

Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Obsolete
Programmable Type	EE PLD
Delay Time tpd(1) Max	7.5 ns
Voltage Supply - Internal	4.75V ~ 5.25V
Number of Logic Elements/Blocks	8
Number of Macrocells	128
Number of Gates	2500
Number of I/O	84
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-PQFP (20x14)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm7128eqc100-7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. MAX	7000S Device I	Features -				
Feature	EPM7032S	EPM7064S	EPM7128S	EPM7160S	EPM7192S	EPM7256S
Usable gates	600	1,250	2,500	3,200	3,750	5,000
Macrocells	32	64	128	160	192	256
Logic array blocks	2	4	8	10	12	16
Maximum user I/O pins	36	68	100	104	124	164
t _{PD} (ns)	5	5	6	6	7.5	7.5
t _{SU} (ns)	2.9	2.9	3.4	3.4	4.1	3.9
t _{FSU} (ns)	2.5	2.5	2.5	2.5	3	3
t _{CO1} (ns)	3.2	3.2	4	3.9	4.7	4.7
f _{CNT} (MHz)	175.4	175.4	147.1	149.3	125.0	128.2

...and More Features

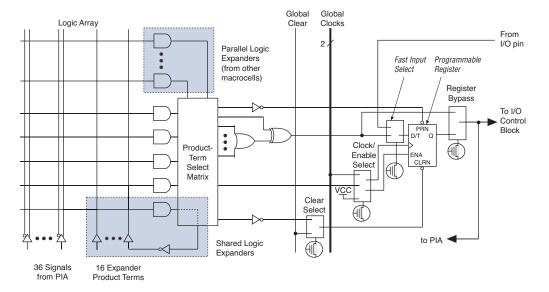
- Open-drain output option in MAX 7000S devices
- Programmable macrocell flipflops with individual clear, preset, clock, and clock enable controls
- Programmable power-saving mode for a reduction of over 50% in each macrocell
- Configurable expander product-term distribution, allowing up to 32 product terms per macrocell
- 44 to 208 pins available in plastic J-lead chip carrier (PLCC), ceramic pin-grid array (PGA), plastic quad flat pack (PQFP), power quad flat pack (RQFP), and 1.0-mm thin quad flat pack (TQFP) packages
- Programmable security bit for protection of proprietary designs
- 3.3-V or 5.0-V operation
 - MultiVoltTM I/O interface operation, allowing devices to interface with 3.3-V or 5.0-V devices (MultiVolt I/O operation is not available in 44-pin packages)
 - Pin compatible with low-voltage MAX 7000A and MAX 7000B devices
- Enhanced features available in MAX 7000E and MAX 7000S devices
 - Six pin- or logic-driven output enable signals
 - Two global clock signals with optional inversion
 - Enhanced interconnect resources for improved routability
 - Fast input setup times provided by a dedicated path from I/O pin to macrocell registers
 - Programmable output slew-rate control
- Software design support and automatic place-and-route provided by Altera's development system for Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 workstations

- Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, and VeriBest
- Programming support
 - Altera's Master Programming Unit (MPU) and programming hardware from third-party manufacturers program all MAX 7000 devices
 - The BitBlasterTM serial download cable, ByteBlasterMVTM parallel port download cable, and MasterBlasterTM serial/universal serial bus (USB) download cable program MAX 7000S devices

General Description

The MAX 7000 family of high-density, high-performance PLDs is based on Altera's second-generation MAX architecture. Fabricated with advanced CMOS technology, the EEPROM-based MAX 7000 family provides 600 to 5,000 usable gates, ISP, pin-to-pin delays as fast as 5 ns, and counter speeds of up to 175.4 MHz. MAX 7000S devices in the -5, -6, -7, and -10 speed grades as well as MAX 7000 and MAX 7000E devices in -5, -6, -7, -10P, and -12P speed grades comply with the PCI Special Interest Group (PCI SIG) *PCI Local Bus Specification, Revision 2.2.* See Table 3 for available speed grades.

