Welcome to **E-XFL.COM** **Understanding Embedded - CPLDs (Complex Programmable Logic Devices)** Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware. ### **Applications of Embedded - CPLDs** | Details | | |---------------------------------|---| | Product Status | Obsolete | | Programmable Type | In System Programmable | | Delay Time tpd(1) Max | 10 ns | | Voltage Supply - Internal | 4.75V ~ 5.25V | | Number of Logic Elements/Blocks | 8 | | Number of Macrocells | 128 | | Number of Gates | 2500 | | Number of I/O | 84 | | Operating Temperature | 0°C ~ 70°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 100-BQFP | | Supplier Device Package | 100-PQFP (20x14) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epm7128sqc100-10fn | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Figure 2. MAX 7000E & MAX 7000S Device Block Diagram Figure 2 shows the architecture of MAX 7000E and MAX 7000S devices. **Logic Array Blocks** The MAX 7000 device architecture is based on the linking of high-performance, flexible, logic array modules called logic array blocks (LABs). LABs consist of 16-macrocell arrays, as shown in Figures 1 and 2. Multiple LABs are linked together via the programmable interconnect array (PIA), a global bus that is fed by all dedicated inputs, I/O pins, and macrocells. Figure 4 shows a MAX 7000E and MAX 7000S device macrocell. Combinatorial logic is implemented in the logic array, which provides five product terms per macrocell. The product-term select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as secondary inputs to the macrocell's register clear, preset, clock, and clock enable control functions. Two kinds of expander product terms ("expanders") are available to supplement macrocell logic resources: - Shareable expanders, which are inverted product terms that are fed back into the logic array - Parallel expanders, which are product terms borrowed from adjacent macrocells The Altera development system automatically optimizes product-term allocation according to the logic requirements of the design. For registered functions, each macrocell flipflop can be individually programmed to implement D, T, JK, or SR operation with programmable clock control. The flipflop can be bypassed for combinatorial operation. During design entry, the designer specifies the desired flipflop type; the Altera development software then selects the most efficient flipflop operation for each registered function to optimize resource utilization. The compiler can allocate up to three sets of up to five parallel expanders automatically to the macrocells that require additional product terms. Each set of five parallel expanders incurs a small, incremental timing delay (t_{PEXP}). For example, if a macrocell requires 14 product terms, the Compiler uses the five dedicated product terms within the macrocell and allocates two sets of parallel expanders; the first set includes five product terms and the second set includes four product terms, increasing the total delay by $2 \times t_{PEXP}$. Two groups of 8 macrocells within each LAB (e.g., macrocells 1 through 8 and 9 through 16) form two chains to lend or borrow parallel expanders. A macrocell borrows parallel expanders from lower-numbered macrocells. For example, macrocell 8 can borrow parallel expanders from macrocell 7, from macrocells 7 and 6, or from macrocells 7, 6, and 5. Within each group of 8, the lowest-numbered macrocell can only lend parallel expanders and the highest-numbered macrocell can only borrow them. Figure 6 shows how parallel expanders can be borrowed from a neighboring macrocell. Figure 6. Parallel Expanders Unused product terms in a macrocell can be allocated to a neighboring macrocell. ### Programmable Interconnect Array Logic is routed between LABs via the programmable interconnect array (PIA). This global bus is a programmable path that connects any signal source to any destination on the device. All MAX 7000 dedicated inputs, I/O pins, and macrocell outputs feed the PIA, which makes the signals available throughout the entire device. Only the signals required by each LAB are actually routed from the PIA into the LAB. Figure 7 shows how the PIA signals are routed into the LAB. An EEPROM cell controls one input to a 2-input AND gate, which selects a PIA signal to drive into the LAB. Figure 7. PIA Routing While the routing delays of channel-based routing schemes in masked