high-speed transitions for high-performance systems. However, these fast transitions may introduce noise transients into the system. A slow slew rate reduces system noise, but adds a nominal delay of 4 to 5 ns. In MAX 7000E devices, when the Turbo Bit is turned off, the slew rate is set for low noise performance. For MAX 7000S devices, each I/O pin has an individual EEPROM bit that controls the slew rate, allowing designers to specify the slew rate on a pin-by-pin basis. # Programming with External Hardware MAX 7000 devices can be programmed on Windows-based PCs with the Altera Logic Programmer card, the Master Programming Unit (MPU), and the appropriate device adapter. The MPU performs a continuity check to ensure adequate electrical contact between the adapter and the device. For more information, see the *Altera Programming Hardware Data Sheet*. The Altera development system can use text- or waveform-format test vectors created with the Text Editor or Waveform Editor to test the programmed device. For added design verification, designers can perform functional testing to compare the functional behavior of a MAX 7000 device with the results of simulation. Moreover, Data I/O, BP Microsystems, and other programming hardware manufacturers also provide programming support for Altera devices. For more information, see the *Programming Hardware Manufacturers*. # **Design Security** All MAX 7000 devices contain a programmable security bit that controls access to the data programmed into the device. When this bit is programmed, a proprietary design implemented in the device cannot be copied or retrieved. This feature provides a high level of design security because programmed data within EEPROM cells is invisible. The security bit that controls this function, as well as all other programmed data, is reset only when the device is reprogrammed. # **Generic Testing** Each MAX 7000 device is functionally tested. Complete testing of each programmable EEPROM bit and all internal logic elements ensures 100% programming yield. AC test measurements are taken under conditions equivalent to those shown in Figure 10. Test patterns can be used and then erased during early stages of the production flow. ### Figure 10. MAX 7000 AC Test Conditions Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast ground-current transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground. significant reductions in observable noise immunity can result. Numbers in brackets are for 2.5-V devices and outputs. Numbers without brackets are for 3.3-V devices and outputs. # QFP Carrier & Development Socket MAX 7000 and MAX 7000E devices in QFP packages with 100 or more pins are shipped in special plastic carriers to protect the QFP leads. The carrier is used with a prototype development socket and special programming hardware available from Altera. This carrier technology makes it possible to program, test, erase, and reprogram a device without exposing the leads to mechanical stress. For detailed information and carrier dimensions, refer to the *QFP Carrier & Development Socket Data Sheet*. MAX 7000S devices are not shipped in carriers. ## Figure 13. Switching Waveforms 30 Altera Corporation Register Output to Pin | Symbol | Parameter | Conditions | Speed | Grade -6 | Speed (| Grade -7 | Unit | |-------------------|---|----------------|-------|----------|---------|----------|------| | | | | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.4 | | 0.5 | ns | | t_{IO} | I/O input pad and buffer delay | | | 0.4 | | 0.5 | ns | | t _{FIN} | Fast input delay | (2) | | 0.8 | | 1.0 | ns | | t _{SEXP} | Shared expander delay | | | 3.5 | | 4.0 | ns | | t_{PEXP} | Parallel expander delay | | | 0.8 | | 0.8 | ns | | t_{LAD} | Logic array delay | | | 2.0 | | 3.0 | ns | | t _{LAC} | Logic control array delay | | | 2.0 | | 3.0 | ns | | t _{IOE} | Internal output enable delay | (2) | | | | 2.0 | ns | | t _{OD1} | Output buffer and pad delay
