Welcome to **E-XFL.COM** **Understanding Embedded - CPLDs (Complex Programmable Logic Devices)** Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware. ## **Applications of Embedded - CPLDs** | Details | | |---------------------------------|---| | Product Status | Obsolete | | Programmable Type | In System Programmable | | Delay Time tpd(1) Max | 7.5 ns | | Voltage Supply - Internal | 4.75V ~ 5.25V | | Number of Logic Elements/Blocks | 8 | | Number of Macrocells | 128 | | Number of Gates | 2500 | | Number of I/O | 84 | | Operating Temperature | 0°C ~ 70°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 100-BQFP | | Supplier Device Package | 100-PQFP (20x14) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epm7128sqc100-7n | | | k - 11 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong | Table 2. MAX | 7000S Device I | Features - | | | | | |------------------------|----------------|------------|----------|----------|----------|----------| | Feature | EPM7032S | EPM7064S | EPM7128S | EPM7160S | EPM7192S | EPM7256S | | Usable gates | 600 | 1,250 | 2,500 | 3,200 | 3,750 | 5,000 | | Macrocells | 32 | 64 | 128 | 160 | 192 | 256 | | Logic array blocks | 2 | 4 | 8 | 10 | 12 | 16 | | Maximum user I/O pins | 36 | 68 | 100 | 104 | 124 | 164 | | t _{PD} (ns) | 5 | 5 | 6 | 6 | 7.5 | 7.5 | | t _{SU} (ns) | 2.9 | 2.9 | 3.4 | 3.4 | 4.1 | 3.9 | | t _{FSU} (ns) | 2.5 | 2.5 | 2.5 | 2.5 | 3 | 3 | | t _{CO1} (ns) | 3.2 | 3.2 | 4 | 3.9 | 4.7 | 4.7 | | f _{CNT} (MHz) | 175.4 | 175.4 | 147.1 | 149.3 | 125.0 | 128.2 | ## ...and More Features - Open-drain output option in MAX 7000S devices - Programmable macrocell flipflops with individual clear, preset, clock, and clock enable controls - Programmable power-saving mode for a reduction of over 50% in each macrocell - Configurable expander product-term distribution, allowing up to 32 product terms per macrocell - 44 to 208 pins available in plastic J-lead chip carrier (PLCC), ceramic pin-grid array (PGA), plastic quad flat pack (PQFP), power quad flat pack (RQFP), and 1.0-mm thin quad flat pack (TQFP) packages - Programmable security bit for protection of proprietary designs - 3.3-V or 5.0-V operation - MultiVoltTM I/O interface operation, allowing devices to interface with 3.3-V or 5.0-V devices (MultiVolt I/O operation is not available in 44-pin packages) - Pin compatible with low-voltage MAX 7000A and MAX 7000B devices - Enhanced features available in MAX 7000E and MAX 7000S devices - Six pin- or logic-driven output enable signals - Two global clock signals with optional inversion - Enhanced interconnect resources for improved routability - Fast input setup times provided by a dedicated path from I/O pin to macrocell registers - Programmable output slew-rate control - Software design support and automatic place-and-route provided by Altera's development system for Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 workstations The MAX 7000E devices—including the EPM7128E, EPM7160E, EPM7192E, and EPM7256E devices—have several enhanced features: additional global clocking, additional output enable controls, enhanced interconnect resources, fast input registers, and a programmable slew rate. In-system programmable MAX 7000 devices—called MAX 7000S devices—include the EPM7032S, EPM7064S, EPM7128S, EPM7160S, EPM7192S, and EPM7256S devices. MAX 7000S devices have the enhanced features of MAX 7000E devices as well as JTAG BST circuitry in devices with 128 or more macrocells, ISP, and an open-drain output option. See Table 4. | Table 4. MAX 7000 Device Feat | ures | | | |---------------------------------|-------------------------------|-----------------------------|-----------------------------| | Feature | EPM7032
EPM7064
EPM7096 | All
MAX 7000E
Devices | All
MAX 7000S
