E·XFL

Intel - EPM7128SQC160-15F Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	15 ns
Voltage Supply - Internal	4.75V ~ 5.25V
Number of Logic Elements/Blocks	8
Number of Macrocells	128
Number of Gates	2500
Number of I/O	100
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	160-BQFP
Supplier Device Package	160-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm7128sqc160-15f

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	 Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, and VeriBest Programming support Altera's Master Programming Unit (MPU) and programming hardware from third-party manufacturers program all MAX 7000 devices The BitBlasterTM serial download cable, ByteBlasterMVTM parallel port download cable, and MasterBlasterTM serial/universal serial bus (USB) download cable program MAX 7000S devices
General Description	The MAX 7000 family of high-density, high-performance PLDs is based on Altera's second-generation MAX architecture. Fabricated with advanced CMOS technology, the EEPROM-based MAX 7000 family provides 600 to 5,000 usable gates, ISP, pin-to-pin delays as fast as 5 ns, and counter speeds of up to 175.4 MHz. MAX 7000S devices in the -5, -6, -7, and -10 speed grades as well as MAX 7000 and MAX 7000E devices in -5, -6, -7, -10P, and -12P speed grades comply with the PCI Special Interest Group (PCI SIG) <i>PCI Local Bus Specification, Revision 2.2.</i> See Table 3 for available speed grades.

Device	Speed Grade									
	-5	-6	-7	-10P	-10	-12P	-12	-15	-15T	-20
EPM7032		~	~		>		>	~	 	
EPM7032S	\checkmark	\checkmark	~		 Image: A start of the start of					
EPM7064		~	~		>		>	~		
EPM7064S	\checkmark	\checkmark	~		 Image: A start of the start of					
EPM7096			\checkmark		\checkmark		>	\checkmark		
EPM7128E			~	\checkmark	 Image: A start of the start of		>	~		~
EPM7128S		\checkmark	~		 Image: A start of the start of			~		
EPM7160E				~	~		\checkmark	~		\checkmark
EPM7160S		\checkmark	~		 Image: A start of the start of			~		
EPM7192E						~	>	~		>
EPM7192S			~	1	~	Ī		~		
EPM7256E						~	>	~		>
EPM7256S			\checkmark		\checkmark			\checkmark		

Figure 2 shows the architecture of MAX 7000E and MAX 7000S devices.

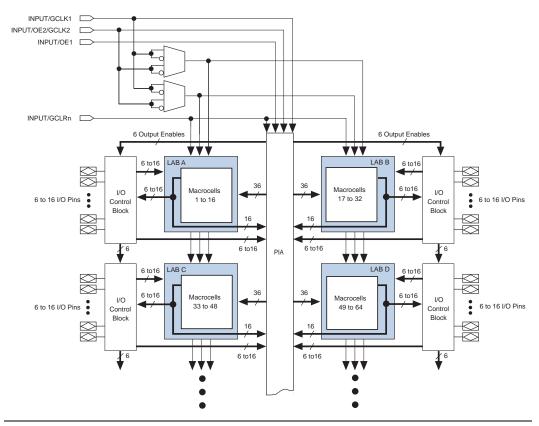
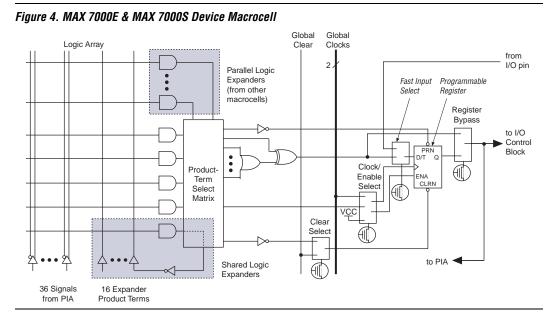
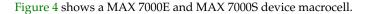




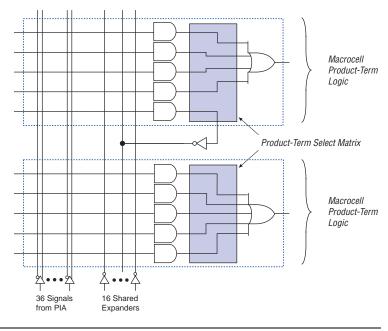
Figure 2. MAX 7000E & MAX 7000S Device Block Diagram

Logic Array Blocks

The MAX 7000 device architecture is based on the linking of highperformance, flexible, logic array modules called logic array blocks (LABs). LABs consist of 16-macrocell arrays, as shown in Figures 1 and 2. Multiple LABs are linked together via the programmable interconnect array (PIA), a global bus that is fed by all dedicated inputs, I/O pins, and macrocells.