Slow slew rate = off, V _{CCIO} = 5.0 V | C1 = 35 pF | | 2.0 | | 2.0 | ns | | t _{OD2} | Output buffer and pad delay
Slow slew rate = off, V _{CCIO} = 3.3 V | C1 = 35 pF (7) | | 2.5 | | 2.5 | ns | | t _{OD3} | Output buffer and pad delay
Slow slew rate = on,
V _{CCIO} = 5.0 V or 3.3 V | C1 = 35 pF (2) | | 7.0 | | 7.0 | ns | | t _{ZX1} | Output buffer enable delay
Slow slew rate = off, V _{CCIO} = 5.0 V | C1 = 35 pF | | 4.0 | | 4.0 | ns | | t _{ZX2} | Output buffer enable delay
Slow slew rate = off, V _{CCIO} = 3.3 V | C1 = 35 pF (7) | | 4.5 | | 4.5 | ns | | t _{ZX3} | Output buffer enable delay
Slow slew rate = on
V _{CCIO} = 5.0 V or 3.3 V | C1 = 35 pF (2) | | 9.0 | | 9.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 4.0 | ns | | t_{SU} | Register setup time | | 3.0 | | 3.0 | | ns | | t_H | Register hold time | | 1.5 | | 2.0 | | ns | | t _{FSU} | Register setup time of fast input | (2) | 2.5 | | 3.0 | | ns | | t_{FH} | Register hold time of fast input | (2) | 0.5 | | 0.5 | | ns | | t_{RD} | Register delay | | | 0.8 | | 1.0 | ns | | t _{COMB} | Combinatorial delay | | | 0.8 | | 1.0 | ns | | t _{IC} | Array clock delay | | | 2.5 | | 3.0 | ns | | t _{EN} | Register enable time | | | 2.0 | | 3.0 | ns | | t _{GLOB} | Global control delay | | | 0.8 | | 1.0 | ns | | t _{PRE} | Register preset time | | | 2.0 | | 2.0 | ns | | t _{CLR} | Register clear time | | | 2.0 | | 2.0 | ns | | t _{PIA} | PIA delay | | | 0.8 | | 1.0 | ns | | t_{LPA} | Low-power adder | (8) | | 10.0 | | 10.0 | ns | | Table 2 | 21. MAX 7000 & MAX 7000E Ext | ernal Timing Param | eters Note | (1) | | | | | | | |-------------------|--|--------------------|------------|-------------|--------|------|-----|--|--|--| | Symbol | Parameter | Conditions | | Speed Grade | | | | | | | | | | | MAX 700 | 0E (-10P) | MAX 70 | | | | | | | | | | Min | Max | Min | Max | | | | | | t _{PD1} | Input to non-registered output | C1 = 35 pF | | 10.0 | | 10.0 | ns | | | | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF | | 10.0 | | 10.0 | ns | | | | | t _{SU} | Global clock setup time | | 7.0 | | 8.0 | | ns | | | | | t _H | Global clock hold time | | 0.0 | | 0.0 | | ns | | | | | t _{FSU} | Global clock setup time of fast input | (2) | 3.0 | | 3.0 | | ns | | | | | t _{FH} | Global clock hold time of fast input | (2) | 0.5 | | 0.5 | | ns | | | | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 5.0 | | 5 | ns | | | | | t _{CH} | Global clock high time | | 4.0 | | 4.0 | | ns | | | | | t _{CL} | Global clock low time | | 4.0 | | 4.0 | | ns | | | | | t _{ASU} | Array clock setup time | | 2.0 | | 3.0 | | ns | | | | | t _{AH} | Array clock hold time | | 3.0 | | 3.0 | | ns | | | | | t _{ACO1} | Array clock to output delay | C1 = 35 pF | | 10.0 | | 10.0 | ns | | | | | t _{ACH} | Array clock high time | | 4.0 | | 4.0 | | ns | | | | | t _{ACL} | Array clock low time | | 4.0 | | 4.0 | | ns | | | | | t _{CPPW} | Minimum pulse width for clear and preset | (3) | 4.0 | | 4.0 | | ns | | | | | t _{ODH} | Output data hold time after clock | C1 = 35 pF (4) | 1.0 | | 1.0 | | ns | | | | | t _{CNT} | Minimum global clock period | | | 10.0 | | 10.0 | ns | | | | | f _{CNT} | Maximum internal global clock frequency | (5) | 100.0 | | 100.0 | | MHz | | | | | t _{ACNT} | Minimum array clock period | | | 10.0 | | 10.0 | ns | | | | | f _{ACNT} | Maximum internal array clock frequency | (5) | 100.0 | | 100.0 | | MHz | | | | | f _{MAX} | Maximum clock frequency | (6) | 125.0 | | 125.0 | | MHz | | | | | Table 2 | 23. MAX 7000 & MAX 7000E Ext | ernal Timing Param | eters Note | e (1) | | | | | | |-------------------|--|--------------------|-------------------|-----------|-------|-----------------------|-----|--|--| | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | | | | MAX 700 | 0E (-12P) | | 00 (-12)
DOE (-12) | | | | | | | | Min | Max | Min | Max | | | | | t _{PD1} | Input to non-registered output | C1 = 35 pF | | 12.0 | | 12.0 | ns | | | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF | | 12.0 | | 12.0 | ns | | | | t _{SU} | Global clock setup time | | 7.0 | | 10.0 | | ns | | | | t _H | Global clock hold time | | 0.0 | | 0.0 | | ns | | | | t _{FSU} | Global clock setup time of fast input | (2) | 3.0 | | 3.0 | | ns | | | | t _{FH} | Global clock hold time of fast input | (2) | 0.0 | | 0.0 | | ns | | | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 6.0 | | 6.0 | ns | | | | t _{CH} | Global clock high time | | 4.0 | | 4.0 | | ns | | | | t _{CL} | Global clock low time | | 4.0 | | 4.0 | | ns | | | | t _{ASU} | Array clock setup time | | 3.0 | | 4.0 | | ns | | | | t _{AH} | Array clock hold time | | 4.0 | | 4.0 | | ns | | | | t _{ACO1} | Array clock to output delay | C1 = 35 pF | | 12.0 | | 12.0 | ns | | | | t _{ACH} | Array clock high time | | 5.0 | | 5.0 | | ns | | | | t _{ACL} | Array clock low time | | 5.0 | | 5.0 | | ns | | | | t _{CPPW} | Minimum pulse width for clear and preset | (3) | 5.0 | | 5.0 | | ns | | | | t _{ODH} | Output data hold time after clock | C1 = 35 pF (4) | 1.0 | | 1.0 | | ns | | | | t _{CNT} | Minimum global clock period | | | 11.0 | | 11.0 | ns | | | | f _{CNT} | Maximum internal global clock frequency | (5) | 90.9 | | 90.9 | | MHz | | | | t _{ACNT} | Minimum array clock period | | | 11.0 | | 11.0 | ns | | | | f _{ACNT} | Maximum internal array clock frequency | (5) | 90.9 | | 90.9 | | MHz | | | | f _{MAX} | Maximum clock frequency | (6) | 125.0 | | 125.0 | | MHz | | | | Table 24 | 4. MAX 7000 & MAX 7000E Int | ernal Timing Parame | eters Note | e (1) | | | | |-------------------|--|---------------------|------------|-----------|-------|------------------------|------| | Symbol | Parameter | Conditions | | Speed | Grade | | Unit | | | | | MAX 700 | OE (-12P) | | 000 (-12)
00E (-12) | | | | | | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 1.0 | | 2.0 | ns | | t _{IO} | I/O input pad and buffer delay | | | 1.0 | | 2.0 | ns | | t _{FIN} | Fast input delay | (2) | | 1.0 | | 1.0 | ns | | t _{SEXP} | Shared expander delay | | | 7.0 | | 7.0 | ns | | t _{PEXP} | Parallel expander delay | | | 1.0 | | 1.0 | ns | | t _{LAD} | Logic array delay | | | 7.0 | | 5.0 | ns | | t _{LAC} | Logic control array delay | | | 5.0 | | 5.0 | ns | | t _{IOE} | Internal output enable delay | (2) | | 2.0 | | 2.0 | ns | | t _{OD1} | Output buffer and pad delay
Slow slew rate = off
V _{CCIO} = 5.0 V | C1 = 35 pF | | 1.0 | | 3.0 | ns | | t _{OD2} | Output buffer and pad delay
Slow slew rate = off
V _{CCIO} = 3.3 V | C1 = 35 pF (7) | | 2.0 | | 4.0 | ns | | t _{OD3} | Output buffer and pad delay
Slow slew rate = on
V _{CCIO} = 5.0 V or 3.3 V | C1 = 35 pF (2) | | 5.0 | | 7.0 | ns | | t _{ZX1} | Output buffer enable delay
Slow slew rate = off
V _{CCIO} = 5.0 V | C1 = 35 pF | | 6.0 | | 6.0 | ns | | t _{ZX2} | Output buffer enable delay