Devices | | ISP via JTAG interface | | | ✓ | | JTAG BST circuitry | | | √ (1) | | Open-drain output option | | | ✓ | | Fast input registers | | ✓ | ✓ | | Six global output enables | | ✓ | ✓ | | Two global clocks | | ✓ | ✓ | | Slew-rate control | | ✓ | ✓ | | MultiVolt interface (2) | ✓ | ✓ | ✓ | | Programmable register | ✓ | ✓ | ✓ | | Parallel expanders | ✓ | ✓ | ✓ | | Shared expanders | ✓ | ✓ | ✓ | | Power-saving mode | ✓ | ✓ | ✓ | | Security bit | ✓ | ✓ | ✓ | | PCI-compliant devices available | ✓ | ✓ | ✓ | #### Notes: - (1) Available only in EPM7128S, EPM7160S, EPM7192S, and EPM7256S devices only. - (2) The MultiVolt I/O interface is not available in 44-pin packages. The MAX 7000 architecture includes four dedicated inputs that can be used as general-purpose inputs or as high-speed, global control signals (clock, clear, and two output enable signals) for each macrocell and I/O pin. Figure 1 shows the architecture of EPM7032, EPM7064, and EPM7096 devices. Figure 1. EPM7032, EPM7064 & EPM7096 Device Block Diagram ## Shareable Expanders Each LAB has 16 shareable expanders that can be viewed as a pool of uncommitted single product terms (one from each macrocell) with inverted outputs that feed back into the logic array. Each shareable expander can be used and shared by any or all macrocells in the LAB to build complex logic functions. A small delay (t_{SEXP}) is incurred when shareable expanders are used. Figure 5 shows how shareable expanders can feed multiple macrocells. Figure 5. Shareable Expanders Shareable expanders can be shared by any or all macrocells in an LAB. ### Parallel Expanders Parallel expanders are unused product terms that can be allocated to a neighboring macrocell to implement fast, complex logic functions. Parallel expanders allow up to 20 product terms to directly feed the macrocell OR logic, with five product terms provided by the macrocell and 15 parallel expanders provided by neighboring macrocells in the LAB. The compiler can allocate up to three sets of up to five parallel expanders automatically to the macrocells that require additional product terms. Each set of five parallel expanders incurs a small, incremental timing delay (t_{PEXP}). For example, if a macrocell requires 14 product terms, the Compiler uses the five dedicated product terms within the macrocell and allocates two sets of parallel expanders; the first set includes five product terms and the second set includes four product terms, increasing the total delay by $2 \times t_{PEXP}$. Two groups of 8 macrocells within each LAB (e.g., macrocells 1 through 8 and 9 through 16) form two chains to lend or borrow parallel expanders. A macrocell borrows parallel expanders from lower-numbered macrocells. For example, macrocell 8 can borrow parallel expanders from macrocell 7, from macrocells 7 and 6, or from macrocells 7, 6, and 5. Within each group of 8, the lowest-numbered macrocell can only lend parallel expanders and the highest-numbered macrocell can only borrow them. Figure 6 shows how parallel expanders can be borrowed from a neighboring macrocell. Figure 6. Parallel Expanders Unused product terms in a macrocell can be allocated to a neighboring macrocell. ## **Programming Times** The time required to implement each of the six programming stages can be broken into the following two elements: - A pulse time to erase, program, or read the EEPROM cells. - A shifting time based on the test clock (TCK) frequency and the number of TCK cycles to shift instructions, address, and data into the device. By combining the pulse and shift times for each of the programming stages, the program or verify time can be derived as a function of the TCK frequency, the number of devices, and specific target device(s). Because different ISP-capable devices have a different number of EEPROM cells, both the total fixed and total variable times are unique for a single device. ## Programming a Single MAX 7000S Device The time required to program a single MAX 7000S device in-system can be calculated from the following formula: $$t_{PROG} = t_{PPULSE} + \frac{Cycle_{PTCK}}{f_{TCK}}$$ where: t_{PROG} = Programming time t_{PPULSE} = Sum of the fixed times to erase, program, and verify the EEPROM cells $Cycle_{PTCK}$ = Number of TCK cycles to program a device = TCK frequency The ISP times for a stand-alone verification of a single MAX 7000S device can be calculated from the following formula: $$t_{VER} = t_{VPULSE} + \frac{Cycle_{VTCK}}{f_{TCK}}$$ where: t_{VER} = Verify time t_{VPULSE} = Sum of the fixed times to verify the EEPROM cells $Cycle_{VTCK}$ = Number of TCK cycles to verify a device # Programmable Speed/Power Control MAX 7000 devices offer a power-saving mode that supports low-power operation across user-defined signal paths or the entire device. This feature allows total power dissipation to be reduced by 50% or more, because most logic applications require only a small fraction of all gates to operate at maximum frequency. The designer can program each individual macrocell in a MAX 7000 device for either high-speed (i.e., with the Turbo BitTM option turned on) or low-power (i.e., with the Turbo Bit option turned off) operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths can operate at reduced power. Macrocells that run at low power incur a nominal timing delay adder (t_{LPA}) for the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , and t_{SEXP} , t_{ACL} , and t_{CPPW} parameters. # Output Configuration MAX 7000 device outputs can be programmed to meet a variety of system-level requirements. ## MultiVolt I/O Interface MAX 7000 devices—except 44-pin devices—support the MultiVolt I/O interface feature, which allows MAX 7000 devices to interface with systems that have differing supply voltages. The 5.0-V devices in all packages can be set for 3.3-V or 5.0-V I/O pin operation. These devices have one set of VCC pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO). The VCCINT pins must always be connected to a 5.0-V power supply. With a 5.0-V $V_{\rm CCINT}$ level, input voltage thresholds are at TTL levels, and are therefore compatible with both 3.3-V and 5.0-V inputs. The VCCIO pins can be connected to either a 3.3-V or a 5.0-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 5.0-V supply, the output levels are compatible with 5.0-V systems. When $V_{\rm CCIO}$ is connected to a 3.3-V supply, the output high is 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with $V_{\rm CCIO}$ levels lower than 4.75 V incur a nominally greater timing delay of $t_{\rm OD2}$ instead of $t_{\rm OD1}$. ## Open-Drain Output Option (MAX 7000S Devices Only) MAX 7000S devices provide an optional open-drain (functionally equivalent to open-collector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. It can also provide an additional wired-OR plane. The instruction register length of MAX 7000S devices is 10 bits. Tables 10 and 11 show the boundary-scan register length and device IDCODE information for MAX 7000S devices. | Table 10. MAX 7000S Boundary-Sca | an Register Length | |----------------------------------|-------------------------------| | Device | Boundary-Scan Register Length | | EPM7032S | 1 (1) | | EPM7064S | 1 (1) | | EPM7128S | 288 | | EPM7160S | 312 | | EPM7192S | 360 | | EPM7256S | 480 | ### Note: (1) This device does not support JTAG boundary-scan testing. Selecting either the EXTEST or SAMPLE/PRELOAD instruction will select the one-bit bypass register. | Table 11. 32 | ?-Bit MAX 7 | 000 Device IDCODE No | te (1) | | | | | | | | | | | | |--------------|---------------------|-----------------------|--------------------------------------|------------------|--|--|--|--|--|--|--|--|--|--| | Device | IDCODE (32 Bits) | | | | | | | | | | | | | | | | Version
(4 Bits) | Part Number (16 Bits) | Manufacturer's
Identity (11 Bits) | 1 (1 Bit)
(2) | | | | | | | | | | | | EPM7032S | 0000 | 0111 0000 0011 0010 | 00001101110 | 1 | | | | | | | | | | | | EPM7064S | 0000 | 0111 0000 0110 0100 | 00001101110 | 1 | | | | | | | | | | | | EPM7128S | 0000 | 0111 0001 0010 1000 | 00001101110 | 1 | | | | | | | | | | | | EPM7160S | 0000 | 0111 0001 0110 0000 | 00001101110 | 1 | | | | | | | | | | | | EPM7192S | 0000 | 0111 0001 1001 0010 | 00001101110 | 1 | | | | | | | | | | | | EPM7256S | 0000 | 0111 0010 0101 0110 | 00001101110 | 1 | | | | | | | | | | | #### Notes: - (1) The most significant bit (MSB) is on the left. - (2) The least significant bit (LSB) for all JTAG IDCODEs is 1. - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) Minimum