or FPGAs are cumulative, variable, and path-dependent, the MAX 7000 PIA has a fixed delay. The PIA thus eliminates skew between signals and makes timing performance easy to predict. ### I/O Control Blocks The I/O control block allows each I/O pin to be individually configured for input, output, or bidirectional operation. All I/O pins have a tri-state buffer that is individually controlled by one of the global output enable signals or directly connected to ground or V_{CC}. Figure 8 shows the I/O control block for the MAX 7000 family. The I/O control block of EPM7032, EPM7064, and EPM7096 devices has two global output enable signals that are driven by two dedicated active-low output enable pins (OE1 and OE2). The I/O control block of MAX 7000E and MAX 7000S devices has six global output enable signals that are driven by the true or complement of two output enable signals, a subset of the I/O pins, or a subset of the I/O macrocells. ### **Programming Times** The time required to implement each of the six programming stages can be broken into the following two elements: - A pulse time to erase, program, or read the EEPROM cells. - A shifting time based on the test clock (TCK) frequency and the number of TCK cycles to shift instructions, address, and data into the device. By combining the pulse and shift times for each of the programming stages, the program or verify time can be derived as a function of the TCK frequency, the number of devices, and specific target device(s). Because different ISP-capable devices have a different number of EEPROM cells, both the total fixed and total variable times are unique for a single device. ### Programming a Single MAX 7000S Device The time required to program a single MAX 7000S device in-system can be calculated from the following formula: $$t_{PROG} = t_{PPULSE} + \frac{Cycle_{PTCK}}{f_{TCK}}$$ where: t_{PROG} = Programming time t_{PPULSE} = Sum of the fixed times to erase, program, and verify the EEPROM cells $Cycle_{PTCK}$ = Number of TCK cycles to program a device = TCK frequency The ISP times for a stand-alone verification of a single MAX 7000S device can be calculated from the following formula: $$t_{VER} = t_{VPULSE} + \frac{Cycle_{VTCK}}{f_{TCK}}$$ where: t_{VER} = Verify time t_{VPULSE} = Sum of the fixed times to verify the EEPROM cells $Cycle_{VTCK}$ = Number of TCK cycles to verify a device The programming times described in Tables 6 through 8 are associated with the worst-case method using the enhanced ISP algorithm. | Table 6. MAX 7000S t _{PULSE} & Cycle _{TCK} Values | | | | | | | |---|-------------------------|-----------------------|--------------------------|-----------------------|--|--| | Device | Progra | ımming | Stand-Alone Verification | | | | | | t _{PPULSE} (s) | Cycle _{PTCK} | t _{VPULSE} (s) | Cycle _{VTCK} | | | | EPM7032S | 4.02 | 342,000 | 0.03 | 200,000 | | | | EPM7064S | 4.50 | 504,000 | 0.03 | 308,000 | | | | EPM7128S | 5.11 | 832,000 | 0.03 | 528,000 | | | | EPM7160S | 5.35 | 1,001,000 | 0.03 | 640,000 | | | | EPM7192S | 5.71 | 1,192,000 | 0.03 | 764,000 | | | | EPM7256S | 6.43 | 1,603,000 | 0.03 | 1,024,000 | | | Tables 7 and 8 show the in-system programming and stand alone verification times for several common test clock frequencies. | Table 7. MAX 7000S In-System Programming Times for Different Test Clock Frequencies | | | | | | | | | | |---|--------|------------------|-------|-------|---------|---------|---------|--------|-------| | Device | | f _{TCK} | | | | | | | Units | | | 10 MHz | 5 MHz | 2 MHz | 1 MHz | 500 kHz | 200 kHz | 100 kHz | 50 kHz | | | EPM7032S | 4.06 | 4.09 | 4.19 | 4.36 | 4.71 | 5.73 | 7.44 | 10.86 | s | | EPM7064S | 4.55 | 4.60 | 4.76 | 5.01 | 5.51 | 7.02 | 9.54 | 14.58 | S | | EPM7128S | 5.19 | 5.27 | 5.52 | 5.94 | 6.77 | 9.27 | 13.43 | 21.75 | S | | EPM7160S | 5.45 | 5.55 | 5.85 | 6.35 | 7.35 | 10.35 | 15.36 | 25.37 | S | | EPM7192S | 5.83 | 5.95 | 6.30 | 6.90 | 8.09 | 11.67 | 17.63 | 29.55 | S | | EPM7256S | 6.59 | 6.75 | 7.23 | 8.03 | 9.64 | 14.45 | 22.46 | 38.49 | S | | Table 8. MAX 7000S Stand-Alone Verification Times for Different Test Clock Frequencies | | | | | | | | | | |--|--------|------------------|-------|-------|---------|---------|---------|--------|-------| | Device | | f _{TCK} | | | | | | | Units | | | 10 MHz | 5 MHz | 2 MHz | 1 MHz | 500 kHz | 200 kHz | 100 kHz | 50 kHz | | | EPM7032S | 0.05 | 0.07 | 0.13 | 0.23 | 0.43 | 1.03 | 2.03 | 4.03 | s | | EPM7064S | 0.06 | 0.09 | 0.18 | 0.34 | 0.64 | 1.57 | 3.11 | 6.19 | S | | EPM7128S | 0.08 | 0.14 | 0.29 | 0.56 | 1.09 | 2.67 | 5.31 | 10.59 | S | | EPM7160S | 0.09 | 0.16 | 0.35 | 0.67 | 1.31 | 3.23 | 6.43 | 12.83 | S | | EPM7192S | 0.11 | 0.18 | 0.41 | 0.79 | 1.56 | 3.85 | 7.67 | 15.31 | S | | EPM7256S | 0.13 | 0.24 | 0.54 | 1.06 | 2.08 | 5.15 | 10.27 | 20.51 | S | The instruction register length of MAX 7000S devices is 10 bits. Tables 10 and 11 show the boundary-scan register length and device IDCODE information for MAX 7000S devices. | Table 10. MAX 7000S Boundary-Scan Register Length | | | | | | |---|-------------------------------|--|--|--|--| | Device | Boundary-Scan Register Length | | | | | | EPM7032S | 1 (1) | | | | | | EPM7064S | 1 (1) | | | | | | EPM7128S | 288 | | | | | | EPM7160S | 312 | | | | | | EPM7192S | 360 | | | | | | EPM7256S | 480 | | | | | ### Note: (1) This device does not support JTAG boundary-scan testing. Selecting either the EXTEST or SAMPLE/PRELOAD instruction will select the one-bit bypass register. | Table 11. 32-Bit MAX 7000 Device IDCODE Note (1) | | | | | | | | |--|---------------------|-----------------------|--------------------------------------|------------------|--|--|--| | Device | | IDCODE (32 B | Bits) | | | | | | | Version
(4 Bits) | Part Number (16 Bits) | Manufacturer's
Identity (11 Bits) | 1 (1 Bit)
(2) | | | | | EPM7032S | 0000 | 0111 0000 0011 0010 | 00001101110 | 1 | | | | | EPM7064S | 0000 | 0111 0000 0110 0100 | 00001101110 | 1 | | | | | EPM7128S | 0000 | 0111 0001 0010 1000 | 00001101110 | 1 | | | | | EPM7160S | 0000 | 0111 0001 0110 0000 | 00001101110 | 1 | | | | | EPM7192S | 0000 | 0111 0001 1001 0010 | 00001101110 | 1 | | | | | EPM7256S | 0000 | 0111 0010 0101 0110 | 00001101110 | 1 | | | | #### Notes: - (1) The most significant bit (MSB) is on the left. - (2) The least significant bit (LSB) for all JTAG IDCODEs is 1. ### **Design Security** All MAX 7000 devices contain a programmable security bit that controls access to the data programmed into the device. When this bit is programmed, a proprietary design implemented in the device cannot be copied or retrieved. This feature provides a high level of design security because programmed data within EEPROM cells is invisible. The security bit that controls this function, as well as all other programmed data, is reset only when the device is reprogrammed. ### **Generic Testing** Each MAX 7000 device is functionally tested. Complete testing of each programmable EEPROM bit and all internal logic elements ensures 100% programming yield. AC test measurements are taken under conditions equivalent to those shown in Figure 10. Test patterns can be used and then erased during early stages of the production flow. ### Figure 10. MAX 7000 AC Test Conditions Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast ground-current transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground. significant reductions in observable noise immunity can result. Numbers in brackets are for 2.5-V devices and outputs. Numbers without brackets are for 3.3-V devices and outputs. ## QFP Carrier & Development Socket MAX 7000 and MAX 7000E devices in QFP packages with 100 or more pins are shipped in special plastic carriers to protect the QFP leads. The carrier is used with a prototype development socket and special programming hardware available from Altera. This carrier technology makes it possible to program, test, erase, and reprogram a device without exposing the leads to mechanical stress. For detailed information and carrier dimensions, refer to the *QFP Carrier & Development Socket Data Sheet*. MAX 7000S devices are not shipped in carriers. # Operating Conditions Tables 13 through 18 provide information about absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for 5.0-V MAX 7000 devices. | Table 1 | Table 13. MAX 7000 5.0-V Device Absolute Maximum Ratings Note (1) | | | | | | | | | | |------------------|---|------------------------------------|------|-----|------|--|--|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | | | V _{CC} | Supply voltage | With respect to ground (2) | -2.0 | 7.0 | V | | | | | | | VI | DC input voltage | | -2.0 | 7.0 | V | | | | | | | I _{OUT} | DC output current, per pin | | -25 | 25 | mA | | | | | | | T _{STG} | Storage temperature | No bias | -65 | 150 | ° C | | | | | | | T _{AMB} | Ambient temperature | Under bias | -65 | 135 | ° C | | | | | | | TJ | Junction temperature | Ceramic packages, under bias | | 150 | °C | | | | | | | | | PQFP and RQFP packages, under bias | | 135 | °C | | | | | | | Symbol | Parameter | Conditions | Min | Max | Unit | |--|---|--------------------|----------------|--------------------------|------| | V _{CCINT} | Supply voltage for internal logic and input buffers | (3), (4), (5) | 4.75
