

Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Obsolete
In System Programmable
7.5 ns
4.75V ~ 5.25V
8
128
2500
84
0°C ~ 70°C (TA)
Surface Mount
100-BQFP
100-PQFP (20x14)
https://www.e-xfl.com/product-detail/intel/epm7128sqc100-7yy

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, and VeriBest
- Programming support
 - Altera's Master Programming Unit (MPU) and programming hardware from third-party manufacturers program all MAX 7000 devices
 - The BitBlasterTM serial download cable, ByteBlasterMVTM parallel port download cable, and MasterBlasterTM serial/universal serial bus (USB) download cable program MAX 7000S devices

General Description

The MAX 7000 family of high-density, high-performance PLDs is based on Altera's second-generation MAX architecture. Fabricated with advanced CMOS technology, the EEPROM-based MAX 7000 family provides 600 to 5,000 usable gates, ISP, pin-to-pin delays as fast as 5 ns, and counter speeds of up to 175.4 MHz. MAX 7000S devices in the -5, -6, -7, and -10 speed grades as well as MAX 7000 and MAX 7000E devices in -5, -6, -7, -10P, and -12P speed grades comply with the PCI Special Interest Group (PCI SIG) *PCI Local Bus Specification, Revision 2.2.* See Table 3 for available speed grades.

Device	Speed Grade									
	-5	-6	-7	-10P	-10	-12P	-12	-15	-15T	-20
EPM7032		✓	✓		✓		✓	✓	✓	
EPM7032S	✓	✓	✓		✓					
EPM7064		✓	✓		~		✓	✓		
EPM7064S	✓	✓	✓		~					
EPM7096			✓		~		✓	✓		
EPM7128E			✓	✓	~		✓	✓		✓
EPM7128S		✓	✓		~			✓		
EPM7160E				✓	✓		✓	✓		✓
EPM7160S		✓	✓		~			✓		
EPM7192E						✓	✓	✓		✓
EPM7192S			✓		✓			✓		
EPM7256E						✓	✓	✓		✓
EPM7256S			✓		✓			✓		

When the tri-state buffer control is connected to ground, the output is tri-stated (high impedance) and the I/O pin can be used as a dedicated input. When the tri-state buffer control is connected to V_{CC} , the output is enabled.

The MAX 7000 architecture provides dual I/O feedback, in which macrocell and pin feedbacks are independent. When an I/O pin is configured as an input, the associated macrocell can be used for buried logic.

In-System Programmability (ISP)

MAX 7000S devices are in-system programmable via an industry-standard 4-pin Joint Test Action Group (JTAG) interface (IEEE Std. 1149.1-1990). ISP allows quick, efficient iterations during design development and debugging cycles. The MAX 7000S architecture internally generates the high programming voltage required to program EEPROM cells, allowing in-system programming with only a single 5.0 V power supply. During in-system programming, the I/O pins are tri-stated and pulled-up to eliminate board conflicts. The pull-up value is nominally 50 k%.

ISP simplifies the manufacturing flow by allowing devices to be mounted on a printed circuit board with standard in-circuit test equipment before they are programmed. MAX 7000S devices can be programmed by downloading the information via in-circuit testers (ICT), embedded processors, or the Altera MasterBlaster, ByteBlasterMV, ByteBlaster, BitBlaster download cables. (The ByteBlaster cable is obsolete and is replaced by the ByteBlasterMV cable, which can program and configure 2.5-V, 3.3-V, and 5.0-V devices.) Programming the devices after they are placed on the board eliminates lead damage on high-pin-count packages (e.g., QFP packages) due to device handling and allows devices to be reprogrammed after a system has already shipped to the field. For example, product upgrades can be performed in the field via software or modem.

In-system programming can be accomplished with either an adaptive or constant algorithm. An adaptive algorithm reads information from the unit and adapts subsequent programming steps to achieve the fastest possible programming time for that unit. Because some in-circuit testers cannot support an adaptive algorithm, Altera offers devices tested with a constant algorithm. Devices tested to the constant algorithm have an "F" suffix in the ordering code.

