

Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Obsolete
Programmable Type	EE PLD
Delay Time tpd(1) Max	15 ns
Voltage Supply - Internal	4.75V ~ 5.25V
Number of Logic Elements/Blocks	8
Number of Macrocells	128
Number of Gates	2500
Number of I/O	84
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-PQFP (20x14)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm7128eqc100-15yy

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2. MAX 7000E & MAX 7000S Device Block Diagram

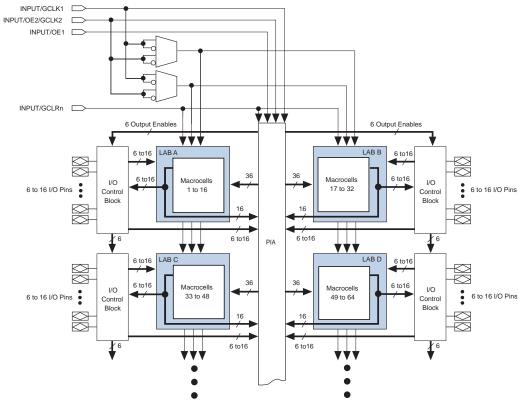


Figure 2 shows the architecture of MAX 7000E and MAX 7000S devices.

Logic Array Blocks

The MAX 7000 device architecture is based on the linking of high-performance, flexible, logic array modules called logic array blocks (LABs). LABs consist of 16-macrocell arrays, as shown in Figures 1 and 2. Multiple LABs are linked together via the programmable interconnect array (PIA), a global bus that is fed by all dedicated inputs, I/O pins, and macrocells.

Each LAB is fed by the following signals:

- 36 signals from the PIA that are used for general logic inputs
- Global controls that are used for secondary register functions
- Direct input paths from I/O pins to the registers that are used for fast setup times for MAX 7000E and MAX 7000S devices

Macrocells

The MAX 7000 macrocell can be individually configured for either sequential or combinatorial logic operation. The macrocell consists of three functional blocks: the logic array, the product-term select matrix, and the programmable register. The macrocell of EPM7032, EPM7064, and EPM7096 devices is shown in Figure 3.

Figure 3. EPM7032, EPM7064 & EPM7096 Device Macrocell

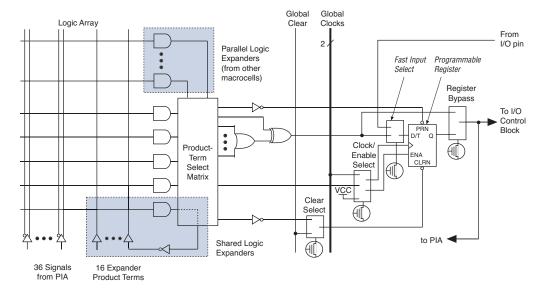
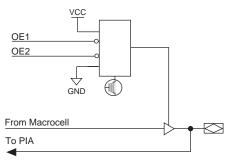
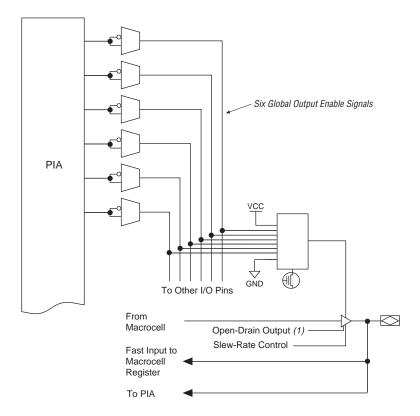




Figure 8. I/O Control Block of MAX 7000 Devices

EPM7032, EPM7064 & EPM7096 Devices

MAX 7000E & MAX 7000S Devices

Note:

(1) The open-drain output option is available only in MAX 7000S devices.

Programming Times

The time required to implement each of the six programming stages can be broken into the following two elements:

- A pulse time to erase, program, or read the EEPROM cells.
- A shifting time based on the test clock (TCK) frequency and the number of TCK cycles to shift instructions, address, and data into the device.