DC input voltage on I/O pins is –0.5 V and on 4 dedicated input pins is –0.3 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 7.0 V for input currents less than 100 mA and periods shorter than 20 ns. - (3) Numbers in parentheses are for industrial-temperature-range devices. - (4) V_{CC} must rise monotonically. - (5) The POR time for all 7000S devices does not exceed 300 μs. The sufficient V_{CCINT} voltage level for POR is 4.5 V. The device is fully initialized within the POR time after V_{CCINT} reaches the sufficient POR voltage level. - (6) 3.3-V I/O operation is not available for 44-pin packages. - (7) The V_{CCISP} parameter applies only to MAX 7000S devices. - (8) During in-system programming, the minimum DC input voltage is –0.3 V. - (9) These values are specified under the MAX 7000 recommended operating conditions in Table 14 on page 26. - (10) The parameter is measured with 50% of the outputs each sourcing the specified current. The I_{OH} parameter refers to high-level TTL or CMOS output current. - (11) The parameter is measured with 50% of the outputs each sinking the specified current. The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. - (12) When the JTAG interface is enabled in MAX 7000S devices, the input leakage current on the JTAG pins is typically -60 uA. - (13) Capacitance is measured at 25° C and is sample-tested only. The OE1 pin has a maximum capacitance of 20 pF. Figure 11 shows the typical output drive characteristics of MAX 7000 devices. Figure 11. Output Drive Characteristics of 5.0-V MAX 7000 Devices ## **Timing Model** MAX 7000 device timing can be analyzed with the Altera software, with a variety of popular industry-standard EDA simulators and timing analyzers, or with the timing model shown in Figure 12. MAX 7000 devices have fixed internal delays that enable the designer to determine the worst-case timing of any design. The Altera software provides timing simulation, point-to-point delay prediction, and detailed timing analysis for a device-wide performance evaluation. Figure 12. MAX 7000 Timing Model #### Notes: - (1) Only available in MAX 7000E and MAX 7000S devices. - (2) Not available in 44-pin devices. The timing characteristics of any signal path can be derived from the timing model and parameters of a particular device. External timing parameters, which represent pin-to-pin timing delays, can be calculated as the sum of internal parameters. Figure 13 shows the internal timing relationship of internal and external delay parameters. For more infomration, see *Application Note* 94 (Understanding MAX 7000 *Timing*). | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | |-------------------|--|----------------|-----|------|-------|-------|-----|------|------| | | | | - | 15 | -1 | 5T | -2 | 20 | | | | | | Min | Max | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 2.0 | | 2.0 | | 3.0 | ns | | t _{IO} | I/O input pad and buffer delay | | | 2.0 | | 2.0 | | 3.0 | ns | | t _{FIN} | Fast input delay | (2) | | 2.0 | | _ | | 4.0 | ns | | t _{SEXP} | Shared expander delay | | | 8.0 | | 10.0 | | 9.0 | ns | | t _{PEXP} | Parallel expander delay | | | 1.0 | | 1.0 | | 2.0 | ns | | t _{LAD} | Logic array delay | | | 6.0 | | 6.0 | | 8.0 | ns | | t _{LAC} | Logic control array delay | | | 6.0 | | 6.0 | | 8.0 | ns | | t _{IOE} | Internal output enable delay | (2) | | 3.0 | | _ | | 4.0 | ns | | t _{OD1} | Output buffer and pad delay
Slow slew rate = off
V _{CCIO} = 5.0 V | C1 = 35 pF | | 4.0 | | 4.0 | | 5.0 | ns | | t _{OD2} | Output buffer and pad delay
Slow slew rate = off
V _{CCIO} = 3.3 V | C1 = 35 pF (7) | | 5.0 | | - | | 6.0 | ns | | t _{OD3} | Output buffer and pad delay
Slow slew rate = on
V _{CCIO} = 5.0 V or 3.3 V | C1 = 35 pF (2) | | 8.0 | | - | | 9.0 | ns | | t _{ZX1} | Output buffer enable delay
Slow slew rate = off
V _{CCIO} = 5.0 V | C1 = 35 pF | | 6.0 | | 6.0 | | 10.0 | ns | | t _{ZX2} | Output buffer enable delay
Slow slew rate = off
V _{CCIO} = 3.3 V | C1 = 35 pF (7) | | 7.0 | | - | | 11.0 | ns | | t _{ZX3} | Output buffer enable delay
Slow slew rate = on