The JamTM Standard Test and Programming Language (STAPL) can be used to program MAX 7000S devices with in-circuit testers, PCs, or embedded processor.

The programming times described in Tables 6 through 8 are associated with the worst-case method using the enhanced ISP algorithm.

Table 6. MAX 7000S t _{PU}	able 6. MAX 7000\$ t _{PULSE} & Cycle _{TCK} Values								
Device	Programming Stand-Alone Verificatio								
	t _{PPULSE} (s)	Cycle _{PTCK}	t _{VPULSE} (s)	Cycle _{VTCK}					
EPM7032S	4.02	342,000	0.03	200,000					
EPM7064S	4.50	504,000	0.03	308,000					
EPM7128S	5.11	832,000	0.03	528,000					
EPM7160S	5.35	1,001,000	0.03	640,000					
EPM7192S	5.71	1,192,000	0.03	764,000					
EPM7256S	6.43	1,603,000	0.03	1,024,000					

Tables 7 and 8 show the in-system programming and stand alone verification times for several common test clock frequencies.

Table 7. MAX 7000S In-System Programming Times for Different Test Clock Frequencies									
Device				f	TCK				Units
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz	
EPM7032S	4.06	4.09	4.19	4.36	4.71	5.73	7.44	10.86	s
EPM7064S	4.55	4.60	4.76	5.01	5.51	7.02	9.54	14.58	S
EPM7128S	5.19	5.27	5.52	5.94	6.77	9.27	13.43	21.75	S
EPM7160S	5.45	5.55	5.85	6.35	7.35	10.35	15.36	25.37	S
EPM7192S	5.83	5.95	6.30	6.90	8.09	11.67	17.63	29.55	S
EPM7256S	6.59	6.75	7.23	8.03	9.64	14.45	22.46	38.49	S

Table 8. MAX 7000S Stand-Alone Verification Times for Different Test Clock Frequencies										
Device		f _{TCK}								
	10 MHz	MHz 5 MHz 2 MHz 1 MHz 500 kHz 200 kHz 100 kHz 50 kHz								
EPM7032S	0.05	0.07	0.13	0.23	0.43	1.03	2.03	4.03	s	
EPM7064S	0.06	0.09	0.18	0.34	0.64	1.57	3.11	6.19	S	
EPM7128S	0.08	0.14	0.29	0.56	1.09	2.67	5.31	10.59	S	
EPM7160S	0.09	0.16	0.35	0.67	1.31	3.23	6.43	12.83	S	
EPM7192S	0.11	0.18	0.41	0.79	1.56	3.85	7.67	15.31	S	
EPM7256S	0.13	0.24	0.54	1.06	2.08	5.15	10.27	20.51	S	

Programmable Speed/Power Control

MAX 7000 devices offer a power-saving mode that supports low-power operation across user-defined signal paths or the entire device. This feature allows total power dissipation to be reduced by 50% or more, because most logic applications require only a small fraction of all gates to operate at maximum frequency.

The designer can program each individual macrocell in a MAX 7000 device for either high-speed (i.e., with the Turbo BitTM option turned on) or low-power (i.e., with the Turbo Bit option turned off) operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths can operate at reduced power. Macrocells that run at low power incur a nominal timing delay adder (t_{LPA}) for the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , and t_{SEXP} , t_{ACL} , and t_{CPPW} parameters.

Output Configuration

MAX 7000 device outputs can be programmed to meet a variety of system-level requirements.

MultiVolt I/O Interface

MAX 7000 devices—except 44-pin devices—support the MultiVolt I/O interface feature, which allows MAX 7000 devices to interface with systems that have differing supply voltages. The 5.0-V devices in all packages can be set for 3.3-V or 5.0-V I/O pin operation. These devices have one set of VCC pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

The VCCINT pins must always be connected to a 5.0-V power supply. With a 5.0-V $V_{\rm CCINT}$ level, input voltage thresholds are at TTL levels, and are therefore compatible with both 3.3-V and 5.0-V inputs.