Device	Speed Grade											
	-5	-6	-7	-10P	-10	-12P	-12	-15	-15T	-20		
EPM7032		✓	✓		✓		✓	✓	✓			
EPM7032S	✓	✓	✓		✓							
EPM7064		✓	✓		~		✓	✓				
EPM7064S	✓	✓	✓		~							
EPM7096			✓		~		✓	✓				
EPM7128E			✓	✓	~		✓	✓		✓		
EPM7128S		✓	✓		✓			✓				
EPM7160E				✓	✓		✓	✓		✓		
EPM7160S		✓	✓		~			✓				
EPM7192E						✓	✓	✓		✓		
EPM7192S			✓		✓			✓				
EPM7256E						✓	✓	✓		✓		
EPM7256S			✓		✓			✓				

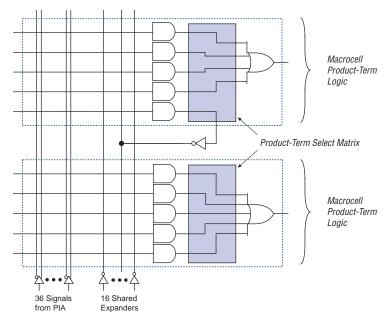

Each LAB is fed by the following signals:

- 36 signals from the PIA that are used for general logic inputs
- Global controls that are used for secondary register functions
- Direct input paths from I/O pins to the registers that are used for fast setup times for MAX 7000E and MAX 7000S devices

Macrocells

The MAX 7000 macrocell can be individually configured for either sequential or combinatorial logic operation. The macrocell consists of three functional blocks: the logic array, the product-term select matrix, and the programmable register. The macrocell of EPM7032, EPM7064, and EPM7096 devices is shown in Figure 3.

Figure 3. EPM7032, EPM7064 & EPM7096 Device Macrocell



Shareable Expanders

Each LAB has 16 shareable expanders that can be viewed as a pool of uncommitted single product terms (one from each macrocell) with inverted outputs that feed back into the logic array. Each shareable expander can be used and shared by any or all macrocells in the LAB to build complex logic functions. A small delay (t_{SEXP}) is incurred when shareable expanders are used. Figure 5 shows how shareable expanders can feed multiple macrocells.

Figure 5. Shareable Expanders

Shareable expanders can be shared by any or all macrocells in an LAB.

Parallel Expanders

Parallel expanders are unused product terms that can be allocated to a neighboring macrocell to implement fast, complex logic functions. Parallel expanders allow up to 20 product terms to directly feed the macrocell OR logic, with five product terms provided by the macrocell and 15 parallel expanders provided by neighboring macrocells in the LAB.

Programmable Speed/Power Control

MAX 7000 devices offer a power-saving mode that supports low-power operation across user-defined signal paths or the entire device. This feature allows total power dissipation to be reduced by 50% or more, because most logic applications require only a small fraction of all gates to operate at maximum frequency.

The designer can program each individual macrocell in a MAX 7000 device for either high-speed (i.e., with the Turbo BitTM option turned on) or low-power (i.e., with the Turbo Bit option turned off) operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths can operate at reduced power. Macrocells that run at low power incur a nominal timing delay adder (t_{LPA}) for the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , and t_{SEXP} , t_{ACL} , and t_{CPPW} parameters.

Output Configuration

MAX 7000 device outputs can be programmed to meet a variety of system-level requirements.

MultiVolt I/O Interface

MAX 7000 devices—except 44-pin devices—support the MultiVolt I/O interface feature, which allows MAX 7000 devices to interface with systems that have differing supply voltages. The 5.0-V devices in all packages can be set for 3.3-V or 5.0-V I/O pin operation. These devices have one set of VCC pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

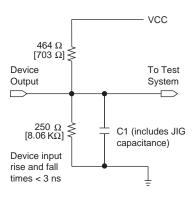
The VCCINT pins must always be connected to a 5.0-V power supply. With a 5.0-V $V_{\rm CCINT}$ level, input voltage thresholds are at TTL levels, and are therefore compatible with both 3.3-V and 5.0-V inputs.