Combinatorial logic is implemented in the logic array, which provides five product terms per macrocell. The product-term select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as secondary inputs to the macrocell's register clear, preset, clock, and clock enable control functions. Two kinds of expander product terms ("expanders") are available to supplement macrocell logic resources:

- Shareable expanders, which are inverted product terms that are fed back into the logic array
- Parallel expanders, which are product terms borrowed from adjacent macrocells

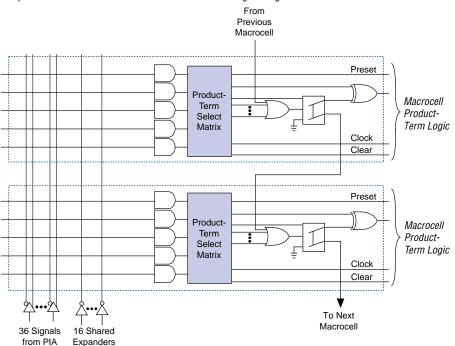

The Altera development system automatically optimizes product-term allocation according to the logic requirements of the design.

For registered functions, each macrocell flipflop can be individually programmed to implement D, T, JK, or SR operation with programmable clock control. The flipflop can be bypassed for combinatorial operation. During design entry, the designer specifies the desired flipflop type; the Altera development software then selects the most efficient flipflop operation for each registered function to optimize resource utilization.

Shareable Expanders

Each LAB has 16 shareable expanders that can be viewed as a pool of uncommitted single product terms (one from each macrocell) with inverted outputs that feed back into the logic array. Each shareable expander can be used and shared by any or all macrocells in the LAB to build complex logic functions. A small delay (t_{SEXP}) is incurred when shareable expanders are used. Figure 5 shows how shareable expanders can feed multiple macrocells.

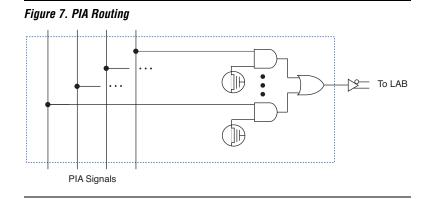
Figure 5. Shareable Expanders


Shareable expanders can be shared by any or all macrocells in an LAB.

Parallel Expanders

Parallel expanders are unused product terms that can be allocated to a neighboring macrocell to implement fast, complex logic functions. Parallel expanders allow up to 20 product terms to directly feed the macrocell OR logic, with five product terms provided by the macrocell and 15 parallel expanders provided by neighboring macrocells in the LAB. The compiler can allocate up to three sets of up to five parallel expanders automatically to the macrocells that require additional product terms. Each set of five parallel expanders incurs a small, incremental timing delay (t_{PEXP}). For example, if a macrocell requires 14 product terms, the Compiler uses the five dedicated product terms within the macrocell and allocates two sets of parallel expanders; the first set includes five product terms and the second set includes four product terms, increasing the total delay by $2 \times t_{PEXP}$.

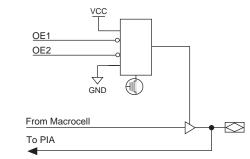
Two groups of 8 macrocells within each LAB (e.g., macrocells 1 through 8 and 9 through 16) form two chains to lend or borrow parallel expanders. A macrocell borrows parallel expanders from lowernumbered macrocells. For example, macrocell 8 can borrow parallel expanders from macrocell 7, from macrocells 7 and 6, or from macrocells 7, 6, and 5. Within each group of 8, the lowest-numbered macrocell can only lend parallel expanders and the highest-numbered macrocell can only borrow them. Figure 6 shows how parallel expanders can be borrowed from a neighboring macrocell.


Figure 6. Parallel Expanders

Unused product terms in a macrocell can be allocated to a neighboring macrocell.

Programmable Interconnect Array

Logic is routed between LABs via the programmable interconnect array (PIA). This global bus is a programmable path that connects any signal source to any destination on the device. All MAX 7000 dedicated inputs, I/O pins, and macrocell outputs feed the PIA, which makes the signals available throughout the entire device. Only the signals required by each LAB are actually routed from the PIA into the LAB. Figure 7 shows how the PIA signals are routed into the LAB. An EEPROM cell controls one input to a 2-input AND gate, which selects a PIA signal to drive into the LAB.