The VCCIO pins can be connected to either a 3.3-V or a 5.0-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 5.0-V supply, the output levels are compatible with 5.0-V systems. When $V_{\rm CCIO}$ is connected to a 3.3-V supply, the output high is 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with $V_{\rm CCIO}$ levels lower than 4.75 V incur a nominally greater timing delay of $t_{\rm OD2}$ instead of $t_{\rm OD1}$.

Open-Drain Output Option (MAX 7000S Devices Only)

MAX 7000S devices provide an optional open-drain (functionally equivalent to open-collector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. It can also provide an additional wired-OR plane.

By using an external 5.0-V pull-up resistor, output pins on MAX 7000S devices can be set to meet 5.0-V CMOS input voltages. When $V_{\rm CCIO}$ is 3.3 V, setting the open drain option will turn off the output pull-up transistor, allowing the external pull-up resistor to pull the output high enough to meet 5.0-V CMOS input voltages. When $V_{\rm CCIO}$ is 5.0 V, setting the output drain option is not necessary because the pull-up transistor will already turn off when the pin exceeds approximately 3.8 V, allowing the external pull-up resistor to pull the output high enough to meet 5.0-V CMOS input voltages.

Slew-Rate Control

The output buffer for each MAX 7000E and MAX 7000S I/O pin has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A faster slew rate provides high-speed transitions for high-performance systems. However, these fast transitions may introduce noise transients into the system. A slow slew rate reduces system noise, but adds a nominal delay of 4 to 5 ns. In MAX 7000E devices, when the Turbo Bit is turned off, the slew rate is set for low noise performance. For MAX 7000S devices, each I/O pin has an individual EEPROM bit that controls the slew rate, allowing designers to specify the slew rate on a pin-by-pin basis.

Programming with External Hardware

MAX 7000 devices can be programmed on Windows-based PCs with the Altera Logic Programmer card, the Master Programming Unit (MPU), and the appropriate device adapter. The MPU performs a continuity check to ensure adequate electrical contact between the adapter and the device.

For more information, see the *Altera Programming Hardware Data Sheet*.

The Altera development system can use text- or waveform-format test vectors created with the Text Editor or Waveform Editor to test the programmed device. For added design verification, designers can perform functional testing to compare the functional behavior of a MAX 7000 device with the results of simulation. Moreover, Data I/O, BP Microsystems, and other programming hardware manufacturers also provide programming support for Altera devices.

For more information, see the *Programming Hardware Manufacturers*.

IEEE Std. 1149.1 (JTAG) Boundary-Scan Support

MAX 7000 devices support JTAG BST circuitry as specified by IEEE Std. 1149.1-1990. Table 9 describes the JTAG instructions supported by the MAX 7000 family. The pin-out tables (see the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information) show the location of the JTAG control pins for each device. If the JTAG interface is not required, the JTAG pins are available as user I/O pins.

Table 9. MAX 7000 J	ITAG Instruction	s
JTAG Instruction	Devices	Description
SAMPLE/PRELOAD	EPM7128S EPM7160S EPM7192S	Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern output at the device pins.
	EPM7256S	pattern output at the device pins.
EXTEST	EPM7128S EPM7160S EPM7192S EPM7256S	Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins.
BYPASS	EPM7032S EPM7064S EPM7128S EPM7160S EPM7192S EPM7256S	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through a selected device to adjacent devices during normal device operation.
IDCODE	EPM7032S EPM7064S EPM7128S EPM7160S EPM7192S EPM7256S	Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be serially shifted out of TDO.
ISP Instructions	EPM7032S EPM7064S EPM7128S EPM7160S EPM7192S EPM7256S	These instructions are used when programming MAX 7000S devices via the JTAG ports with the MasterBlaster, ByteBlasterMV, BitBlaster download cable, or using a Jam File (.jam), Jam Byte-Code file (.jbc), or Serial Vector Format file (.svf) via an embedded processor or test equipment.