By combining the pulse and shift times for each of the programming stages, the program or verify time can be derived as a function of the TCK frequency, the number of devices, and specific target device(s). Because different ISP-capable devices have a different number of EEPROM cells, both the total fixed and total variable times are unique for a single device.

Programming a Single MAX 7000S Device

The time required to program a single MAX 7000S device in-system can be calculated from the following formula:

$$t_{PROG} = t_{PPULSE} + \frac{Cycle_{PTCK}}{f_{TCK}}$$

where: t_{PROG} = Programming time t_{PPULSE} = Sum of the fixed times to erase, program, and

verify the EEPROM cells

 $Cycle_{PTCK}$ = Number of TCK cycles to program a device

= TCK frequency

The ISP times for a stand-alone verification of a single MAX 7000S device can be calculated from the following formula:

$$t_{VER} = t_{VPULSE} + \frac{Cycle_{VTCK}}{f_{TCK}}$$

where: t_{VER} = Verify time

 t_{VPULSE} = Sum of the fixed times to verify the EEPROM cells

 $Cycle_{VTCK}$ = Number of TCK cycles to verify a device

The instruction register length of MAX 7000S devices is 10 bits. Tables 10 and 11 show the boundary-scan register length and device IDCODE information for MAX 7000S devices.

Table 10. MAX 7000S Boundary-Sca	an Register Length
Device	Boundary-Scan Register Length
EPM7032S	1 (1)
EPM7064S	1 (1)
EPM7128S	288
EPM7160S	312
EPM7192S	360
EPM7256S	480

Note:

(1) This device does not support JTAG boundary-scan testing. Selecting either the EXTEST or SAMPLE/PRELOAD instruction will select the one-bit bypass register.

Table 11. 32	Table 11. 32-Bit MAX 7000 Device IDCODE Note (1)										
Device		IDCODE (32 B	Bits)								
	Version (4 Bits)	Part Number (16 Bits)	Manufacturer's Identity (11 Bits)	1 (1 Bit) (2)							
EPM7032S	0000	0111 0000 0011 0010	00001101110	1							
EPM7064S	0000	0111 0000 0110 0100	00001101110	1							
EPM7128S	0000	0111 0001 0010 1000	00001101110	1							
EPM7160S	0000	0111 0001 0110 0000	00001101110	1							
EPM7192S	0000	0111 0001 1001 0010	00001101110	1							
EPM7256S	0000	0111 0010 0101 0110	00001101110	1							

Notes:

- (1) The most significant bit (MSB) is on the left.
- (2) The least significant bit (LSB) for all JTAG IDCODEs is 1.

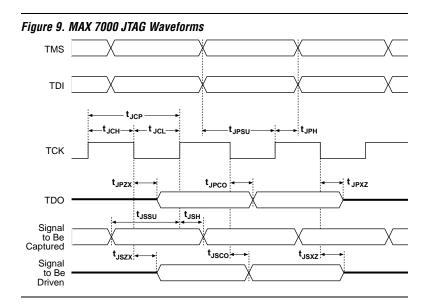


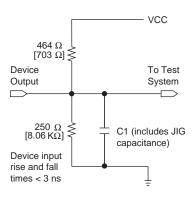
Figure 9 shows the timing requirements for the JTAG signals.

Table 12 shows the JTAG timing parameters and values for MAX 7000S devices.

Table 1	2. JTAG Timing Parameters & Values for MAX 70	00S De	vices	
Symbol	Parameter	Min	Max	Unit
t _{JCP}	TCK clock period	100		ns
t _{JCH}	TCK clock high time	50		ns
t _{JCL}	TCK clock low time	50		ns
t _{JPSU}	JTAG port setup time	20		ns
t _{JPH}	JTAG port hold time	45		ns
t _{JPCO}	JTAG port clock to output		25	ns
t _{JPZX}	JTAG port high impedance to valid output		25	ns
t _{JPXZ}	JTAG port valid output to high impedance		25	ns
t _{JSSU}	Capture register setup time	20		ns
t _{JSH}	Capture register hold time	45		ns
t _{JSCO}	Update register clock to output		25	ns
t _{JSZX}	Update register high impedance to valid output		25	ns
t _{JSXZ}	Update register valid output to high impedance		25	ns

For more information, see *Application Note* 39 (*IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices*).