V _{CCIO} = 5.0 V or 3.3 V | C1 = 35 pF (2) | | 10.0 | | - | | 14.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 6.0 | | 6.0 | | 10.0 | ns | | t _{SU} | Register setup time | | 4.0 | | 4.0 | | 4.0 | | ns | | t _H | Register hold time | | 4.0 | | 4.0 | | 5.0 | | ns | | t _{FSU} | Register setup time of fast input | (2) | 2.0 | | - | | 4.0 | | ns | | t_{FH} | Register hold time of fast input | (2) | 2.0 | | - | | 3.0 | | ns | | t _{RD} | Register delay | | | 1.0 | | 1.0 | | 1.0 | ns | | t _{COMB} | Combinatorial delay | | | 1.0 | | 1.0 | | 1.0 | ns | | t _{IC} | Array clock delay | | | 6.0 | | 6.0 | | 8.0 | ns | | t _{EN} | Register enable time | | | 6.0 | | 6.0 | | 8.0 | ns | | t _{GLOB} | Global control delay | | | 1.0 | | 1.0 | | 3.0 | ns | | t _{PRE} | Register preset time | | | 4.0 | | 4.0 | | 4.0 | ns | | t _{CLR} | Register clear time | | | 4.0 | | 4.0 | | 4.0 | ns | | t _{PIA} | PIA delay | | | 2.0 | | 2.0 | | 3.0 | ns | | t _{LPA} | Low-power adder | (8) | | 13.0 | | 15.0 | | 15.0 | ns | - (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms. - (2) This parameter applies to MAX 7000E devices only. - This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path. - (4) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking. - (5) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (6) The f_{MAX} values represent the highest frequency for pipelined data. - (7) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use. - (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells running in the low-power mode. Tables 27 and 28 show the EPM7032S AC operating conditions. | Table 2 | 77. EPM7032\$ External Time | ing Parameter | s (Part | 1 of 2 |) No | ote (1) | | | | | | | | | | |-------------------|------------------------------------------|----------------|---------|--------|-------------|---------|-------|------|-------|------|-----|--|--|--|--| | Symbol | Parameter | Conditions | | | | Speed | Grade | rade | | | | | | | | | | | | - | 5 | - | 6 | - | 7 | -1 | 10 | | | | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | | | | | t _{PD1} | Input to non-registered output | C1 = 35 pF | | 5.0 | | 6.0 | | 7.5 | | 10.0 | ns | | | | | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF | | 5.0 | | 6.0 | | 7.5 | | 10.0 | ns | | | | | | t _{SU} | Global clock setup time | | 2.9 | | 4.0 | | 5.0 | | 7.0 | | ns | | | | | | t _H | Global clock hold time | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | | | | | t _{FSU} | Global clock setup time of fast input | | 2.5 | | 2.5 | | 2.5 | | 3.0 | | ns | | | | | | t _{FH} | Global clock hold time of fast input | | 0.0 | | 0.0 | | 0.0 | | 0.5 | | ns | | | | | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 3.2 | | 3.5 | | 4.3 | | 5.0 | ns | | | | | | t _{CH} | Global clock high time | | 2.0 | | 2.5 | | 3.0 | | 4.0 | | ns | | | | | | t _{CL} | Global clock low time | | 2.0 | | 2.5 | | 3.0 | | 4.0 | | ns | | | | | | t _{ASU} | Array clock setup time | | 0.7 | | 0.9 | | 1.1 | | 2.0 | | ns | | | | | | t _{AH} | Array clock hold time | | 1.8 | | 2.1 | | 2.7 | | 3.0 | | ns | | | | | | t _{ACO1} | Array clock to output delay | C1 = 35 pF | | 5.4 | | 6.6 | | 8.2 | | 10.0 | ns | | | | | | t _{ACH} | Array clock high time | | 2.5 | | 2.5 | | 3.0 | | 4.0 | | ns | | | | | | t _{ACL} | Array clock low time | | 2.5 | | 2.5 | | 3.0 | | 4.0 | | ns | | | | | | t _{CPPW} | Minimum pulse width for clear and preset | (2) | 2.5 | | 2.5 | | 3.0 | | 4.0 | | ns | | | | | | t _{ODH} | Output data hold time after clock | C1 = 35 pF (3) | 1.0 | | 1.0 | | 1.0 | | 1.0 | | ns | | | | | | t _{CNT} | Minimum global clock period | | | 5.7 | | 7.0 | | 8.6 | | 10.0 | ns | | | | | | f _{CNT} | Maximum internal global clock frequency | (4) | 175.4 | | 142.9 | | 116.3 | | 100.0 | | MHz | | | | | | t _{ACNT} | Minimum array clock period | | | 5.7 | | 7.0 | | 8.6 | | 10.0 | ns | | | | | | Table 2 | 9. EPM7064\$ External Timi | ing Parameters | (Part 2 | 2 of 2) | No | te (1) | | | | | | |-------------------|------------------------------------------|----------------|---------|---------|-------|--------|-------|-----|-------|------|------| | Symbol | Parameter | Conditions | | | | Speed | Grade | | | | Unit | | | | | - | 5 | - | 6 | - | 7 | -1 | 10 | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{ACO1} | Array clock to output delay | C1 = 35 pF | | 5.4 | | 6.7 | | 7.5 | | 10.0 | ns | | t _{ACH} | Array clock high time | | 2.5 | | 2.5 | | 3.0 | | 4.0 | | ns | | t _{ACL} | Array clock low time | | 2.5 | | 2.5 | | 3.0 | | 4.