While the routing delays of channel-based routing schemes in masked or FPGAs are cumulative, variable, and path-dependent, the MAX 7000 PIA has a fixed delay. The PIA thus eliminates skew between signals and makes timing performance easy to predict.

I/O Control Blocks

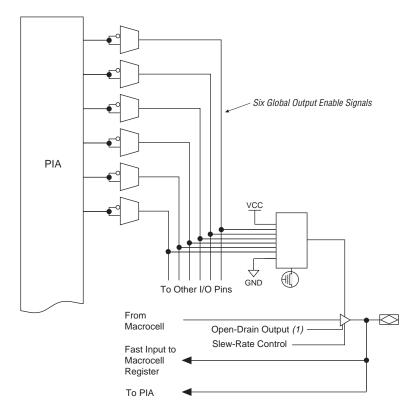

The I/O control block allows each I/O pin to be individually configured for input, output, or bidirectional operation. All I/O pins have a tri-state buffer that is individually controlled by one of the global output enable signals or directly connected to ground or V_{CC} . Figure 8 shows the I/O control block for the MAX 7000 family. The I/O control block of EPM7032, EPM7064, and EPM7096 devices has two global output enable signals that are driven by two dedicated active-low output enable pins (OE1 and OE2). The I/O control block of MAX 7000E and MAX 7000S devices has six global output enable signals that are driven by the true or complement of two output enable signals, a subset of the I/O pins, or a subset of the I/O macrocells.

Figure 8. I/O Control Block of MAX 7000 Devices

EPM7032, EPM7064 & EPM7096 Devices

Note:

(1) The open-drain output option is available only in MAX 7000S devices.

The programming times described in Tables 6 through 8 are associated

Device	Progra	mming	Stand-Alone Verification		
	t _{PPULSE} (s)	Cycle _{PTCK}	t _{VPULSE} (s)	Cycle _{VTCK}	
EPM7032S	4.02	342,000	0.03	200,000	
EPM7064S	4.50	504,000	0.03	308,000	
EPM7128S	5.11	832,000	0.03	528,000	
EPM7160S	5.35	1,001,000	0.03	640,000	
EPM7192S	5.71	1,192,000	0.03	764,000	
EPM7256S	6.43	1,603,000	0.03	1,024,000	

with the worst-case method using the enhanced ISP algorithm.

Tables 7 and 8 show the in-system programming and stand alone verification times for several common test clock frequencies.

Device		f _{TCK}								
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz]	
EPM7032S	4.06	4.09	4.19	4.36	4.71	5.73	7.44	10.86	s	
EPM7064S	4.55	4.60	4.76	5.01	5.51	7.02	9.54	14.58	S	
EPM7128S	5.19	5.27	5.52	5.94	6.77	9.27	13.43	21.75	S	
EPM7160S	5.45	5.55	5.85	6.35	7.35	10.35	15.36	25.37	S	
EPM7192S	5.83	5.95	6.30	6.90	8.09	11.67	17.63	29.55	S	
EPM7256S	6.59	6.75	7.23	8.03	9.64	14.45	22.46	38.49	S	

Table 8. MAX 7000S Stand-Alone Verification Times for Different Test Clock Frequencies

Device		f _{TCK}								
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz		
EPM7032S	0.05	0.07	0.13	0.23	0.43	1.03	2.03	4.03	S	
EPM7064S	0.06	0.09	0.18	0.34	0.64	1.57	3.11	6.19	S	
EPM7128S	0.08	0.14	0.29	0.56	1.09	2.67	5.31	10.59	S	
EPM7160S	0.09	0.16	0.35	0.67	1.31	3.23	6.43	12.83	S	
EPM7192S	0.11	0.18	0.41	0.79	1.56	3.85	7.67	15.31	S	
EPM7256S	0.13	0.24	0.54	1.06	2.08	5.15	10.27	20.51	S	

The instruction register length of MAX 7000S devices is 10 bits. Tables 10 and 11 show the boundary-scan register length and device IDCODE information for MAX 7000S devices.

Table 10. MAX 7000S Boundary-Scan Register Length					
Device	Boundary-Scan Register Length				
EPM7032S	1 (1)				
EPM7064S	1 (1)				
EPM7128S	288				
EPM7160S	312				
EPM7192S	360				
EPM7256S	480				

Note:

 This device does not support JTAG boundary-scan testing. Selecting either the EXTEST or SAMPLE/PRELOAD instruction will select the one-bit bypass register.