(4.50) | 5.25
(5.50) | V | | 5 3 | Supply voltage for output drivers, 5.0-V operation | (3), (4) | 4.75
(4.50) | 5.25
(5.50) | V | | | Supply voltage for output drivers, 3.3-V operation | (3), (4), (6) | 3.00
(3.00) | 3.60
(3.60) | V | | V _{CCISP} | Supply voltage during ISP | (7) | 4.75 | 5.25 | V | | V _I | Input voltage | | -0.5 (8) | V _{CCINT} + 0.5 | V | | Vo | Output voltage | | 0 | V _{CCIO} | V | | T _A | Ambient temperature | For commercial use | 0 | 70 | °C | | 5 S 3 3 V CCISP S V Ir V O C T A A | | For industrial use | -40 | 85 | °C | | TJ | Junction temperature | For commercial use | 0 | 90 | °C | | | | For industrial use | -40 | 105 | ° C | | t _R | Input rise time | | | 40 | ns | | t _F | Input fall time | | | 40 | ns | | Symbol | Parameter | Conditions | Min | Max | Unit | |-------------------|--------------------------------------------|--------------------------------------------------------------|-------------------------|--------------------------|------| | V _{IH} | High-level input voltage | | 2.0 | V _{CCINT} + 0.5 | V | | V _{IL} | Low-level input voltage | | -0.5 (8) | 0.8 | V | | V _{OH} | 5.0-V high-level TTL output voltage | I _{OH} = -4 mA DC, V _{CCIO} = 4.75 V (10) | 2.4 | | V | | | 3.3-V high-level TTL output voltage | I _{OH} = -4 mA DC, V _{CCIO} = 3.00 V (10) | 2.4 | | V | | | 3.3-V high-level CMOS output voltage | $I_{OH} = -0.1 \text{ mA DC}, V_{CCIO} = 3.0 \text{ V} (10)$ | V _{CCIO} - 0.2 | | V | | V _{OL} | 5.0-V low-level TTL output voltage | I _{OL} = 12 mA DC, V _{CCIO} = 4.75 V (11) | | 0.45 | V | | V _{OL} 5 | 3.3-V low-level TTL output voltage | I _{OL} = 12 mA DC, V _{CCIO} = 3.00 V (11) | | 0.45 | V | | | 3.3-V low-level CMOS output voltage | $I_{OL} = 0.1 \text{ mA DC}, V_{CCIO} = 3.0 \text{ V}(11)$ | | 0.2 | V | | lı | Leakage current of dedicated input pins | $V_I = -0.5 \text{ to } 5.5 \text{ V } (11)$ | -10 | 10 | μА | | l _{OZ} | I/O pin tri-state output off-state current | $V_I = -0.5 \text{ to } 5.5 \text{ V } (11), (12)$ | -40 | 40 | μА | | Table 1 | Table 16. MAX 7000 5.0-V Device Capacitance: EPM7032, EPM7064 & EPM7096 Devices Note (13) | | | | | | | |------------------|-------------------------------------------------------------------------------------------------|-------------------------------------|-----|-----|------|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | C _{IN} | Input pin capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 12 | pF | | | | C _{I/O} | I/O pin capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 12 | pF | | | | Table 1 | Table 17. MAX 7000 5.0-V Device Capacitance: MAX 7000E DevicesNote (13) | | | | | | | | | |------------------|-------------------------------------------------------------------------|-------------------------------------|-----|-----|------|--|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | | C _{IN} | Input pin capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 15 | pF | | | | | | C _{I/O} | I/O pin capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 15 | pF | | | | | | Table 18. MAX 7000 5.0-V Device Capacitance: MAX 7000S Devices Note (13) | | | | | | | | | |--------------------------------------------------------------------------|---------------------------------|-------------------------------------|-----|-----|------|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | C _{IN} | Dedicated input pin capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 10 | pF | | | | | C _{I/O} | I/O pin capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 10 | pF | | | | #### Notes to tables: - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) Minimum DC input voltage on I/O pins is –0.5 V and on 4 dedicated input pins is –0.3 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 7.0 V for input currents less than 100 mA and periods shorter than 20 ns. - (3) Numbers in parentheses are for industrial-temperature-range devices. - (4) V_{CC} must rise monotonically. - (5) The