Design Security


All MAX 7000 devices contain a programmable security bit that controls access to the data programmed into the device. When this bit is programmed, a proprietary design implemented in the device cannot be copied or retrieved. This feature provides a high level of design security because programmed data within EEPROM cells is invisible. The security bit that controls this function, as well as all other programmed data, is reset only when the device is reprogrammed.

Generic Testing

Each MAX 7000 device is functionally tested. Complete testing of each programmable EEPROM bit and all internal logic elements ensures 100% programming yield. AC test measurements are taken under conditions equivalent to those shown in Figure 10. Test patterns can be used and then erased during early stages of the production flow.

Figure 10. MAX 7000 AC Test Conditions

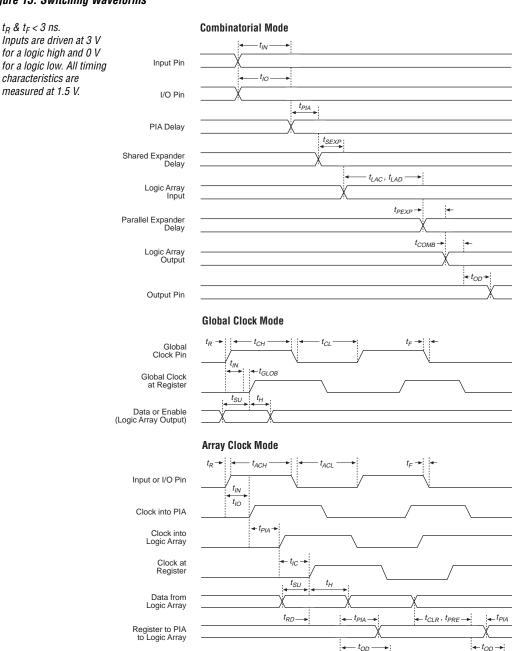
Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast ground-current transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground. significant reductions in observable noise immunity can result. Numbers in brackets are for 2.5-V devices and outputs. Numbers without brackets are for 3.3-V devices and outputs.

QFP Carrier & Development Socket

MAX 7000 and MAX 7000E devices in QFP packages with 100 or more pins are shipped in special plastic carriers to protect the QFP leads. The carrier is used with a prototype development socket and special programming hardware available from Altera. This carrier technology makes it possible to program, test, erase, and reprogram a device without exposing the leads to mechanical stress.

For detailed information and carrier dimensions, refer to the *QFP Carrier & Development Socket Data Sheet*.

MAX 7000S devices are not shipped in carriers.


Operating Conditions

Tables 13 through 18 provide information about absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for 5.0-V MAX 7000 devices.

Table 1	3. MAX 7000 5.0-V Device Abso	plute Maximum Ratings Note (1)			
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	Supply voltage	With respect to ground (2)	-2.0	7.0	V
VI	DC input voltage		-2.0	7.0	V
I _{OUT}	DC output current, per pin		-25	25	mA
T _{STG}	Storage temperature	No bias	-65	150	° C
T _{AMB}	Ambient temperature	Under bias	-65	135	° C
TJ	Junction temperature	Ceramic packages, under bias		150	°C
		PQFP and RQFP packages, under bias		135	°C