Table 11. 32-Bit MAX 7000 Device IDCODE Note (1)										
Device		IDCODE (32 Bits)								
	Version (4 Bits)	Part Number (16 Bits)	Manufacturer's Identity (11 Bits)	1 (1 Bit) (2)						
EPM7032S	0000	0111 0000 0011 0010	00001101110	1						
EPM7064S	0000	0111 0000 0110 0100	00001101110	1						
EPM7128S	0000	0111 0001 0010 1000	00001101110	1						
EPM7160S	0000	0111 0001 0110 0000	00001101110	1						
EPM7192S	0000	0111 0001 1001 0010	00001101110	1						
EPM7256S	0000	0111 0010 0101 0110	00001101110	1						

Notes:

(1) The most significant bit (MSB) is on the left.

(2) The least significant bit (LSB) for all JTAG IDCODEs is 1.

devices.

Figure 9 shows the timing requirements for the JTAG signals.

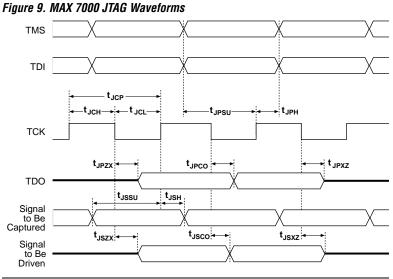
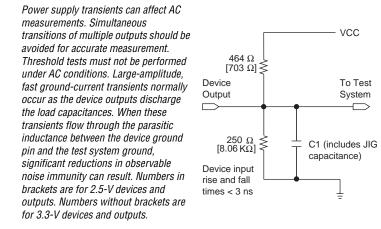


Table 12 shows the JTAG timing parameters and values for MAX 7000S

Table 1	2. JTAG Timing Parameters & Values for MAX 70	00S De	vices	
Symbol	Parameter	Min	Мах	Unit
t _{JCP}	TCK clock period	100		ns
t _{JCH}	TCK clock high time	50		ns
t _{JCL}	TCK clock low time	50		ns
t _{JPSU}	JTAG port setup time	20		ns
t _{JPH}	JTAG port hold time	45		ns
t _{JPCO}	JTAG port clock to output		25	ns
t _{JPZX}	JTAG port high impedance to valid output		25	ns
t _{JPXZ}	JTAG port valid output to high impedance		25	ns
t _{JSSU}	Capture register setup time	20		ns
t _{JSH}	Capture register hold time	45		ns
t _{JSCO}	Update register clock to output		25	ns
t _{JSZX}	Update register high impedance to valid output		25	ns
t _{JSXZ}	Update register valid output to high impedance		25	ns


For more information, see *Application Note* 39 (IEEE 1149.1 (JTAG) *Boundary-Scan Testing in Altera Devices*).

Design Security All MAX 7000 devices contain a programmable security bit that controls access to the data programmed into the device. When this bit is programmed, a proprietary design implemented in the device cannot be copied or retrieved. This feature provides a high level of design security because programmed data within EEPROM cells is invisible. The security bit that controls this function, as well as all other programmed data, is reset only when the device is reprogrammed.

Generic Testing

Each MAX 7000 device is functionally tested. Complete testing of each programmable EEPROM bit and all internal logic elements ensures 100% programming yield. AC test measurements are taken under conditions equivalent to those shown in Figure 10. Test patterns can be used and then erased during early stages of the production flow.

Figure 10. MAX 7000 AC Test Conditions

QFP Carrier & Development Socket

MAX 7000 and MAX 7000E devices in QFP packages with 100 or more pins are shipped in special plastic carriers to protect the QFP leads. The carrier is used with a prototype development socket and special programming hardware available from Altera. This carrier technology makes it possible to program, test, erase, and reprogram a device without exposing the leads to mechanical stress.

For detailed information and carrier dimensions, refer to the *QFP Carrier* & *Development Socket Data Sheet*.

MAX 7000S devices are not shipped in carriers.