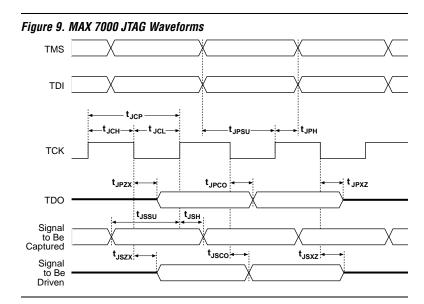


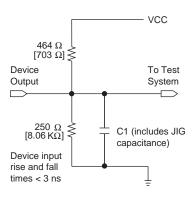
Figure 9 shows the timing requirements for the JTAG signals.

Table 12 shows the JTAG timing parameters and values for MAX 7000S devices.

Table 1	2. JTAG Timing Parameters & Values for MAX 70	00S De	vices	
Symbol	Parameter	Min	Max	Unit
t _{JCP}	TCK clock period	100		ns
t _{JCH}	TCK clock high time	50		ns
t _{JCL}	TCK clock low time	50		ns
t _{JPSU}	JTAG port setup time	20		ns
t _{JPH}	JTAG port hold time	45		ns
t _{JPCO}	JTAG port clock to output		25	ns
t _{JPZX}	JTAG port high impedance to valid output		25	ns
t _{JPXZ}	JTAG port valid output to high impedance		25	ns
t _{JSSU}	Capture register setup time	20		ns
t _{JSH}	Capture register hold time	45		ns
t _{JSCO}	Update register clock to output		25	ns
t _{JSZX}	Update register high impedance to valid output		25	ns
t _{JSXZ}	Update register valid output to high impedance		25	ns

For more information, see *Application Note* 39 (*IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices*).

Design Security


All MAX 7000 devices contain a programmable security bit that controls access to the data programmed into the device. When this bit is programmed, a proprietary design implemented in the device cannot be copied or retrieved. This feature provides a high level of design security because programmed data within EEPROM cells is invisible. The security bit that controls this function, as well as all other programmed data, is reset only when the device is reprogrammed.

Generic Testing

Each MAX 7000 device is functionally tested. Complete testing of each programmable EEPROM bit and all internal logic elements ensures 100% programming yield. AC test measurements are taken under conditions equivalent to those shown in Figure 10. Test patterns can be used and then erased during early stages of the production flow.

Figure 10. MAX 7000 AC Test Conditions

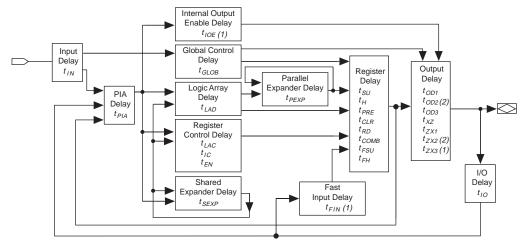
Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast ground-current transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground. significant reductions in observable noise immunity can result. Numbers in brackets are for 2.5-V devices and outputs. Numbers without brackets are for 3.3-V devices and outputs.

QFP Carrier & Development Socket

MAX 7000 and MAX 7000E devices in QFP packages with 100 or more pins are shipped in special plastic carriers to protect the QFP leads. The carrier is used with a prototype development socket and special programming hardware available from Altera. This carrier technology makes it possible to program, test, erase, and reprogram a device without exposing the leads to mechanical stress.

For detailed information and carrier dimensions, refer to the *QFP Carrier & Development Socket Data Sheet*.

MAX 7000S devices are not shipped in carriers.