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | (2) | 2.5 | | 2.5 | | 3.0 | | 4.0 | | ns | | t _{ODH} | Output data hold time after clock | C1 = 35 pF (3) | 1.0 | | 1.0 | | 1.0 | | 1.0 | | ns | | t _{CNT} | Minimum global clock period | | | 5.7 | | 7.1 | | 8.0 | | 10.0 | ns | | f _{CNT} | Maximum internal global clock frequency | (4) | 175.4 | | 140.8 | | 125.0 | | 100.0 | | MHz | | t _{ACNT} | Minimum array clock period | | | 5.7 | | 7.1 | | 8.0 | | 10.0 | ns | | f _{ACNT} | Maximum internal array clock frequency | (4) | 175.4 | | 140.8 | | 125.0 | | 100.0 | | MHz | | f _{MAX} | Maximum clock frequency | (5) | 250.0 | | 200.0 | | 166.7 | | 125.0 | | MHz | | Table 3 | O. EPM7064\$ Internal Tim | ing Parameters | (Part | 1 of 2) | No | te (1) | | | | | | |-------------------|--------------------------------|----------------|-------|---------|-----|--------|-------|-----|-----|-----|------| | Symbol | Parameter | Conditions | | | | Speed | Grade | | | | Unit | | | | | - | 5 | - | 6 | - | 7 | -1 | 10 | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t_{IN} | Input pad and buffer delay | | | 0.2 | | 0.2 | | 0.5 | | 0.5 | ns | | t _{IO} | I/O input pad and buffer delay | | | 0.2 | | 0.2 | | 0.5 | | 0.5 | ns | | t _{FIN} | Fast input delay | | | 2.2 | | 2.6 | | 1.0 | | 1.0 | ns | | t _{SEXP} | Shared expander delay | | | 3.1 | | 3.8 | | 4.0 | | 5.0 | ns | | t _{PEXP} | Parallel expander delay | | | 0.9 | | 1.1 | | 0.8 | | 0.8 | ns | | t_{LAD} | Logic array delay | | | 2.6 | | 3.2 | | 3.0 | | 5.0 | ns | | t _{LAC} | Logic control array delay | | | 2.5 | | 3.2 | | 3.0 | | 5.0 | ns | | t _{IOE} | Internal output enable delay | | | 0.7 | | 0.8 | | 2.0 | | 2.0 | ns | | t _{OD1} | Output buffer and pad delay | C1 = 35 pF | | 0.2 | | 0.3 | | 2.0 | | 1.5 | ns | | t _{OD2} | Output buffer and pad delay | C1 = 35 pF (6) | | 0.7 | | 0.8 | | 2.5 | | 2.0 | ns | | t _{OD3} | Output buffer and pad delay | C1 = 35 pF | | 5.2 | | 5.3 | | 7.0 | | 5.5 | ns | | t_{ZX1} | Output buffer enable delay | C1 = 35 pF | | 4.0 | | 4.0 | | 4.0 | | 5.0 | ns | | t_{ZX2} | Output buffer enable delay | C1 = 35 pF (6) | | 4.5 | | 4.5 | | 4.5 | | 5.5 | ns | | t _{ZX3} | Output buffer enable delay | C1 = 35 pF | | 9.0 | | 9.0 | | 9.0 | | 9.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 4.0 | | 4.0 | | 5.0 | ns | | t _{SU} | Register setup time | | 0.8 | | 1.0 | | 3.0 | | 2.0 | | ns | | t _H | Register hold time | | 1.7 | | 2.0 | | 2.0 | | 3.0 | | ns | Tables 31 and 32 show the EPM7128S AC operating conditions. | Table 3 | 11. EPM7128\$ External Time | ing Parameters | : No | te (1) | | | | | | | | |-------------------|------------------------------------------|----------------|-------|--------|-------|-------|-------|------|-------|------|------| | Symbol | Parameter | Conditions | | | | Speed | Grade |) | | | Unit | | | | | - | 6 | - | 7 | -1 | 10 | -1 | 15 | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{PD1} | Input to non-registered output | C1 = 35 pF | | 6.0 | | 7.5 | | 10.0 | | 15.0 | ns | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF | | 6.0 | | 7.5 | | 10.0 | | 15.0 | ns | | t _{SU} | Global clock setup time | | 3.4 | | 6.0 | | 7.0 | | 11.0 | | ns | | t _H | Global clock hold time | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{FSU} | Global clock setup time of fast input | | 2.5 | | 3.0 | | 3.0 | | 3.0 | | ns | | t _{FH} | Global clock hold time of fast input | | 0.0 | | 0.5 | | 0.5 | | 0.0 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 4.0 | | 4.5 | | 5.0 | | 8.0 | ns | | t _{CH} | Global clock high time | | 3.0 | | 3.0 | | 4.0 | | 5.0 | | ns | | t _{CL} | Global clock low time | | 3.0 | | 3.0 | | 4.0 | | 5.0 | | ns | | t _{ASU} | Array clock setup time | | 0.9 | | 3.0 | | 2.0 | | 4.0 | | ns | | t _{AH} | Array clock hold time | | 1.8 | | 2.0 | | 5.0 | | 4.0 | | ns | | t _{ACO1} | Array clock to output delay | C1 = 35 pF | | 6.5 | | 7.5 | | 10.0 | | 15.0 | ns | | t _{ACH} | Array clock high time | | 3.0 | | 3.0 | | 4.0 | | 6.0 | | ns | | t _{ACL} | Array clock low time | | 3.0 | | 3.0 | | 4.0 | | 6.