Table 1	Table 15. MAX 7000 5.0-V Device DC Operating Conditions Note (9)							
Symbol	Parameter	Conditions	Min	Max	Unit			
V _{IH}	High-level input voltage		2.0	V _{CCINT} + 0.5	V			
V _{IL}	Low-level input voltage		-0.5 (8)	0.8	V			
V _{OH}	5.0-V high-level TTL output voltage	$I_{OH} = -4 \text{ mA DC}, V_{CCIO} = 4.75 \text{ V} (10)$	2.4		V			
:	3.3-V high-level TTL output voltage	$I_{OH} = -4 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V} (10)$	2.4		V			
	3.3-V high-level CMOS output voltage	I_{OH} = -0.1 mA DC, V_{CCIO} = 3.0 V (10)	V _{CCIO} – 0.2		V			
	5.0-V low-level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 4.75 V (11)		0.45	V			
	3.3-V low-level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 3.00 V (11)		0.45	V			
	3.3-V low-level CMOS output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 3.0 V(11)		0.8 .2 0.45	V			
I _I	Leakage current of dedicated input pins	$V_{I} = -0.5$ to 5.5 V (11)	-10	10	μΑ			
I _{OZ}	I/O pin tri-state output off-state current	V _I = -0.5 to 5.5 V (11), (12)	-40	40	μA			

Table 1	Table 16. MAX 7000 5.0-V Device Capacitance: EPM7032, EPM7064 & EPM7096 Devices Note (13)						
Symbol	Parameter	Conditions	Min	Max	Unit		
CIN	Input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		12	pF		
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		12	pF		

Table 17. MAX 7000 5.0-V Device Capacitance: MAX 7000E Devices Note (13)							
Symbol	Parameter	Conditions	Min	Max	Unit		
C _{IN}	Input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		15	pF		
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		15	pF		

Table 18. MAX 7000 5.0-V Device Capacitance: MAX 7000S Devices Note (13)							
Symbol	Parameter	Conditions	Min	Max	Unit		
CIN	Dedicated input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF		
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		10	pF		

Г

_

Table 2	Table 21. MAX 7000 & MAX 7000E External Timing Parameters Note (1)								
Symbol	Parameter	Conditions	Speed Grade						
			MAX 700	0E (-10P)	MAX 70 Max 70	1			
			Min	Max	Min	Max	1		
t _{PD1}	Input to non-registered output	C1 = 35 pF		10.0		10.0	ns		
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		10.0		10.0	ns		
t _{SU}	Global clock setup time		7.0		8.0		ns		
t _H	Global clock hold time		0.0		0.0		ns		
t _{FSU}	Global clock setup time of fast input	(2)	3.0		3.0		ns		
t _{FH}	Global clock hold time of fast input	(2)	0.5		0.5		ns		
t _{CO1}	Global clock to output delay	C1 = 35 pF		5.0		5	ns		
t _{CH}	Global clock high time		4.0		4.0		ns		
t _{CL}	Global clock low time		4.0		4.0		ns		
t _{ASU}	Array clock setup time		2.0		3.0		ns		
t _{AH}	Array clock hold time		3.0		3.0		ns		
t _{ACO1}	Array clock to output delay	C1 = 35 pF		10.0		10.0	ns		
t _{ACH}	Array clock high time		4.0		4.0		ns		
t _{ACL}	Array clock low time		4.0		4.0		ns		
t _{CPPW}	Minimum pulse width for clear and preset	(3)	4.0		4.0		ns		
t _{ODH}	Output data hold time after clock	C1 = 35 pF (4)	1.0		1.0		ns		
t _{CNT}	Minimum global clock period			10.0		10.0	ns		
f _{CNT}	Maximum internal global clock frequency	(5)	100.0		100.0		MHz		
t _{ACNT}	Minimum array clock period			10.0		10.0	ns		
f _{acnt}	Maximum internal array clock frequency	(5)	100.0		100.0		MHz		
f _{MAX}	Maximum clock frequency	(6)	125.0		125.0		MHz		