POR time for all 7000S devices does not exceed 300 μs. The sufficient V_{CCINT} voltage level for POR is 4.5 V. The device is fully initialized within the POR time after V_{CCINT} reaches the sufficient POR voltage level. - (6) 3.3-V I/O operation is not available for 44-pin packages. - (7) The V_{CCISP} parameter applies only to MAX 7000S devices. - (8) During in-system programming, the minimum DC input voltage is –0.3 V. - (9) These values are specified under the MAX 7000 recommended operating conditions in Table 14 on page 26. - (10) The parameter is measured with 50% of the outputs each sourcing the specified current. The I_{OH} parameter refers to high-level TTL or CMOS output current. - (11) The parameter is measured with 50% of the outputs each sinking the specified current. The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. - (12) When the JTAG interface is enabled in MAX 7000S devices, the input leakage current on the JTAG pins is typically -60 uA. - (13) Capacitance is measured at 25° C and is sample-tested only. The OE1 pin has a maximum capacitance of 20 pF. Figure 11 shows the typical output drive characteristics of MAX 7000 devices. Figure 11. Output Drive Characteristics of 5.0-V MAX 7000 Devices ### **Timing Model** MAX 7000 device timing can be analyzed with the Altera software, with a variety of popular industry-standard EDA simulators and timing analyzers, or with the timing model shown in Figure 12. MAX 7000 devices have fixed internal delays that enable the designer to determine the worst-case timing of any design. The Altera software provides timing simulation, point-to-point delay prediction, and detailed timing analysis for a device-wide performance evaluation. | Table 2 | Table 27. EPM7032S External Timing Parameters (Part 2 of 2) Note (1) | | | | | | | | | | | | | |-------------------|-----------------------------------------------------------------------|------------|-------|--------------|-------|-------|-------|-----|-------|-----|------|--|--| | Symbol | Parameter | Conditions | | | | Speed | Grade | 1 | | | Unit | | | | | | | - | -5 -6 -7 -10 | | | | | | | | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | | | f _{ACNT} | Maximum internal array clock frequency | (4) | 175.4 | | 142.9 | | 116.3 | | 100.0 | | MHz | | | | f _{MAX} | Maximum clock frequency | (5) | 250.0 | | 200.0 | | 166.7 | | 125.0 | | MHz | | | | Table 2 | 8. EPM7032S Internal Tim | ing Parameter | s / | Note (1) | | | | | | | | |-------------------|-----------------------------------|----------------|------------|----------|-----|-------|-------|-----|-----|-----|------| | Symbol | Parameter | Conditions | | | | Speed | Grade | | | | Unit | | | | | - | 5 | - | 6 | - | 7 | | 10 | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.2 | | 0.2 | | 0.3 | | 0.5 | ns | | t _{IO} | I/O input pad and buffer delay | | | 0.2 | | 0.2 | | 0.3 | | 0.5 | ns | | t _{FIN} | Fast input delay | | | 2.2 | | 2.1 | | 2.5 | | 1.0 | ns | | t _{SEXP} | Shared expander delay | | | 3.1 | | 3.8 | | 4.6 | | 5.0 | ns | | t _{PEXP} | Parallel expander delay | | | 0.9 | | 1.1 | | 1.4 | | 0.8 | ns | | t _{LAD} | Logic array delay | | | 2.6 | | 3.3 | | 4.0 | | 5.0 | ns | | t _{LAC} | Logic control array delay | | | 2.5 | | 3.3 | | 4.0 | | 5.0 | ns | | t _{IOE} | Internal output enable delay | | | 0.7 | | 0.8 | | 1.0 | | 2.0 | ns | | t _{OD1} | Output buffer and pad delay | C1 = 35 pF | | 0.2 | | 0.3 | | 0.4 | | 1.5 | ns | | t _{OD2} | Output buffer and pad delay | C1 = 35 pF (6) | | 0.7 | | 0.8 | | 0.9 | | 2.0 | ns | | t _{OD3} | Output buffer and pad delay | C1 = 35 pF | | 5.2 | | 5.3 | | 5.4 | | 5.5 | ns | | t _{ZX1} | Output buffer enable delay | C1 = 35 pF | | 4.0 | | 4.0 | | 4.0 | | 5.0 | ns | | t _{ZX2} | Output buffer enable delay | C1 = 35 pF (6) | | 4.5 | | 4.5 | | 4.5 | | 5.5 | ns | | t _{ZX3} | Output buffer enable delay | C1 = 35 pF | | 9.0 | | 9.0 | | 9.0 | | 9.0 | ns | | t _{XZ} | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 4.0 | | 4.0 | | 5.0 | ns | | t _{SU} | Register setup time | | 0.8 | | 1.0 | | 1.3 | | 2.0 | | ns | | t _H | Register hold time | | 1.7 | | 2.0 | | 2.5 | | 3.0 | | ns | | t _{FSU} | Register setup time of fast input | | 1.9 | | 1.8 | | 1.7 | | 3.0 | | ns | | t _{FH} | Register hold time of fast input | | 0.6 | | 0.7 | | 0.8 | | 0.5 | | ns | | t _{RD} | Register delay | | | 1.2 | | 1.6 | | 1.9 | | 2.0 | ns | | t _{COMB} | Combinatorial delay | | | 0.9 | | 1.1 | | 1.4 | | 2.0 | ns | | t _{IC} | Array clock delay | | | 2.7 | | 3.4 | | 4.2 | | 5.0 | ns | | t _{EN} | Register enable time | | | 2.6 | | 3.3 | | 4.0 | | 5.0 | ns | | t _{GLOB} | Global control delay | | | 1.6 | | 1.4 | | 1.7 | | 1.0 | ns | | t _{PRE} | Register preset time | | | 2.0 | | 2.4 | | 3.0 | | 3.0 | ns | | t _{CLR} | Register clear time | | | 2.0 | | 2.4 | | 3.0 | | 3.0 | ns | | Table 2 | 8. EPM7032S Internal Tim | ing Parameter | rs / | lote (1) | | | | | | | | |------------------|--------------------------|---------------|------|--------------|-----|-------|-------|------|-----|------|------| | Symbol | Parameter | Conditions | | | | Speed | Grade | | | | Unit | | | | | - | -5 -6 -7 -10 | | | | | | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{PIA} | PIA delay | (7) | | 1.1 | | 1.1 | | 1.4 | | 1.0 | ns | | t_{LPA} | Low-power adder | (8) | | 12.0 | | 10.0 | | 10.0 | | 11.0 | ns | #### Notes to tables: - These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms. - (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path. - (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking. - (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (5) The f_{MAX} values represent the highest frequency for pipelined data. - (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use. - (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value. - (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode. Tables 29 and 30 show the EPM7064S AC operating conditions. | Table 2 | Table 29. EPM7064S External Timing Parameters (Part 1 of 2) Note (1) | | | | | | | | | | | | | | | |------------------|----------------------------------------------------------------------|------------|-----|-----|-----|-------|-------|-----|-----|------|------|--|--|--|--| | Symbol | Parameter | Conditions | | | | Speed | Grade |) | | | Unit | | | | | | | | | - | 5 | - | 6 | - | 7 | -1 | 10 | | | | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | | | | | t _{PD1} | Input to non-registered output | C1 = 35 pF | | 5.0 | | 6.0 | | 7.5 | | 10.0 | ns | | | | | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF | | 5.0 | | 6.0 | | 7.5 | | 10.0 | ns | | | | | | t _{SU} | Global clock setup time | | 2.9 | | 3.6 | | 6.0 | | 7.0 | | ns | | | | | | t _H | Global clock hold time | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | | | | | t _{FSU} | Global clock setup time of fast input | | 2.5 | | 2.5 | | 3.0 | | 3.0 | | ns | | | | | | t _{FH} | Global clock hold time of fast input | | 0.0 | | 0.0 | | 0.5 | | 0.5 | | ns | | | | | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 3.2 | | 4.0 | | 4.5 | | 5.0 | ns | | | | | | t _{CH} | Global clock high time | | 2.0 | | 2.5 | | 3.0 | | 4.0 | | ns | | | | | | t _{CL} | Global clock low time | | 2.0 | | 2.5 | | 3.0 | | 4.0 | | ns | | | | | | t _{ASU} | Array clock setup time | | 0.7 | | 0.9 | | 3.0 | | 2.0 | | ns | | | | | | t _{AH} | Array clock hold time | | 1.8 | | 2.1 | | 2.0 | | 3.0 | | ns | | | | | | Table 29. EPM7064S External Timing Parameters (Part 2 of 2) Note (1) | | | | | | | | | | | | | | |----------------------------------------------------------------------|------------------------------------------|----------------|-------|-----|-------|-------|-------|-----|-------|------|------|--|--| | Symbol | Parameter | Conditions | | | | Speed | Grade | | | | Unit | | | | | | | - | 5 | - | 6 | - | 7 | -1 | 10 | | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | | | t _{ACO1} | Array clock to output delay | C1 = 35 pF | | 5.4 | | 6.7 | | 7.5 | | 10.0 | ns | | | | t _{ACH} | Array clock high time | | 2.5 | | 2.5 | | 3.0 | | 4.0 | | ns | | | | t _{ACL} | Array clock low time | | 2.5 | | 2.5 | | 3.0 | | 4.0 | | ns | | | | t _{CPPW} | Minimum pulse width for clear and preset | (2) | 2.5 | | 2.5 | | 3.0 | | 4.0 | | ns | | | | t _{ODH} | Output data hold time after clock | C1 = 35 pF (3) | 1.0 | | 1.0 | | 1.0 | | 1.0 | | ns | | | | t _{CNT} | Minimum global clock period | | | 5.7 | | 7.1 | | 8.0 | | 10.0 | ns | | | | f _{CNT} | Maximum internal global clock frequency | (4) | 175.4 | | 140.8 | | 125.0 | | 100.0 | | MHz | | | | t _{ACNT} | Minimum array clock period | | | 5.7 | | 7.1 | | 8.0 | | 10.0 | ns | | | | f _{ACNT} | Maximum internal array clock frequency | (4) | 175.4 | | 140.8 | | 125.0 | | 100.0 | | MHz | | | | f _{MAX} | Maximum clock frequency | (5) | 