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4), (5)	4.75 (4.50)	5.25 (5.50)	V
V _{CCIO}	Supply voltage for output drivers, 5.0-V operation	(3), (4)	4.75 (4.50)	5.25 (5.50)	V
	Supply voltage for output drivers, 3.3-V operation	(3), (4), (6)	3.00 (3.00)	3.60 (3.60)	V
V _{CCISP}	Supply voltage during ISP	(7)	4.75	5.25	V
V _I	Input voltage		-0.5 (8)	V _{CCINT} + 0.5	V
Vo	Output voltage		0	V _{CCIO}	V
T _A	Ambient temperature	For commercial use	0	70	°C
		For industrial use	-40	85	°C
TJ	Junction temperature	For commercial use	0	90	°C
		For industrial use	-40	105	° C
t _R	Input rise time			40	ns
t _F	Input fall time			40	ns

Figure 13. Switching Waveforms

30 Altera Corporation

Register Output to Pin

Tables 19 through 26 show the MAX 7000 and MAX 7000E AC operating conditions.

Symbol	Parameter	Conditions	-6 Speed Grade		-7 Spee	d Grade	Unit
			Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF		6.0		7.5	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		6.0		7.5	ns
t _{SU}	Global clock setup time		5.0		6.0		ns
t _H	Global clock hold time		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input	(2)	2.5		3.0		ns
t _{FH}	Global clock hold time of fast input	(2)	0.5		0.5		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		4.0		4.5	ns
t _{CH}	Global clock high time		2.5		3.0		ns
t _{CL}	Global clock low time		2.5		3.0		ns
t _{ASU}	Array clock setup time		2.5		3.0		ns
t _{AH}	Array clock hold time		2.0		2.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		6.5		7.5	ns
t _{ACH}	Array clock high time		3.0		3.0		ns
t _{ACL}	Array clock low time		3.0		3.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	3.0		3.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF (4)	1.0		1.0		ns
t _{CNT}	Minimum global clock period			6.6		8.0	ns
f _{CNT}	Maximum internal global clock frequency	(5)	151.5		125.0		MHz
t _{ACNT}	Minimum array clock period			6.6		8.0	ns
f _{ACNT}	Maximum internal array clock frequency	(5)	151.5		125.0		MHz
f _{MAX}	Maximum clock frequency	(6)	200		166.7		MHz

Table 2	21. MAX 7000 & MAX 7000E Ext	ernal Timing Param	eters Note	(1)			
Symbol	Parameter	Conditions		Speed (Grade		
			MAX 700	0E (-10P)		000 (-10) 00E (-10)	
			Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF		10.0		10.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		10.0		10.0	ns
t _{SU}	Global clock setup time		7.0		8.0		ns
t _H	Global clock hold time		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input	(2)	3.0		3.0		ns
t _{FH}	Global clock hold time of fast input	(2)	0.5		0.5		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		5.0		5	ns
t _{CH}	Global clock high time		4.0		4.0		ns
t _{CL}	Global clock low time		4.0		4.0		ns
t _{ASU}	Array clock setup time		2.0		3.0		ns
t _{AH}	Array clock hold time		3.0		3.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		10.0		10.0	ns
t _{ACH}	Array clock high time		4.0		4.0		ns
t _{ACL}	Array clock low time		4.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	4.0		4.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF (4)	1.0		1.0		ns
t _{CNT}	Minimum global clock period			10.0		10.0	ns
f _{CNT}	Maximum internal global clock frequency	(5)	100.0		100.0		MHz
t _{ACNT}	Minimum array clock period			10.0		10.0	ns
f _{ACNT}	Maximum internal array clock frequency	(5)	100.0		100.0		MHz
f _{MAX}	Maximum clock frequency	(6)	125.0		125.0		MHz