The VCCIO pins can be connected to either a 3.3-V or a 5.0-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 5.0-V supply, the output levels are compatible with 5.0-V systems. When $V_{\rm CCIO}$ is connected to a 3.3-V supply, the output high is 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with $V_{\rm CCIO}$ levels lower than 4.75 V incur a nominally greater timing delay of $t_{\rm OD2}$ instead of $t_{\rm OD1}$.

Open-Drain Output Option (MAX 7000S Devices Only)

MAX 7000S devices provide an optional open-drain (functionally equivalent to open-collector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. It can also provide an additional wired-OR plane.

Design Security


All MAX 7000 devices contain a programmable security bit that controls access to the data programmed into the device. When this bit is programmed, a proprietary design implemented in the device cannot be copied or retrieved. This feature provides a high level of design security because programmed data within EEPROM cells is invisible. The security bit that controls this function, as well as all other programmed data, is reset only when the device is reprogrammed.

Generic Testing

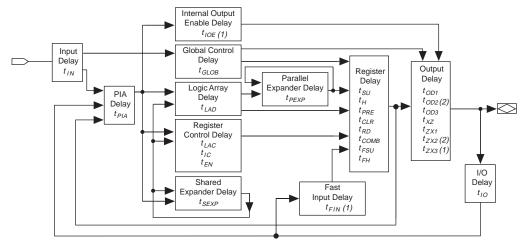
Each MAX 7000 device is functionally tested. Complete testing of each programmable EEPROM bit and all internal logic elements ensures 100% programming yield. AC test measurements are taken under conditions equivalent to those shown in Figure 10. Test patterns can be used and then erased during early stages of the production flow.

Figure 10. MAX 7000 AC Test Conditions

Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast ground-current transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground. significant reductions in observable noise immunity can result. Numbers in brackets are for 2.5-V devices and outputs. Numbers without brackets are for 3.3-V devices and outputs.

QFP Carrier & Development Socket

MAX 7000 and MAX 7000E devices in QFP packages with 100 or more pins are shipped in special plastic carriers to protect the QFP leads. The carrier is used with a prototype development socket and special programming hardware available from Altera. This carrier technology makes it possible to program, test, erase, and reprogram a device without exposing the leads to mechanical stress.

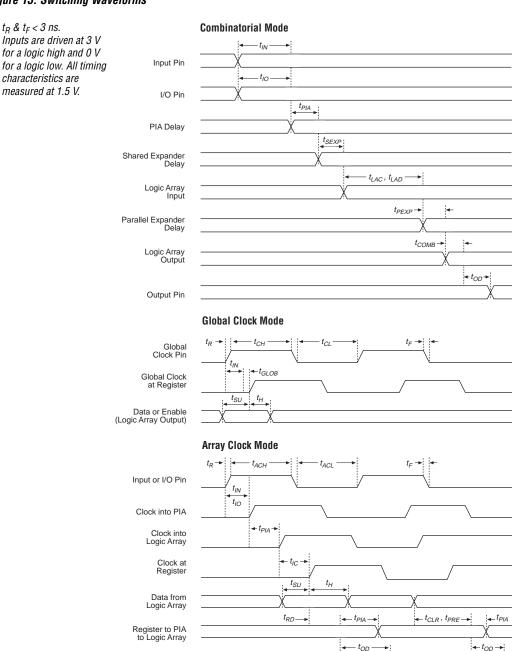


For detailed information and carrier dimensions, refer to the *QFP Carrier & Development Socket Data Sheet*.

MAX 7000S devices are not shipped in carriers.

Figure 12. MAX 7000 Timing Model

Notes:


- (1) Only available in MAX 7000E and MAX 7000S devices.
- Not available in 44-pin devices.

The timing characteristics of any signal path can be derived from the timing model and parameters of a particular device. External timing parameters, which represent pin-to-pin timing delays, can be calculated as the sum of internal parameters. Figure 13 shows the internal timing relationship of internal and external delay parameters.

For more infomration, see *Application Note* 94 (Understanding MAX 7000 *Timing*).