Operating Conditions

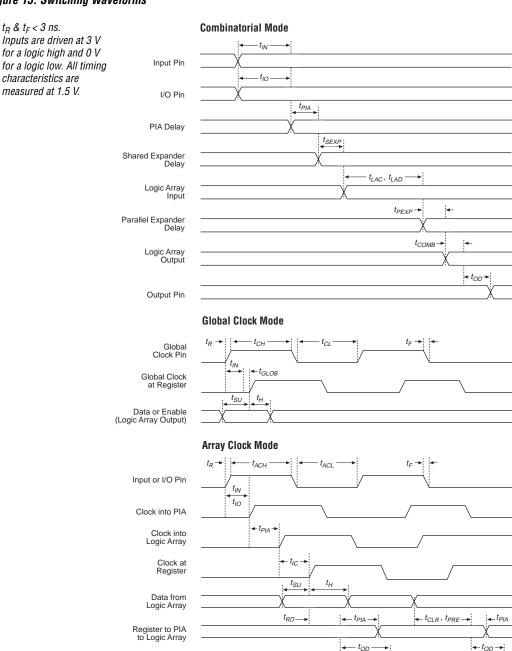
Tables 13 through 18 provide information about absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for 5.0-V MAX 7000 devices.

Table 1	Table 13. MAX 7000 5.0-V Device Absolute Maximum Ratings Note (1)									
Symbol	Parameter	Conditions	Min	Max	Unit					
V _{CC}	Supply voltage	With respect to ground (2)	-2.0	7.0	V					
VI	DC input voltage		-2.0	7.0	V					
I _{OUT}	DC output current, per pin		-25	25	mA					
T _{STG}	Storage temperature	No bias	-65	150	° C					
T _{AMB}	Ambient temperature	Under bias	-65	135	° C					
TJ	Junction temperature	Ceramic packages, under bias		150	°C					
		PQFP and RQFP packages, under bias		135	°C					

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4), (5)	4.75 (4.50)	5.25 (5.50)	V
-	Supply voltage for output drivers, 5.0-V operation	(3), (4)	4.75 (4.50)	5.25 (5.50)	V
	Supply voltage for output drivers, 3.3-V operation	(3), (4), (6)	3.00 (3.00)	3.60 (3.60)	V
V _{CCISP}	Supply voltage during ISP	(7)	4.75	5.25	V
V _I	Input voltage		-0.5 (8)	V _{CCINT} + 0.5	V
Vo	Output voltage		0	V _{CCIO}	V
T _A	Ambient temperature	For commercial use	0	70	°C
		For industrial use	-40	85	°C
TJ	Junction temperature	For commercial use	0	90	°C
		For industrial use	-40	105	° C
t _R	Input rise time			40	ns
t _F	Input fall time			40	ns

Figure 12. MAX 7000 Timing Model

Notes:


- (1) Only available in MAX 7000E and MAX 7000S devices.
- Not available in 44-pin devices.

The timing characteristics of any signal path can be derived from the timing model and parameters of a particular device. External timing parameters, which represent pin-to-pin timing delays, can be calculated as the sum of internal parameters. Figure 13 shows the internal timing relationship of internal and external delay parameters.

For more infomration, see *Application Note* 94 (Understanding MAX 7000 *Timing*).

Figure 13. Switching Waveforms

30 Altera Corporation

Register Output to Pin

Tables 19 through 26 show the MAX 7000 and MAX 7000E AC operating conditions.