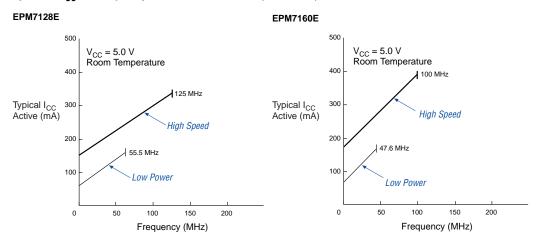
Symbol	Parameter	Conditions		Speed	Grade		Unit
			MAX 700	OE (-10P)		00 (-10) DOE (-10)	
			Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.5		1.0	ns
t _{IO}	I/O input pad and buffer delay			0.5		1.0	ns
t _{FIN}	Fast input delay	(2)		1.0		1.0	ns
t _{SEXP}	Shared expander delay			5.0		5.0	ns
t _{PEXP}	Parallel expander delay			0.8		0.8	ns
t_{LAD}	Logic array delay			5.0		5.0	ns
t _{LAC}	Logic control array delay			5.0		5.0	ns
t _{IOE}	Internal output enable delay	(2)		2.0		2.0	ns
t _{OD1}	Output buffer and pad delay Slow slew rate = off V _{CCIO} = 5.0 V	C1 = 35 pF		1.5		2.0	ns
t _{OD2}	Output buffer and pad delay Slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF (7)		2.0		2.5	ns
t _{OD3}	Output buffer and pad delay Slow slew rate = on V _{CCIO} = 5.0 V or 3.3 V	C1 = 35 pF (2)		5.5		6.0	ns
t _{ZX1}	Output buffer enable delay Slow slew rate = off V _{CCIO} = 5.0 V	C1 = 35 pF		5.0		5.0	ns
t _{ZX2}	Output buffer enable delay Slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF (7)		5.5		5.5	ns
t _{ZX3}	Output buffer enable delay Slow slew rate = on V _{CCIO} = 5.0 V or 3.3 V	C1 = 35 pF (2)		9.0		9.0	ns
t_{XZ}	Output buffer disable delay	C1 = 5 pF		5.0		5.0	ns
t_{SU}	Register setup time		2.0		3.0		ns
t_H	Register hold time		3.0		3.0		ns
t _{FSU}	Register setup time of fast input	(2)	3.0		3.0		ns
t_{FH}	Register hold time of fast input	(2)	0.5		0.5		ns
t_{RD}	Register delay			2.0		1.0	ns
t _{COMB}	Combinatorial delay			2.0		1.0	ns
t _{IC}	Array clock delay			5.0		5.0	ns
t_{EN}	Register enable time			5.0		5.0	ns
t _{GLOB}	Global control delay			1.0		1.0	ns
t _{PRE}	Register preset time			3.0		3.0	ns
t _{CLR}	Register clear time			3.0		3.0	ns
t _{PIA}	PIA delay			1.0		1.0	ns
t _{LPA}	Low-power adder	(8)		11.0		11.0	ns