Figure 13. Switching Waveforms

30 Altera Corporation

Register Output to Pin

Symbol	Parameter	Conditions		Speed	Grade		Unit
			MAX 700	OE (-10P)	MAX 70		
			Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.5		1.0	ns
t _{IO}	I/O input pad and buffer delay			0.5		1.0	ns
t _{FIN}	Fast input delay	(2)		1.0		1.0	ns
t _{SEXP}	Shared expander delay			5.0		5.0	ns
t _{PEXP}	Parallel expander delay			0.8		0.8	ns
t_{LAD}	Logic array delay			5.0		5.0	ns
t _{LAC}	Logic control array delay			5.0		5.0	ns
t _{IOE}	Internal output enable delay	(2)		2.0		2.0	ns
t _{OD1}	Output buffer and pad delay Slow slew rate = off V _{CCIO} = 5.0 V	C1 = 35 pF		1.5		2.0	ns
t _{OD2}	Output buffer and pad delay Slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF (7)		2.0		2.5	ns
t _{OD3}	Output buffer and pad delay Slow slew rate = on V _{CCIO} = 5.0 V or 3.3 V	C1 = 35 pF (2)		5.5		6.0	ns
t _{ZX1}	Output buffer enable delay Slow slew rate = off V _{CCIO} = 5.0 V	C1 = 35 pF		5.0		5.0	ns
t _{ZX2}	Output buffer enable delay Slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF (7)		5.5		5.5	ns
t _{ZX3}	Output buffer enable delay Slow slew rate = on V _{CCIO} = 5.0 V or 3.3 V	C1 = 35 pF (2)		9.0		9.0	ns
t_{XZ}	Output buffer disable delay	C1 = 5 pF		5.0		5.0	ns
t_{SU}	Register setup time		2.0		3.0		ns
t_H	Register hold time		3.0		3.0		ns
t _{FSU}	Register setup time of fast input	(2)	3.0		3.0		ns
t_{FH}	Register hold time of fast input	(2)	0.5		0.5		ns
t_{RD}	Register delay			2.0		1.0	ns
t _{COMB}	Combinatorial delay			2.0		1.0	ns
t _{IC}	Array clock delay			5.0		5.0	ns
t_{EN}	Register enable time			5.0		5.0	ns
t _{GLOB}	Global control delay			1.0		1.0	ns
t _{PRE}	Register preset time			3.0		3.0	ns
t _{CLR}	Register clear time			3.0		3.0	ns
t_{PIA}	PIA delay			1.0		1.0	ns
t _{LPA}	Low-power adder	(8)		11.0		11.0	ns

Table 2	23. MAX 7000 & MAX 7000E Ext	ernal Timing Param	eters Note	e (1)			
Symbol	Parameter	Conditions		Speed	Grade		Unit
			MAX 700	0E (-12P)		00 (-12) DOE (-12)	-
			Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF		12.0		12.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		12.0		12.0	ns
t _{SU}	Global clock setup time		7.0		10.0		ns
t _H	Global clock hold time		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input	(2)	3.0		3.0		ns
t _{FH}	Global clock hold time of fast input	(2)	0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		6.0		6.0	ns
t _{CH}	Global clock high time		4.0		4.0		ns
t _{CL}	Global clock low time		4.0		4.0		ns
t _{ASU}	Array clock setup time		3.0		4.0		ns
t _{AH}	Array clock hold time		4.0		4.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		12.0		12.0	ns
t _{ACH}	Array clock high time		5.0		5.0		ns
t _{ACL}	Array clock low time		5.0		5.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	5.0		5.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF (4)	1.0		1.0		ns
t _{CNT}	Minimum global clock period			11.0		11.0	ns
f _{CNT}	Maximum internal global clock frequency	(5)	90.9		90.9		MHz
t _{ACNT}	Minimum array clock period			11.0		11.0	ns
f _{ACNT}	Maximum internal array clock frequency	(5)	90.9		90.9		MHz
f _{MAX}	Maximum clock frequency	(6)	125.0		125.0		MHz