Symbol	Parameter	Conditions	-6 Speed Grade		-7 Speed Grade		Unit
			Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF		6.0		7.5	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		6.0		7.5	ns
t _{SU}	Global clock setup time		5.0		6.0		ns
t _H	Global clock hold time		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input	(2)	2.5		3.0		ns
t _{FH}	Global clock hold time of fast input	(2)	0.5		0.5		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		4.0		4.5	ns
t _{CH}	Global clock high time		2.5		3.0		ns
t _{CL}	Global clock low time		2.5		3.0		ns
t _{ASU}	Array clock setup time		2.5		3.0		ns
t _{AH}	Array clock hold time		2.0		2.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		6.5		7.5	ns
t _{ACH}	Array clock high time		3.0		3.0		ns
t _{ACL}	Array clock low time		3.0		3.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	3.0		3.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF (4)	1.0		1.0		ns
t _{CNT}	Minimum global clock period			6.6		8.0	ns
f _{CNT}	Maximum internal global clock frequency	(5)	151.5		125.0		MHz
t _{ACNT}	Minimum array clock period			6.6		8.0	ns
f _{ACNT}	Maximum internal array clock frequency	(5)	151.5		125.0		MHz
f _{MAX}	Maximum clock frequency	(6)	200		166.7		MHz

Table 2	21. MAX 7000 & MAX 7000E Ext	ernal Timing Param	eters Note	(1)					
Symbol	Parameter	Conditions		Speed Grade					
			MAX 700	0E (-10P)	MAX 70				
			Min	Max	Min	Max			
t _{PD1}	Input to non-registered output	C1 = 35 pF		10.0		10.0	ns		
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		10.0		10.0	ns		
t _{SU}	Global clock setup time		7.0		8.0		ns		
t _H	Global clock hold time		0.0		0.0		ns		
t _{FSU}	Global clock setup time of fast input	(2)	3.0		3.0		ns		
t _{FH}	Global clock hold time of fast input	(2)	0.5		0.5		ns		
t _{CO1}	Global clock to output delay	C1 = 35 pF		5.0		5	ns		
t _{CH}	Global clock high time		4.0		4.0		ns		
t _{CL}	Global clock low time		4.0		4.0		ns		
t _{ASU}	Array clock setup time		2.0		3.0		ns		
t _{AH}	Array clock hold time		3.0		3.0		ns		
t _{ACO1}	Array clock to output delay	C1 = 35 pF		10.0		10.0	ns		
t _{ACH}	Array clock high time		4.0		4.0		ns		
t _{ACL}	Array clock low time		4.0		4.0		ns		
t _{CPPW}	Minimum pulse width for clear and preset	(3)	4.0		4.0		ns		
t _{ODH}	Output data hold time after clock	C1 = 35 pF (4)	1.0		1.0		ns		
t _{CNT}	Minimum global clock period			10.0		10.0	ns		
f _{CNT}	Maximum internal global clock frequency	(5)	100.0		100.0		MHz		
t _{ACNT}	Minimum array clock period			10.0		10.0	ns		
f _{ACNT}	Maximum internal array clock frequency	(5)	100.0		100.0		MHz		
f _{MAX}	Maximum clock frequency	(6)	125.0		125.0		MHz		

Table 2	23. MAX 7000 & MAX 7000E Ext	ernal Timing Param	eters Note	e (1)				
Symbol	Parameter	Conditions	Speed Grade					
			MAX 700	0E (-12P)	MAX 7000 (-12) MAX 7000E (-12)			
			Min	Max	Min	Max		
t _{PD1}	Input to non-registered output	C1 = 35 pF		12.0		12.0	ns	
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		12.0		12.0	ns	
t _{SU}	Global clock setup time		7.0		10.0		ns	
t _H	Global clock hold time		0.0		0.0		ns	
t _{FSU}	Global clock setup time of fast input	(2)	3.0		3.0		ns	
t _{FH}	Global clock hold time of fast input	(2)	0.0		0.0		ns	
t _{CO1}	Global clock to output delay	C1 = 35 pF		6.0		6.0	ns	
t _{CH}	Global clock high time		4.0		4.0		ns	
t _{CL}	Global clock low time		4.0		4.0		ns	
t _{ASU}	Array clock setup time		3.0		4.0		ns	
t _{AH}	Array clock hold time		4.0		4.0		ns	
t _{ACO1}	Array clock to output delay	C1 = 35 pF		12.0		12.0	ns	
t _{ACH}	Array clock high time		5.0		5.0		ns	
t _{ACL}	Array clock low time		5.0		5.0		ns	
t _{CPPW}	Minimum pulse width for clear and preset	(3)	5.0		5.0		ns	
t _{ODH}	Output data hold time after clock	C1 = 35 pF (4)	1.0		1.0		ns	
t _{CNT}	Minimum global clock period			11.0		11.0	ns	
f _{CNT}	Maximum internal global clock frequency	(5)	90.9		90.9		MHz	
t _{ACNT}	Minimum array clock period			11.0		11.0	ns	
f _{ACNT}	Maximum internal array clock frequency	(5)	90.9		90.9		MHz	
f _{MAX}	Maximum clock frequency	(6)	125.0		125.0		MHz	