Symbol	Parameter	Conditions			Speed	Grade			Unit
			-	15	-1	5T	-2	20	
			Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			2.0		2.0		3.0	ns
t _{IO}	I/O input pad and buffer delay			2.0		2.0		3.0	ns
t _{FIN}	Fast input delay	(2)		2.0		_		4.0	ns
t _{SEXP}	Shared expander delay			8.0		10.0		9.0	ns
t _{PEXP}	Parallel expander delay			1.0		1.0		2.0	ns
t _{LAD}	Logic array delay			6.0		6.0		8.0	ns
t _{LAC}	Logic control array delay			6.0		6.0		8.0	ns
t _{IOE}	Internal output enable delay	(2)		3.0		_		4.0	ns
t _{OD1}	Output buffer and pad delay Slow slew rate = off V _{CCIO} = 5.0 V	C1 = 35 pF		4.0		4.0		5.0	ns
t _{OD2}	Output buffer and pad delay Slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF (7)		5.0		-		6.0	ns
t _{OD3}	Output buffer and pad delay Slow slew rate = on V _{CCIO} = 5.0 V or 3.3 V	C1 = 35 pF (2)		8.0		-		9.0	ns
t _{ZX1}	Output buffer enable delay Slow slew rate = off V _{CCIO} = 5.0 V	C1 = 35 pF		6.0		6.0		10.0	ns
t _{ZX2}	Output buffer enable delay Slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF (7)		7.0		-		11.0	ns
t _{ZX3}	Output buffer enable delay Slow slew rate = on V _{CCIO} = 5.0 V or 3.3 V	C1 = 35 pF (2)		10.0		-		14.0	ns
t_{XZ}	Output buffer disable delay	C1 = 5 pF		6.0		6.0		10.0	ns
t _{SU}	Register setup time		4.0		4.0		4.0		ns
t _H	Register hold time		4.0		4.0		5.0		ns
t _{FSU}	Register setup time of fast input	(2)	2.0		-		4.0		ns
t_{FH}	Register hold time of fast input	(2)	2.0		-		3.0		ns
t _{RD}	Register delay			1.0		1.0		1.0	ns
t _{COMB}	Combinatorial delay			1.0		1.0		1.0	ns
t _{IC}	Array clock delay			6.0		6.0		8.0	ns
t _{EN}	Register enable time			6.0		6.0		8.0	ns
t _{GLOB}	Global control delay			1.0		1.0		3.0	ns
t _{PRE}	Register preset time			4.0		4.0		4.0	ns
t _{CLR}	Register clear time			4.0		4.0		4.0	ns
t _{PIA}	PIA delay			2.0		2.0		3.0	ns
t _{LPA}	Low-power adder	(8)		13.0		15.0		15.0	ns

Table 2	Table 28. EPM7032S Internal Timing Parameters Note (1)										
Symbol	Parameter	Conditions				Speed	Grade				Unit
			-5 -6			-	7	-1	0		
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{PIA}	PIA delay	(7)		1.1		1.1		1.4		1.0	ns
t_{LPA}	Low-power adder	(8)		12.0		10.0		10.0		11.0	ns

Notes to tables:

- These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode.


Tables 29 and 30 show the EPM7064S AC operating conditions.

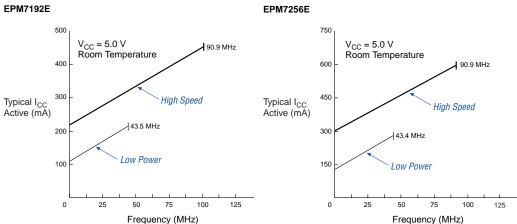

Table 2	9. EPM7064S External Timi	ing Parameters	(Part	1 of 2)	No	nte (1)					
Symbol	Parameter	Conditions	Speed Grade								Unit
			-	-5		-6		-7		-10	
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF		5.0		6.0		7.5		10.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		5.0		6.0		7.5		10.0	ns
t _{SU}	Global clock setup time		2.9		3.6		6.0		7.0		ns
t _H	Global clock hold time		0.0		0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		2.5		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.5		0.5		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		3.2		4.0		4.5		5.0	ns
t _{CH}	Global clock high time		2.0		2.5		3.0		4.0		ns
t _{CL}	Global clock low time		2.0		2.5		3.0		4.0		ns
t _{ASU}	Array clock setup time		0.7		0.9		3.0		2.0		ns
t _{AH}	Array clock hold time		1.8		2.1		2.0		3.0		ns

Table 35. EPM7192S External Timing Parameters (Part 2 of 2) Note (1)											
Symbol	Parameter	Conditions	Speed Grade								
			-7		-10		-15				
			Min	Max	Min	Max	Min	Max			
t _{AH}	Array clock hold time		1.8		3.0		4.0		ns		
t _{ACO1}	Array clock to output delay	C1 = 35 pF		7.8		10.0		15.0	ns		
t _{ACH}	Array clock high time		3.0		4.0		6.0		ns		
t _{ACL}	Array clock low time		3.0		4.0		6.0		ns		
t _{CPPW}	Minimum pulse width for clear and preset	(2)	3.0		4.0		6.0		ns		
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		ns		
t _{CNT}	Minimum global clock period			8.0		10.0		13.0	ns		
f _{CNT}	Maximum internal global clock frequency	(4)	125.0		100.0		76.9		MHz		
t _{ACNT}	Minimum array clock period			8.0		10.0		13.0	ns		
f _{ACNT}	Maximum internal array clock frequency	(4)	125.0		100.0		76.9		MHz		
f _{MAX}	Maximum clock frequency	(5)	166.7		125.0		100.0		MHz		