Table 27. EPM7032S External Timing Parameters (Part 2 of 2) Note (1)												
Symbol	Parameter	Conditions				Speed	Grade	1			Unit	
			-	-5 -6 -7 -10								
			Min	Max	Min	Max	Min	Max	Min	Max		
f _{ACNT}	Maximum internal array clock frequency	(4)	175.4		142.9		116.3		100.0		MHz	
f _{MAX}	Maximum clock frequency	(5)	250.0		200.0		166.7		125.0		MHz	

Table 28. EPM7032\$ Internal Timing Parameters Note (1)												
Symbol	Parameter	Conditions				Speed	Grade)			Unit	
			_	5	-	6	-	7	-	10		
			Min	Max	Min	Max	Min	Max	Min	Max		
t _{IN}	Input pad and buffer delay			0.2		0.2		0.3		0.5	ns	
t _{IO}	I/O input pad and buffer delay			0.2		0.2		0.3		0.5	ns	
t _{FIN}	Fast input delay			2.2		2.1		2.5		1.0	ns	
t _{SEXP}	Shared expander delay			3.1		3.8		4.6		5.0	ns	
t _{PEXP}	Parallel expander delay			0.9		1.1		1.4		0.8	ns	
t_{LAD}	Logic array delay			2.6		3.3		4.0		5.0	ns	
t _{LAC}	Logic control array delay			2.5		3.3		4.0		5.0	ns	
t _{IOE}	Internal output enable delay			0.7		0.8		1.0		2.0	ns	
t _{OD1}	Output buffer and pad delay	C1 = 35 pF		0.2		0.3		0.4		1.5	ns	
t _{OD2}	Output buffer and pad delay	C1 = 35 pF (6)		0.7		0.8		0.9		2.0	ns	
t _{OD3}	Output buffer and pad delay	C1 = 35 pF		5.2		5.3		5.4		5.5	ns	
t _{ZX1}	Output buffer enable delay	C1 = 35 pF		4.0		4.0		4.0		5.0	ns	
t _{ZX2}	Output buffer enable delay	C1 = 35 pF (6)		4.5		4.5		4.5		5.5	ns	
t _{ZX3}	Output buffer enable delay	C1 = 35 pF		9.0		9.0		9.0		9.0	ns	
t_{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		4.0		5.0	ns	
t _{SU}	Register setup time		0.8		1.0		1.3		2.0		ns	
t_H	Register hold time		1.7		2.0		2.5		3.0		ns	
t _{FSU}	Register setup time of fast input		1.9		1.8		1.7		3.0		ns	
t _{FH}	Register hold time of fast input		0.6		0.7		0.8		0.5		ns	
t_{RD}	Register delay			1.2		1.6		1.9		2.0	ns	
t_{COMB}	Combinatorial delay			0.9		1.1		1.4		2.0	ns	
t _{IC}	Array clock delay			2.7		3.4		4.2		5.0	ns	
t _{EN}	Register enable time			2.6		3.3		4.0		5.0	ns	
t _{GLOB}	Global control delay			1.6		1.4		1.7		1.0	ns	
t _{PRE}	Register preset time			2.0		2.4		3.0		3.0	ns	
t _{CLR}	Register clear time			2.0		2.4		3.0		3.0	ns	

Notes to tables:

- These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode.

Tables 33 and 34 show the EPM7160S AC operating conditions.