Table 28. EPM7032S Internal Timing Parameters Note (1)											
Symbol	Parameter	Conditions	Speed Grade								Unit
			-5 -6			-7		-10			
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{PIA}	PIA delay	(7)		1.1		1.1		1.4		1.0	ns
t_{LPA}	Low-power adder	(8)		12.0		10.0		10.0		11.0	ns

Notes to tables:

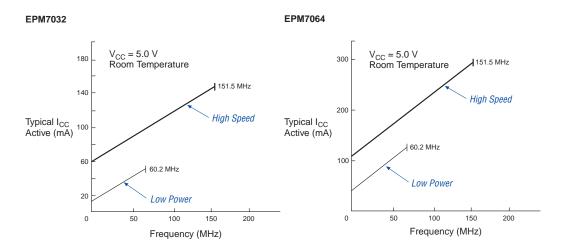
- These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode.

Tables 29 and 30 show the EPM7064S AC operating conditions.

Table 29. EPM7064S External Timing Parameters (Part 1 of 2) Note (1)												
Symbol	Parameter	Conditions	Speed Grade									
			-5		-6		-7		-10			
			Min	Max	Min	Max	Min	Max	Min	Max		
t _{PD1}	Input to non-registered output	C1 = 35 pF		5.0		6.0		7.5		10.0	ns	
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		5.0		6.0		7.5		10.0	ns	
t _{SU}	Global clock setup time		2.9		3.6		6.0		7.0		ns	
t _H	Global clock hold time		0.0		0.0		0.0		0.0		ns	
t _{FSU}	Global clock setup time of fast input		2.5		2.5		3.0		3.0		ns	
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.5		0.5		ns	
t _{CO1}	Global clock to output delay	C1 = 35 pF		3.2		4.0		4.5		5.0	ns	
t _{CH}	Global clock high time		2.0		2.5		3.0		4.0		ns	
t _{CL}	Global clock low time		2.0		2.5		3.0		4.0		ns	
t _{ASU}	Array clock setup time		0.7		0.9		3.0		2.0		ns	
t _{AH}	Array clock hold time		1.8		2.1		2.0		3.0		ns	

Symbol	Parameter	Conditions	Speed Grade									
			-5		-6		-7		-10			
			Min	Max	Min	Max	Min	Max	Min	Max		
t _{FSU}	Register setup time of fast input		1.9		1.8		3.0		3.0		ns	
t _{FH}	Register hold time of fast input		0.6		0.7		0.5		0.5		ns	
t _{RD}	Register delay			1.2		1.6		1.0		2.0	ns	
t _{COMB}	Combinatorial delay			0.9		1.0		1.0		2.0	ns	
t _{IC}	Array clock delay			2.7		3.3		3.0		5.0	ns	
t _{EN}	Register enable time			2.6		3.2		3.0		5.0	ns	
t_{GLOB}	Global control delay			1.6		1.9		1.0		1.0	ns	
t _{PRE}	Register preset time			2.0		2.4		2.0		3.0	ns	
t _{CLR}	Register clear time			2.0		2.4		2.0		3.0	ns	
t _{PIA}	PIA delay	(7)		1.1		1.3		1.0		1.0	ns	
t_{LPA}	Low-power adder	(8)		12.0		11.0		10.0		11.0	ns	

Notes to tables:


- (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode.