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | (2) | 3.0 | | 3.0 | | 4.0 | | 6.0 | | ns | | t _{ODH} | Output data hold time after clock | C1 = 35 pF (3) | 1.0 | | 1.0 | | 1.0 | | 1.0 | | ns | | t _{CNT} | Minimum global clock period | | | 6.8 | | 8.0 | | 10.0 | | 13.0 | ns | | f _{CNT} | Maximum internal global clock frequency | (4) | 147.1 | | 125.0 | | 100.0 | | 76.9 | | MHz | | t _{ACNT} | Minimum array clock period | | | 6.8 | | 8.0 | | 10.0 | | 13.0 | ns | | f _{ACNT} | Maximum internal array clock frequency | (4) | 147.1 | | 125.0 | | 100.0 | | 76.9 | | MHz | | f _{MAX} | Maximum clock frequency | (5) | 166.7 | | 166.7 | | 125.0 | | 100.0 | | MHz | - These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms. - (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path. - (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking. - (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (5) The f_{MAX} values represent the highest frequency for pipelined data. - (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use. - (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value. - (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode. Tables 33 and 34 show the EPM7160S AC operating conditions. | Table 3 | 33. EPM7160S External Timi | ng Parameters | (Part | 1 of 2) | No | nte (1) | | | | | | |-------------------|------------------------------------------|----------------|-------|---------|-------|---------|-------|------|------|------|------| | Symbol | Parameter | Conditions | | | | Speed | Grade |) | | | Unit | | | | | - | 6 | - | 7 | -1 | 0 | -1 | 15 | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{PD1} | Input to non-registered output | C1 = 35 pF | | 6.0 | | 7.5 | | 10.0 | | 15.0 | ns | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF | | 6.0 | | 7.5 | | 10.0 | | 15.0 | ns | | t _{SU} | Global clock setup time | | 3.4 | | 4.2 | | 7.0 | | 11.0 | | ns | | t _H | Global clock hold time | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{FSU} | Global clock setup time of fast input | | 2.5 | | 3.0 | | 3.0 | | 3.0 | | ns | | t _{FH} | Global clock hold time of fast input | | 0.0 | | 0.0 | | 0.5 | | 0.0 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 3.9 | | 4.8 | | 5 | | 8 | ns | | t _{CH} | Global clock high time | | 3.0 | | 3.0 | | 4.0 | | 5.0 | | ns | | t _{CL} | Global clock low time | | 3.0 | | 3.0 | | 4.0 | | 5.0 | | ns | | t _{ASU} | Array clock setup time | | 0.9 | | 1.1 | | 2.0 | | 4.0 | | ns | | t _{AH} | Array clock hold time | | 1.7 | | 2.1 | | 3.0 | | 4.0 | | ns | | t _{ACO1} | Array clock to output delay | C1 = 35 pF | | 6.4 | | 7.9 | | 10.0 | | 15.0 | ns | | t _{ACH} | Array clock high time | | 3.0 | | 3.0 | | 4.0 | | 6.0 | | ns | | t _{ACL} | Array clock low time | | 3.0 | | 3.0 | | 4.0 | | 6.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | (2) | 2.5 | | 3.0 | | 4.0 | | 6.0 | | ns | | t _{ODH} | Output data hold time after clock | C1 = 35 pF (3) | 1.0 | | 1.0 | | 1.0 | | 1.0 | | ns | | t _{CNT} | Minimum global clock period | | | 6.7 | | 8.2 | | 10.0 | | 13.0 | ns | | f _{CNT} | Maximum internal global clock frequency | (4) | 149.3 | | 122.0 | | 100.0 | | 76.9 | | MHz | | Table 3 | Table 34. EPM7160S Internal Timing Parameters (Part 2 of 2) Note (1) | | | | | | | | | | | | | |------------------|----------------------------------------------------------------------|------------|-----|-------------|-----|------|-----|------|-----|------|----|--|--| | Symbol | Parameter | Conditions | | Speed Grade | | | | | | | | | | | | | | - | 6 | - | 7 | -1 | 0 | -1 | 15 | | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | | | t _{CLR} | Register clear time | | | 2.4 | | 3.0 | | 3.0 | | 4.0 | ns | | | | t _{PIA} | PIA delay | (7) | | 1.6 | | 2.0 | | 1.0 | | 2.0 | ns | | | | t _{LPA} | Low-power adder | (8) | | 11.0 | | 10.0 | | 11.0 | | 13.0 | ns | | | - These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms. - (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path. - (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking. - (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (5) The f_{MAX} values represent the highest frequency for pipelined data. - (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use. - (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value. - (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells running in the low-power mode. Tables 35 and 36 show the EPM7192S AC operating conditions. | Table 35. EPM7192S External Timing Parameters (Part 1 of 2) Note (1) | | | | | | | | | | | |----------------------------------------------------------------------|---------------------------------------|------------|-------------|-----|-----|------|------|------|----|--| | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | | | | | -7 | | -10 | | -15 | | | | | | | | Min | Max | Min | Max | Min | Max | | | | t _{PD1} | Input to non-registered output | C1 = 35 pF | | 7.5 | | 10.0 | | 15.0 | ns | | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF | | 7.5 | | 10.0 | | 15.0 | ns | | | t _{SU} | Global clock setup time | | 4.1 | | 7.0 | | 11.0 | | ns | | | t _H | Global clock hold time | | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{FSU} | Global clock setup time of fast input | | 3.0 | | 3.0 | | 3.0 | | ns | | | t _{FH} | Global clock hold time of fast input | | 0.0 | | 0.5 | | 0.0 | | ns | | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 4.7 | | 5.0 | | 8.0 | ns | | | t _{CH} | Global clock high time | | 3.0 | | 4.0 | | 5.0 | | ns | | | t _{CL} | Global clock low time | | 3.0 | | 4.0 | | 5.0 | | ns | | | t _{ASU} | Array clock setup time | | 1.0 | | 2.0 | | 4.0 | | ns | | | Table 36. EPM7192S Internal Timing Parameters (Part 2 of 2) Note (1) | | | | | | | | | | | |----------------------------------------------------------------------|-----------------------------------|------------|-------------|------|-----|------|-----|------|----|--| | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | | | | | -7 | | -10 | | -15 | |] | | | | | | Min | Max | Min | Max | Min | Max |] | | | t _H | Register hold time | | 1.7 | | 3.0 | | 4.0 | | ns | | | t _{FSU} | Register setup time of fast input | | 2.3 | | 3.0 | | 2.0 | | ns | | | t _{FH} | Register hold time of fast input | | 0.7 | | 0.5 | | 1.0 | | ns | | | t _{RD} | Register delay | | | 1.4 | | 2.0 | | 1.0 | ns | | | t _{COMB} | Combinatorial delay | | | 1.2 | | 2.0 | | 1.0 | ns | | | t_{IC} | Array clock delay | | | 3.2 | | 5.0 | | 6.0 | ns | | | t _{EN} | Register enable time | | | 3.1 | | 5.0 | | 6.0 | ns | | | t_{GLOB} | Global control delay | | | 2.5 | | 1.0 | | 1.0 | ns | | | t _{PRE} | Register preset time | | | 2.7 | | 3.0 | | 4.0 | ns | | | t _{CLR} | Register clear time | | | 2.7 | | 3.0 | | 4.0 | ns | | | t _{PIA} | PIA delay | (7) | | 2.4 | | 1.0 | | 2.0 | ns | | | t_{LPA} | Low-power adder | (8) | | 10.0 | | 11.0 | | 13.0 | ns | | - These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms. - (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path. - (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking. - (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (5) The f_{MAX} values represent the highest frequency for pipelined data. - (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use. - (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value. - (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode. Figure 14. I_{CC} vs. Frequency for MAX 7000 Devices (Part 2 of 2) Figure 15 shows typical supply current versus frequency for MAX 7000S devices. ### EPM7128S EPM7160S 101 Innovation Drive San Jose, CA 95134 (408) 544-7000 www.altera.com Applications Hotline: (800) 800-EPLD Literature Services: literature@altera.com Copyright © 2005 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. I.S. EN ISO 9001