Table 3	Table 33. EPM7160S External Timing Parameters (Part 1 of 2) Note (1)												
Symbol	Parameter	Conditions				Speed	Grade)			Unit		
			-	6	-	7	-10		-15				
			Min	Max	Min	Max	Min	Max	Min	Max			
t _{PD1}	Input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns		
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns		
t _{SU}	Global clock setup time		3.4		4.2		7.0		11.0		ns		
t _H	Global clock hold time		0.0		0.0		0.0		0.0		ns		
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		3.0		ns		
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.5		0.0		ns		
t _{CO1}	Global clock to output delay	C1 = 35 pF		3.9		4.8		5		8	ns		
t _{CH}	Global clock high time		3.0		3.0		4.0		5.0		ns		
t _{CL}	Global clock low time		3.0		3.0		4.0		5.0		ns		
t _{ASU}	Array clock setup time		0.9		1.1		2.0		4.0		ns		
t _{AH}	Array clock hold time		1.7		2.1		3.0		4.0		ns		
t _{ACO1}	Array clock to output delay	C1 = 35 pF		6.4		7.9		10.0		15.0	ns		
t _{ACH}	Array clock high time		3.0		3.0		4.0		6.0		ns		
t _{ACL}	Array clock low time		3.0		3.0		4.0		6.0		ns		
t _{CPPW}	Minimum pulse width for clear and preset	(2)	2.5		3.0		4.0		6.0		ns		
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		1.0		ns		
t _{CNT}	Minimum global clock period			6.7		8.2		10.0		13.0	ns		
f _{CNT}	Maximum internal global clock frequency	(4)	149.3		122.0		100.0		76.9		MHz		

Table 3	Table 33. EPM7160S External Timing Parameters (Part 2 of 2) Note (1)												
Symbol	Parameter	Conditions				Speed	Grade	1			Unit		
			-	-6 -7 -10 -15									
			Min	Max	Min	Max	Min	Max	Min	Max			
t _{ACNT}	Minimum array clock period			6.7		8.2		10.0		13.0	ns		
f _{ACNT}	Maximum internal array clock frequency	(4)	149.3		122.0		100.0		76.9		MHz		
f _{MAX}	Maximum clock frequency	(5)	166.7		166.7		125.0		100.0		MHz		

Table 34. EPM7160S Internal Timing Parameters (Part 1 of 2) Note (1)												
Symbol	Parameter	Conditions				Speed	Grade				Unit	
			-	6	-	7	-1	10	-1	15		
			Min	Max	Min	Max	Min	Max	Min	Max		
t _{IN}	Input pad and buffer delay			0.2		0.3		0.5		2.0	ns	
t _{IO}	I/O input pad and buffer delay			0.2		0.3		0.5		2.0	ns	
t _{FIN}	Fast input delay			2.6		3.2		1.0		2.0	ns	
t _{SEXP}	Shared expander delay			3.6		4.3		5.0		8.0	ns	
t _{PEXP}	Parallel expander delay			1.0		1.3		0.8		1.0	ns	
t_{LAD}	Logic array delay			2.8		3.4		5.0		6.0	ns	
t _{LAC}	Logic control array delay			2.8		3.4		5.0		6.0	ns	
t _{IOE}	Internal output enable delay			0.7		0.9		2.0		3.0	ns	
t _{OD1}	Output buffer and pad delay	C1 = 35 pF		0.4		0.5		1.5		4.0	ns	
t _{OD2}	Output buffer and pad delay	C1 = 35 pF (6)		0.9		1.0		2.0		5.0	ns	
t _{OD3}	Output buffer and pad delay	C1 = 35 pF		5.4		5.5		5.5		8.0	ns	
t_{ZX1}	Output buffer enable delay	C1 = 35 pF		4.0		4.0		5.0		6.0	ns	
t _{ZX2}	Output buffer enable delay	C1 = 35 pF (6)		4.5		4.5		5.5		7.0	ns	
t _{ZX3}	Output buffer enable delay	C1 = 35 pF		9.0		9.0		9.0		10.0	ns	
t _{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		5.0		6.0	ns	
t _{SU}	Register setup time		1.0		1.2		2.0		4.0		ns	
t _H	Register hold time		1.6		2.0		3.0		4.0		ns	
t _{FSU}	Register setup time of fast input		1.9		2.2		3.0		2.0		ns	
t _{FH}	Register hold time of fast input		0.6		0.8		0.5		1.0		ns	
t _{RD}	Register delay			1.3		1.6		2.0		1.0	ns	
t _{COMB}	Combinatorial delay			1.0		1.3		2.0		1.0	ns	
t _{IC}	Array clock delay			2.9		3.5		5.0		6.0	ns	
t _{EN}	Register enable time			2.8		3.4		5.0		6.0	ns	
t _{GLOB}	Global control delay			2.0		2.4		1.0		1.0	ns	
t _{PRE}	Register preset time			2.4		3.0		3.0		4.0	ns	