Table 36. EPM7192S Internal Timing Parameters (Part 1 of 2) Note (1)										
Symbol	Parameter	Conditions	Speed Grade							
			-7		-10		-15			
			Min	Max	Min	Max	Min	Max		
t _{IN}	Input pad and buffer delay			0.3		0.5		2.0	ns	
t _{IO}	I/O input pad and buffer delay			0.3		0.5		2.0	ns	
t _{FIN}	Fast input delay			3.2		1.0		2.0	ns	
t _{SEXP}	Shared expander delay			4.2		5.0		8.0	ns	
t _{PEXP}	Parallel expander delay			1.2		0.8		1.0	ns	
t_{LAD}	Logic array delay			3.1		5.0		6.0	ns	
t _{LAC}	Logic control array delay			3.1		5.0		6.0	ns	
t _{IOE}	Internal output enable delay			0.9		2.0		3.0	ns	
t _{OD1}	Output buffer and pad delay	C1 = 35 pF		0.5		1.5		4.0	ns	
t _{OD2}	Output buffer and pad delay	C1 = 35 pF (6)		1.0		2.0		5.0	ns	
t _{OD3}	Output buffer and pad delay	C1 = 35 pF		5.5		5.5		7.0	ns	
t_{ZX1}	Output buffer enable delay	C1 = 35 pF		4.0		5.0		6.0	ns	
t _{ZX2}	Output buffer enable delay	C1 = 35 pF (6)		4.5		5.5		7.0	ns	
t _{ZX3}	Output buffer enable delay	C1 = 35 pF		9.0		9.0		10.0	ns	
t _{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		5.0		6.0	ns	
t _{SU}	Register setup time		1.1		2.0		4.0		ns	

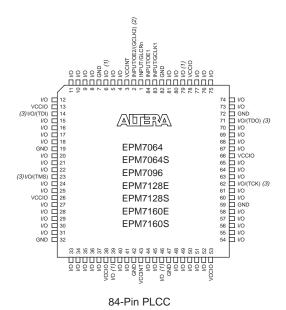

Figure 14. I_{CC} vs. Frequency for MAX 7000 Devices (Part 2 of 2)

Figure 18. 84-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

Notes:

- (1) Pins 6, 39, 46, and 79 are no-connect (N.C.) pins on EPM7096, EPM7160E, and EPM7160S devices.
- (2) The pin functions shown in parenthesis are only available in MAX 7000E and MAX 7000S devices.
- (3) JTAG ports are available in MAX 7000S devices only.

Revision History

The information contained in the *MAX 7000 Programmable Logic Device Family Data Sheet* version 6.7 supersedes information published in previous versions. The following changes were made in the *MAX 7000 Programmable Logic Device Family Data Sheet* version 6.7:

Version 6.7

The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.7:

Reference to AN 88: Using the Jam Language for ISP & ICR via an Embedded Processor has been replaced by AN 122: Using Jam STAPL for ISP & ICR via an Embedded Processor.

Version 6.6

The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.6:

- Added Tables 6 through 8.
- Added "Programming Sequence" section on page 17 and "Programming Times" section on page 18.

Version 6.5

The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.5:

Updated text on page 16.

Version 6.4

The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.4:

Added Note (5) on page 28.

Version 6.3

The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.3:

■ Updated the "Open-Drain Output Option (MAX 7000S Devices Only)" section on page 20.

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 www.altera.com Applications Hotline: (800) 800-EPLD Literature Services: literature@altera.com Copyright © 2005 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

I.S. EN ISO 9001