250.0 | | 200.0 | | 166.7 | | 125.0 | | MHz | | | | Table 3 | O. EPM7064\$ Internal Tim | ing Parameters | (Part | 1 of 2) | No | te (1) | | | | | | |-------------------|--------------------------------|----------------|-------|---------|-----|--------|-------|-----|-----|-----|------| | Symbol | Parameter | Conditions | | | | Speed | Grade | | | | Unit | | | | | - | 5 | - | 6 | - | 7 | -1 | 10 | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.2 | | 0.2 | | 0.5 | | 0.5 | ns | | t _{IO} | I/O input pad and buffer delay | | | 0.2 | | 0.2 | | 0.5 | | 0.5 | ns | | t _{FIN} | Fast input delay | | | 2.2 | | 2.6 | | 1.0 | | 1.0 | ns | | t _{SEXP} | Shared expander delay | | | 3.1 | | 3.8 | | 4.0 | | 5.0 | ns | | t_{PEXP} | Parallel expander delay | | | 0.9 | | 1.1 | | 0.8 | | 0.8 | ns | | t_{LAD} | Logic array delay | | | 2.6 | | 3.2 | | 3.0 | | 5.0 | ns | | t _{LAC} | Logic control array delay | | | 2.5 | | 3.2 | | 3.0 | | 5.0 | ns | | t _{IOE} | Internal output enable delay | | | 0.7 | | 0.8 | | 2.0 | | 2.0 | ns | | t _{OD1} | Output buffer and pad delay | C1 = 35 pF | | 0.2 | | 0.3 | | 2.0 | | 1.5 | ns | | t _{OD2} | Output buffer and pad delay | C1 = 35 pF (6) | | 0.7 | | 0.8 | | 2.5 | | 2.0 | ns | | t _{OD3} | Output buffer and pad delay | C1 = 35 pF | | 5.2 | | 5.3 | | 7.0 | | 5.5 | ns | | t_{ZX1} | Output buffer enable delay | C1 = 35 pF | | 4.0 | | 4.0 | | 4.0 | | 5.0 | ns | | t _{ZX2} | Output buffer enable delay | C1 = 35 pF (6) | | 4.5 | | 4.5 | | 4.5 | | 5.5 | ns | | t _{ZX3} | Output buffer enable delay | C1 = 35 pF | | 9.0 | | 9.0 | | 9.0 | | 9.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 4.0 | | 4.0 | | 5.0 | ns | | t _{SU} | Register setup time | | 0.8 | | 1.0 | | 3.0 | | 2.0 | | ns | | t _H | Register hold time | | 1.7 | | 2.0 | | 2.0 | | 3.0 | | ns | | Symbol | Parameter | Conditions | | | | Speed | Grade | | | | Unit | |-------------------|-----------------------------------|------------|-----|------|-----|-------|-------|------|-----|------|------| | | | | - | 5 | - | 6 | - | 7 | -1 | 10 | - | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{FSU} | Register setup time of fast input | | 1.9 | | 1.8 | | 3.0 | | 3.0 | | ns | | t _{FH} | Register hold time of fast input | | 0.6 | | 0.7 | | 0.5 | | 0.5 | | ns | | t _{RD} | Register delay | | | 1.2 | | 1.6 | | 1.0 | | 2.0 | ns | | t _{COMB} | Combinatorial delay | | | 0.9 | | 1.0 | | 1.0 | | 2.0 | ns | | t _{IC} | Array clock delay | | | 2.7 | | 3.3 | | 3.0 | | 5.0 | ns | | t _{EN} | Register enable time | | | 2.6 | | 3.2 | | 3.0 | | 5.0 | ns | | t_{GLOB} | Global control delay | | | 1.6 | | 1.9 | | 1.0 | | 1.0 | ns | | t_{PRE} | Register preset time | | | 2.0 | | 2.4 | | 2.0 | | 3.0 | ns | | t _{CLR} | Register clear time | | | 2.0 | | 2.4 | | 2.0 | | 3.0 | ns | | t _{PIA} | PIA delay | (7) | | 1.1 | | 1.3 | | 1.0 | | 1.0 | ns | | t_{LPA} | Low-power adder | (8) | | 12.0 | | 11.0 | | 10.0 | | 11.0 | ns | #### Notes to tables: - (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms. - (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path. - (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking. - (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (5) The f_{MAX} values represent the highest frequency for pipelined data. - (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use. - (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value. - (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode. Tables 31 and 32 show the EPM7128S AC operating conditions. | Table 3 | 11. EPM7128\$ External Time | ing Parameters | : No | te (1) | | | | | | | | |-------------------|------------------------------------------|----------------|-------|--------|-------|-------|-------|------|-------|------|------| | Symbol | Parameter | Conditions | | | | Speed | Grade |) | | | Unit | | | | | - | 6 | - | 7 | -10 | | -1 | 15 | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{PD1} | Input to non-registered output | C1 = 35 pF | | 6.0 | | 7.5 | | 10.0 | | 15.0 | ns | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF | | 6.0 | | 7.5 | | 10.0 | | 15.0 | ns | | t _{SU} | Global clock setup time | | 3.4 | | 6.0 | | 7.0 | | 11.0 | | ns | | t _H | Global clock hold time | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{FSU} | Global clock setup time of fast input | | 2.5 | | 3.0 | | 3.0 | | 3.0 | | ns | | t _{FH} | Global clock hold time of fast input | | 0.0 | | 0.5 | | 0.5 | | 0.0 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 4.0 | | 4.5 | | 5.0 | | 8.0 | ns | | t _{CH} | Global clock high time | | 3.0 | | 3.0 | | 4.0 | | 5.0 | | ns | | t _{CL} | Global clock low time | | 3.0 | | 3.0 | | 4.0 | | 5.0 | | ns | | t _{ASU} | Array clock setup time | | 0.9 | | 3.0 | | 2.0 | | 4.0 | | ns | | t _{AH} | Array clock hold time | | 1.8 | | 2.0 | | 5.0 | | 4.0 | | ns | | t _{ACO1} | Array clock to output delay | C1 = 35 pF | | 6.5 | | 7.5 | | 10.0 | | 15.0 | ns | | t _{ACH} | Array clock high time | | 3.0 | | 3.0 | | 4.0 | | 6.0 | | ns | | t _{ACL} | Array clock low time | | 3.0 | | 3.0 | | 4.0 | | 6.