Table 3	Table 35. EPM7192S External Timing Parameters (Part 2 of 2) Note (1)													
Symbol	Parameter	Conditions			Unit									
			-	-7		-10		15						
			Min	Max	Min	Max	Min	Max						
t _{AH}	Array clock hold time		1.8		3.0		4.0		ns					
t _{ACO1}	Array clock to output delay	C1 = 35 pF		7.8		10.0		15.0	ns					
t _{ACH}	Array clock high time		3.0		4.0		6.0		ns					
t _{ACL}	Array clock low time		3.0		4.0		6.0		ns					
t _{CPPW}	Minimum pulse width for clear and preset	(2)	3.0		4.0		6.0		ns					
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		ns					
t _{CNT}	Minimum global clock period			8.0		10.0		13.0	ns					
f _{CNT}	Maximum internal global clock frequency	(4)	125.0		100.0		76.9		MHz					
t _{ACNT}	Minimum array clock period			8.0		10.0		13.0	ns					
f _{ACNT}	Maximum internal array clock frequency	(4)	125.0		100.0		76.9		MHz					
f _{MAX}	Maximum clock frequency	(5)	166.7		125.0		100.0		MHz					

Table 3	Table 36. EPM7192S Internal Timing Parameters (Part 1 of 2) Note (1)												
Symbol	Parameter	Conditions			Speed	Grade			Unit				
			-	7	-10		-15		1				
			Min	Max	Min	Max	Min	Max					
t _{IN}	Input pad and buffer delay			0.3		0.5		2.0	ns				
t _{IO}	I/O input pad and buffer delay			0.3		0.5		2.0	ns				
t _{FIN}	Fast input delay			3.2		1.0		2.0	ns				
t _{SEXP}	Shared expander delay			4.2		5.0		8.0	ns				
t _{PEXP}	Parallel expander delay			1.2		0.8		1.0	ns				
t_{LAD}	Logic array delay			3.1		5.0		6.0	ns				
t _{LAC}	Logic control array delay			3.1		5.0		6.0	ns				
t _{IOE}	Internal output enable delay			0.9		2.0		3.0	ns				
t _{OD1}	Output buffer and pad delay	C1 = 35 pF		0.5		1.5		4.0	ns				
t _{OD2}	Output buffer and pad delay	C1 = 35 pF (6)		1.0		2.0		5.0	ns				
t _{OD3}	Output buffer and pad delay	C1 = 35 pF		5.5		5.5		7.0	ns				
t_{ZX1}	Output buffer enable delay	C1 = 35 pF		4.0		5.0		6.0	ns				
t _{ZX2}	Output buffer enable delay	C1 = 35 pF (6)		4.5		5.5		7.0	ns				
t _{ZX3}	Output buffer enable delay	C1 = 35 pF		9.0		9.0		10.0	ns				
t_{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		5.0		6.0	ns				
t_{SU}	Register setup time		1.1		2.0		4.0		ns				

Notes to tables:

- These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode.

Power Consumption

Supply power (P) versus frequency (f_{MAX} in MHz) for MAX 7000 devices is calculated with the following equation:

$$P = P_{INT} + P_{IO} = I_{CCINT} \times V_{CC} + P_{IO}$$

The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note* 74 (*Evaluating Power for Altera Devices*).