Slow slew rate = off
V _{CCIO} = 3.3 V | C1 = 35 pF (7) | | 7.0 | | 7.0 | ns | | t _{ZX3} | Output buffer enable delay
Slow slew rate = on
V _{CCIO} = 5.0 V or 3.3 V | C1 = 35 pF (2) | | 10.0 | | 10.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 6.0 | | 6.0 | ns | | t _{SU} | Register setup time | | 1.0 | | 4.0 | | ns | | t _H | Register hold time | | 6.0 | | 4.0 | | ns | | t _{FSU} | Register setup time of fast input | (2) | 4.0 | | 2.0 | | ns | | t _{FH} | Register hold time of fast input | (2) | 0.0 | | 2.0 | | ns | | t _{RD} | Register delay | | | 2.0 | | 1.0 | ns | | t _{COMB} | Combinatorial delay | | | 2.0 | | 1.0 | ns | | t _{IC} | Array clock delay | | | 5.0 | | 5.0 | ns | | t _{EN} | Register enable time | | | 7.0 | | 5.0 | ns | | t _{GLOB} | Global control delay | | | 2.0 | | 0.0 | ns | | t _{PRE} | Register preset time | | | 4.0 | | 3.0 | ns | | t _{CLR} | Register clear time | | | 4.0 | | 3.0 | ns | | t _{PIA} | PIA delay | | | 1.0 | | 1.0 | ns | | t _{LPA} | Low-power adder | (8) | | 12.0 | | 12.0 | ns | | Table 28. EPM7032S Internal Timing Parameters Note (1) | | | | | | | | | | | | |--|-----------------|------------|--------------|------|-----|-------|-------|------|-----|------|------| | Symbol | Parameter | Conditions | | | | Speed | Grade | | | | Unit | | | | | -5 -6 -7 -10 | | | | | | 0 | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{PIA} | PIA delay | (7) | | 1.1 | | 1.1 | | 1.4 | | 1.0 | ns | | t_{LPA} | Low-power adder | (8) | | 12.0 | | 10.0 | | 10.0 | | 11.0 | ns | #### Notes to tables: - These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms. - (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path. - (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking. - (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (5) The f_{MAX} values represent the highest frequency for pipelined data. - (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use. - (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value. - (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode. Tables 29 and 30 show the EPM7064S AC operating conditions. | Table 29. EPM7064S External Timing Parameters (Part 1 of 2) Note (1) | | | | | | | | | | | | | |--|---------------------------------------|------------|-------------|-----|-----|-----|-----|-----|-----|------|----|--| | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | | | | | | | -5 | | -6 | | -7 | | -10 | | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | | t _{PD1} | Input to non-registered output | C1 = 35 pF | | 5.0 | | 6.0 | | 7.5 | | 10.0 | ns | | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF | | 5.0 | | 6.0 | | 7.5 | | 10.0 | ns | | | t _{SU} | Global clock setup time | | 2.9 | | 3.6 | | 6.0 | | 7.0 | | ns | | | t _H | Global clock hold time | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{FSU} | Global clock setup time of fast input | | 2.5 | | 2.5 | | 3.0 | | 3.0 | | ns | | | t _{FH} | Global clock hold time of fast input | | 0.0 | | 0.0 | | 0.5 | | 0.5 | | ns | | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 3.2 | | 4.0 | | 4.5 | | 5.0 | ns | | | t _{CH} | Global clock high time | | 2.0 | | 2.5 | | 3.0 | | 4.0 | | ns | | | t _{CL} | Global clock low time | | 2.0 | | 2.5 | | 3.0 | | 4.0 | | ns | | | t _{ASU} | Array clock setup time | | 0.7 | | 0.9 | | 3.0 | | 2.0 | | ns | | | t _{AH} | Array clock hold time | | 1.8 | | 2.1 | | 2.0 | | 3.0 | | ns | | | Table 29. EPM7064S External Timing Parameters (Part 2 of 2) Note (1) | | | | | | | | | | | | | |--|--|----------------|-------------|-----|-------|-----|-------|-----|-------|------|-----|--| | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | | | | | | | - | 5 | -6 | | -7 | | -10 | | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | | t _{ACO1} | Array clock to output delay | C1 = 35 pF | | 5.4 | | 6.7 | | 7.5 | | 10.0 | ns | | | t _{ACH} | Array clock high time | | 2.5 | | 2.5 | | 3.0 | | 4.0 | | ns | | | t _{ACL} | Array clock low time | | 2.5 | | 2.5 | | 3.0 | | 4.0 | | ns | | | t _{CPPW} | Minimum pulse width for clear and preset | (2) | 2.5 | | 2.5 | | 3.0 | | 4.0 | | ns | | | t _{ODH} | Output data hold time after clock | C1 = 35 pF (3) | 1.0 | | 1.0 | | 1.0 | | 1.0 | | ns | | | t _{CNT} | Minimum global clock period | | | 5.7 | | 7.1 | | 8.0 | | 10.0 | ns | | | f _{CNT} | Maximum internal global clock frequency | (4) | 175.4 | | 140.8 | | 125.0 | | 100.0 | | MHz | | | t _{ACNT} | Minimum array clock period | | | 5.7 | | 7.1 | | 8.0 | | 10.0 | ns | | | f _{ACNT} | Maximum internal array clock frequency | (4) | 175.4 | | 140.8 | | 125.0 | | 100.0 | | MHz | | | f _{MAX} | Maximum clock frequency | (5) | 250.0 | | 200.0 | | 166.7 | | 125.0 | | MHz | | | Table 3 | O. EPM7064\$ Internal Tim | ing Parameters | (Part | 1 of 2) | No | te (1) | | | | | | |-------------------|--------------------------------|----------------|-------------|---------|-----|--------|-----|-----|-----|-----|----| | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | | | | | | -5 | | -6 | | -7 | | -10 | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.2 | | 0.2 | | 0.5 | | 0.5 | ns | | t _{IO} | I/O input pad and buffer delay | | | 0.2 | | 0.2 | | 0.5 | | 0.5 | ns | | t _{FIN} | Fast input delay | | | 2.2 | | 2.6 | | 1.0 | | 1.0 | ns | | t _{SEXP} | Shared expander delay | | | 3.1 | | 3.8 | | 4.0 | | 5.0 | ns | | t _{PEXP} | Parallel expander delay | | | 0.9 | | 1.1 | | 0.8 | | 0.8 | ns | | t_{LAD} | Logic array delay | | | 2.6 | | 3.2 | | 3.0 | | 5.0 | ns | | t _{LAC} | Logic control array delay | | | 2.5 | | 3.2 | | 3.0 | | 5.0 | ns | | t _{IOE} | Internal output enable delay | | | 0.7 | | 0.8 | | 2.0 | | 2.0 | ns | | t _{OD1} | Output buffer and pad delay | C1 = 35 pF | | 0.2 | | 0.3 | | 2.0 | | 1.5 | ns | | t _{OD2} | Output buffer and pad delay | C1 = 35 pF (6) | | 0.7 | | 0.8 | | 2.5 | | 2.0 | ns | | t _{OD3} | Output buffer and pad delay | C1 = 35 pF | | 5.2 | | 5.3 | | 7.0 | | 5.5 | ns | | t_{ZX1} | Output buffer enable delay | C1 = 35 pF | | 4.0 | | 4.0 | | 4.0 | | 5.0 | ns | | t _{ZX2} | Output buffer enable delay | C1 = 35 pF (6) | | 4.5 | | 4.5 | | 4.5 | | 5.5 | ns | | t _{ZX3} | Output buffer enable delay | C1 = 35 pF | | 9.0 | | 9.0 | | 9.0 | | 9.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 4.0 | | 4.0 | | 5.0 | ns | | t _{SU} | Register setup time | | 0.8 | | 1.0 | | 3.0 | | 2.0 | | ns | | t _H | Register hold time | | 1.7 | | 2.0 | | 2.0 | | 3.0 | | ns | #### Notes to tables: - These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms. - (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path. - (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking. - (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (5) The f_{MAX} values represent the highest frequency for pipelined data. - (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use. - (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value. - (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode. Tables 33 and 34 show the EPM7160S AC operating conditions. | Table 33. EPM7160S External Timing Parameters (Part 1 of 2) Note (1) | | | | | | | | | | | | | |--|--|----------------|-------------|-----|-------|-----|-------|------|------|------|-----|--| | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | | | | | | | -6 | | -7 | | -10 | | -15 | | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | | t _{PD1} | Input to non-registered output | C1 = 35 pF | | 6.0 | | 7.5 | | 10.0 | | 15.0 | ns | | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF | | 6.0 | | 7.5 | | 10.0 | | 15.0 | ns | | | t _{SU} | Global clock setup time | | 3.4 | | 4.2 | | 7.0 | | 11.0 | | ns | | | t _H | Global clock hold time | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{FSU} | Global clock setup time of fast input | | 2.5 | | 3.0 | | 3.0 | | 3.0 | | ns | | | t _{FH} | Global clock hold time of fast input | | 0.0 | | 0.0 | | 0.5 | | 0.0 | | ns | | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 3.9 | | 4.8 | | 5 | | 8 | ns | | | t _{CH} | Global clock high time | | 3.0 | | 3.0 | | 4.0 | | 5.0 | | ns | | | t _{CL} | Global clock low time | | 3.0 | | 3.0 | | 4.0 | | 5.0 | | ns | | | t _{ASU} | Array clock setup time | | 0.9 | | 1.1 | | 2.0 | | 4.0 | | ns | | | t _{AH} | Array clock hold time | | 1.7 | | 2.1 | | 3.0 | | 4.0 | | ns | | | t _{ACO1} | Array clock to output delay | C1 = 35 pF | | 6.4 | | 7.9 | | 10.0 | | 15.0 | ns | | | t _{ACH} | Array clock high time | | 3.0 | | 3.0 | | 4.0 | | 6.0 | | ns | | | t _{ACL} | Array clock low time | | 3.0 | | 3.0 | | 4.0 | | 6.0 | | ns | | | t _{CPPW} | Minimum pulse width for clear and preset | (2) | 2.5 | | 3.0 | | 4.0 | | 6.0 | | ns | | | t _{ODH} | Output data hold time after clock | C1 = 35 pF (3) | 1.0 | | 1.0 | | 1.0 | | 1.0 | | ns | | | t _{CNT} | Minimum global clock period | | | 6.7 | | 8.2 | | 10.0 | | 13.0 | ns | | | f _{CNT} | Maximum internal global clock frequency | (4) | 149.3 | | 122.0 | | 100.0 | | 76.9 | | MHz | | #### Notes to tables: - These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms. - (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path. - (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking. - (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (5) The f_{MAX} values represent the highest frequency for pipelined data. - (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use. - (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value. - (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode. # Power Consumption Supply power (P) versus frequency (f_{MAX} in MHz) for MAX 7000 devices is calculated with the following equation: $$P = P_{INT} + P_{IO} = I_{CCINT} \times V_{CC} + P_{IO}$$ The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note* 74 (*Evaluating Power for Altera Devices*). The I_{CCINT} value, which depends on the switching frequency and the application logic, is calculated with the following equation: $$I_{CCINT} =$$ $$A \times MC_{TON} + B \times (MC_{DEV} - MC_{TON}) + C \times MC_{USED} \times f_{MAX} \times tog_{USED}$$ The parameters in this equation are shown below: MC_{TON} = Number of macrocells with the Turbo Bit option turned on, as reported in the MAX+PLUS II Report File (.rpt) MC_{DEV} = Number of macrocells in the device MC_{USED} = Total number of macrocells in the design, as reported in the MAX+PLUS II Report File (.rpt) f_{MAX} = Highest clock frequency to the device tog_{LC} = Average ratio of logic cells toggling at each clock (typically 0.125) A, B, C = Constants, shown in Table 39 Figure 14 shows typical supply current versus frequency for MAX 7000 devices. Figure 14. I_{CC} vs. Frequency for MAX 7000 Devices (Part 1 of 2) ### EPM7096 Figure 14. I_{CC} vs. Frequency for MAX 7000 Devices (Part 2 of 2)