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | (2) | 3.0 | | 3.0 | | 4.0 | | 6.0 | | ns | | t _{ODH} | Output data hold time after clock | C1 = 35 pF (3) | 1.0 | | 1.0 | | 1.0 | | 1.0 | | ns | | t _{CNT} | Minimum global clock period | | | 6.8 | | 8.0 | | 10.0 | | 13.0 | ns | | f _{CNT} | Maximum internal global clock frequency | (4) | 147.1 | | 125.0 | | 100.0 | | 76.9 | | MHz | | t _{ACNT} | Minimum array clock period | | | 6.8 | | 8.0 | | 10.0 | | 13.0 | ns | | f _{ACNT} | Maximum internal array clock frequency | (4) | 147.1 | | 125.0 | | 100.0 | | 76.9 | | MHz | | f _{MAX} | Maximum clock frequency | (5) | 166.7 | | 166.7 | | 125.0 | | 100.0 | | MHz | | Table 3 | 4. EPM7160S Internal Til | ming Parameters | (Part | 2 of 2) | No | te (1) | | | | | | |------------------|--------------------------|-----------------|-------|---------------|-----|--------|-------|------|-----|------|------| | Symbol | Parameter | Conditions | | | | Speed | Grade | | | | Unit | | | | | - | -6 -7 -10 -15 | | | | | | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{CLR} | Register clear time | | | 2.4 | | 3.0 | | 3.0 | | 4.0 | ns | | t _{PIA} | PIA delay | (7) | | 1.6 | | 2.0 | | 1.0 | | 2.0 | ns | | t _{LPA} | Low-power adder | (8) | | 11.0 | | 10.0 | | 11.0 | | 13.0 | ns | ### Notes to tables: - These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms. - (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path. - (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking. - (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (5) The f_{MAX} values represent the highest frequency for pipelined data. - (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use. - (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value. - (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells running in the low-power mode. Tables 35 and 36 show the EPM7192S AC operating conditions. | Table 35. EPM7192S External Timing Parameters (Part 1 of 2) Note (1) | | | | | | | | | | | | | | |----------------------------------------------------------------------|---------------------------------------|------------|-----|-----|-------|-------|------|------|------|--|--|--|--| | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | | | | | | | | | - | 7 | | 10 | -1 | 15 | | | | | | | | | | Min | Max | Min | Max | Min | Max | | | | | | | t _{PD1} | Input to non-registered output | C1 = 35 pF | | 7.5 | | 10.0 | | 15.0 | ns | | | | | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF | | 7.5 | | 10.0 | | 15.0 | ns | | | | | | t _{SU} | Global clock setup time | | 4.1 | | 7.0 | | 11.0 | | ns | | | | | | t _H | Global clock hold time | | 0.0 | | 0.0 | | 0.0 | | ns | | | | | | t _{FSU} | Global clock setup time of fast input | | 3.0 | | 3.0 | | 3.0 | | ns | | | | | | t _{FH} | Global clock hold time of fast input | | 0.0 | | 0.5 | | 0.0 | | ns | | | | | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 4.7 | | 5.0 | | 8.0 | ns | | | | | | t _{CH} | Global clock high time | | 3.0 | | 4.0 | | 5.0 | | ns | | | | | | t _{CL} | Global clock low time | | 3.0 | | 4.0 | | 5.0 | | ns | | | | | | t _{ASU} | Array clock setup time | | 1.0 | | 2.0 | | 4.0 | | ns | | | | | Figure 14. I_{CC} vs. Frequency for MAX 7000 Devices (Part 2 of 2) ### Figure 18. 84-Pin Package Pin-Out Diagram Package outline not drawn to scale. ### Notes: - (1) Pins 6, 39, 46, and 79 are no-connect (N.C.) pins on EPM7096, EPM7160E, and EPM7160S devices. - (2) The pin functions shown in parenthesis are only available in MAX 7000E and MAX 7000S devices. - (3) JTAG ports are available in MAX 7000S devices only. ### Figure 21. 192-Pin Package Pin-Out Diagram Package outline not drawn to scale. Figure 22. 208-Pin Package Pin-Out Diagram Package outline not drawn to scale.