The I_{CCINT} value, which depends on the switching frequency and the application logic, is calculated with the following equation:

$$I_{CCINT} =$$

$$A \times MC_{TON} + B \times (MC_{DEV} - MC_{TON}) + C \times MC_{USED} \times f_{MAX} \times tog_{USED}$$

The parameters in this equation are shown below:

 MC_{TON} = Number of macrocells with the Turbo Bit option turned on,

as reported in the MAX+PLUS II Report File (.rpt)

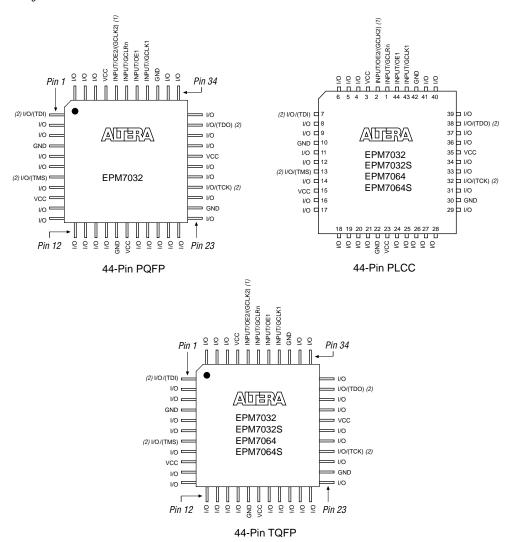
 MC_{DEV} = Number of macrocells in the device

MC_{USED} = Total number of macrocells in the design, as reported

in the MAX+PLUS II Report File (.rpt)

 f_{MAX} = Highest clock frequency to the device

tog_{LC} = Average ratio of logic cells toggling at each clock

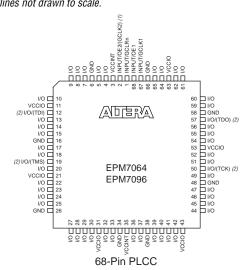

(typically 0.125)

A, B, C = Constants, shown in Table 39

Figures 16 through 22 show the package pin-out diagrams for MAX 7000 devices.

Figure 16. 44-Pin Package Pin-Out Diagram

Package outlines not drawn to scale.

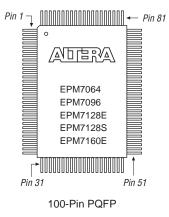


Notes:

- (1) The pin functions shown in parenthesis are only available in MAX 7000E and MAX 7000S devices.
- (2) JTAG ports are available in MAX 7000S devices only.

Figure 17. 68-Pin Package Pin-Out Diagram

Package outlines not drawn to scale.



Notes:

- The pin functions shown in parenthesis are only available in MAX 7000E and MAX 7000S devices.
- (2) JTAG ports are available in MAX 7000S devices only.

Figure 19. 100-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

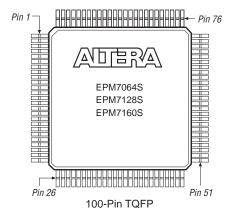
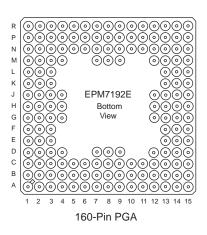
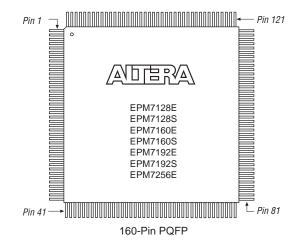




Figure 20. 160-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

Revision History

The information contained in the *MAX 7000 Programmable Logic Device Family Data Sheet* version 6.7 supersedes information published in previous versions. The following changes were made in the *MAX 7000 Programmable Logic Device Family Data Sheet* version 6.7:

Version 6.7

The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.7:

Reference to AN 88: Using the Jam Language for ISP & ICR via an Embedded Processor has been replaced by AN 122: Using Jam STAPL for ISP & ICR via an Embedded Processor.

Version 6.6

The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.6:

- Added Tables 6 through 8.
- Added "Programming Sequence" section on page 17 and "Programming Times" section on page 18.

Version 6.5

The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.5:

Updated text on page 16.

Version 6.4

The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.4:

Added Note (5) on page 28.

Version 6.3

The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.3:

■ Updated the "Open-Drain Output Option (MAX 7000S Devices Only)" section on page 20.

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 www.altera.com Applications Hotline: (800) 800-EPLD Literature Services: literature@altera.com Copyright © 2005 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

I.S. EN ISO 9001