Tables 31 and 32 show the EPM7128S AC operating conditions.

Table 31. EPM7128S External Timing Parameters Note (1)												
Symbol	Parameter	Conditions	Speed Grade									
			-6		-7		-10		-15			
			Min	Max	Min	Max	Min	Max	Min	Max	1	
t _{PD1}	Input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns	
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns	
t _{SU}	Global clock setup time		3.4		6.0		7.0		11.0		ns	
t _H	Global clock hold time		0.0		0.0		0.0		0.0		ns	
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		3.0		ns	
t _{FH}	Global clock hold time of fast input		0.0		0.5		0.5		0.0		ns	
t _{CO1}	Global clock to output delay	C1 = 35 pF		4.0		4.5		5.0		8.0	ns	
t _{CH}	Global clock high time		3.0		3.0		4.0		5.0		ns	
t _{CL}	Global clock low time		3.0		3.0		4.0		5.0		ns	
t _{ASU}	Array clock setup time		0.9		3.0		2.0		4.0		ns	
t _{AH}	Array clock hold time		1.8		2.0		5.0		4.0		ns	
t _{ACO1}	Array clock to output delay	C1 = 35 pF		6.5		7.5		10.0		15.0	ns	
t _{ACH}	Array clock high time		3.0		3.0		4.0		6.0		ns	
t _{ACL}	Array clock low time		3.0		3.0		4.0		6.0		ns	
t _{CPPW}	Minimum pulse width for clear and preset	(2)	3.0		3.0		4.0		6.0		ns	
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		1.0		ns	
t _{CNT}	Minimum global clock period			6.8		8.0		10.0		13.0	ns	
f _{CNT}	Maximum internal global clock frequency	(4)	147.1		125.0		100.0		76.9		MHz	
t _{ACNT}	Minimum array clock period			6.8		8.0		10.0		13.0	ns	
f _{ACNT}	Maximum internal array clock frequency	(4)	147.1		125.0		100.0		76.9		MHz	
f _{MAX}	Maximum clock frequency	(5)	166.7		166.7		125.0		100.0		MHz	

Figure 14 shows typical supply current versus frequency for MAX 7000 devices.

Figure 14. I_{CC} vs. Frequency for MAX 7000 Devices (Part 1 of 2)

EPM7096

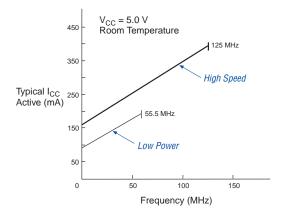
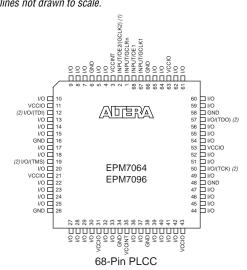
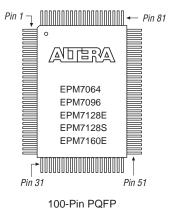



Figure 17. 68-Pin Package Pin-Out Diagram

Package outlines not drawn to scale.



Notes:

- The pin functions shown in parenthesis are only available in MAX 7000E and MAX 7000S devices.
- (2) JTAG ports are available in MAX 7000S devices only.

Figure 19. 100-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

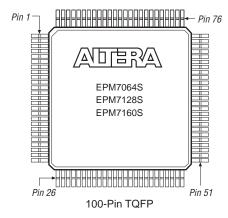
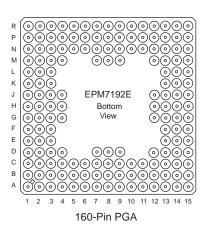
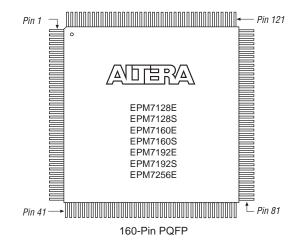




Figure 20. 160-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