Table 2	Table 23. MAX 7000 & MAX 7000E External Timing Parameters Note (1)								
Symbol	Parameter	Conditions	Speed Grade						
			MAX 700	0E (-12P)	MAX 7000 (-12) MAX 7000E (-12)				
			Min	Max	Min	Max			
t _{PD1}	Input to non-registered output	C1 = 35 pF		12.0		12.0	ns		
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		12.0		12.0	ns		
t _{SU}	Global clock setup time		7.0		10.0		ns		
t _H	Global clock hold time		0.0		0.0		ns		
t _{FSU}	Global clock setup time of fast input	(2)	3.0		3.0		ns		
t _{FH}	Global clock hold time of fast input	(2)	0.0		0.0		ns		
t _{CO1}	Global clock to output delay	C1 = 35 pF		6.0		6.0	ns		
t _{CH}	Global clock high time		4.0		4.0		ns		
t _{CL}	Global clock low time		4.0		4.0		ns		
t _{ASU}	Array clock setup time		3.0		4.0		ns		
t _{AH}	Array clock hold time		4.0		4.0		ns		
t _{ACO1}	Array clock to output delay	C1 = 35 pF		12.0		12.0	ns		
t _{ACH}	Array clock high time		5.0		5.0		ns		
t _{ACL}	Array clock low time		5.0		5.0		ns		
t _{CPPW}	Minimum pulse width for clear and preset	(3)	5.0		5.0		ns		
t _{ODH}	Output data hold time after clock	C1 = 35 pF (4)	1.0		1.0		ns		
t _{CNT}	Minimum global clock period			11.0		11.0	ns		
f _{CNT}	Maximum internal global clock frequency	(5)	90.9		90.9		MHz		
t _{ACNT}	Minimum array clock period			11.0		11.0	ns		
f _{acnt}	Maximum internal array clock frequency	(5)	90.9		90.9		MHz		
f _{MAX}	Maximum clock frequency	(6)	125.0		125.0		MHz		

Notes to tables:

- (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells running in the low-power mode.

Tables 33 and 34 show the EPM7160S AC operating conditions.

Symbol	Parameter	Conditions				Speed	Grade)						
			-6		-7		-10		-15					
			Min	Max	Min	Max	Min	Max	Min	Max				
t _{PD1}	Input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns			
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns			
t _{SU}	Global clock setup time		3.4		4.2		7.0		11.0		ns			
t _H	Global clock hold time		0.0		0.0		0.0		0.0		ns			
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		3.0		ns			
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.5		0.0		ns			
t _{CO1}	Global clock to output delay	C1 = 35 pF		3.9		4.8		5		8	ns			
t _{CH}	Global clock high time		3.0		3.0		4.0		5.0		ns			
t _{CL}	Global clock low time		3.0		3.0		4.0		5.0		ns			
t _{ASU}	Array clock setup time		0.9		1.1		2.0		4.0		ns			
t _{AH}	Array clock hold time		1.7		2.1		3.0		4.0		ns			
t _{ACO1}	Array clock to output delay	C1 = 35 pF		6.4		7.9		10.0		15.0	ns			
t _{ACH}	Array clock high time		3.0		3.0		4.0		6.0		ns			
t _{ACL}	Array clock low time		3.0		3.0		4.0		6.0		ns			
t _{CPPW}	Minimum pulse width for clear and preset	(2)	2.5		3.0		4.0		6.0		ns			
t _{ODH}	Output data hold time after clock	C1 = 35 pF <i>(3)</i>	1.0		1.0		1.0		1.0		ns			
t _{CNT}	Minimum global clock period			6.7		8.2		10.0		13.0	ns			
f _{сnт}	Maximum internal global clock frequency	(4)	149.3		122.0		100.0		76.9		MHz			

Altera Corporation

Symbol	Parameter	Conditions	Conditions Speed Grade	Grade		Unit			
			-7		-10		-15		
			Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF		7.5		10.0		15.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		7.5		10.0		15.0	ns
t _{SU}	Global clock setup time		3.9		7.0		11.0		ns
t _H	Global clock hold time		0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		3.0		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.5		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		4.7		5.0		8.0	ns
t _{CH}	Global clock high time		3.0		4.0		5.0		ns
t _{CL}	Global clock low time		3.0		4.0		5.0		ns
t _{ASU}	Array clock setup time		0.8		2.0		4.0		ns
t _{AH}	Array clock hold time		1.9		3.0		4.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		7.8		10.0		15.0	ns
t _{ACH}	Array clock high time		3.0		4.0		6.0		ns
t _{ACL}	Array clock low time		3.0		4.0		6.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(2)	3.0		4.0		6.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		ns
t _{CNT}	Minimum global clock period			7.8		10.0		13.0	ns
fcnt	Maximum internal global clock frequency	(4)	128.2		100.0		76.9		MHz
t _{ACNT}	Minimum array clock period			7.8		10.0		13.0	ns
f _{acnt}	Maximum internal array clock frequency	(4)	128.2		100.0		76.9		MHz
f _{MAX}	Maximum clock frequency	(5)	166.7		125.0		100.0		MHz

Tables 37 and 38 show the EPM7256S AC operating conditions.

Notes to tables:

- (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells running in the low-power mode.

Power Consumption

Supply power (P) versus frequency (f_{MAX} in MHz) for MAX 7000 devices is calculated with the following equation:

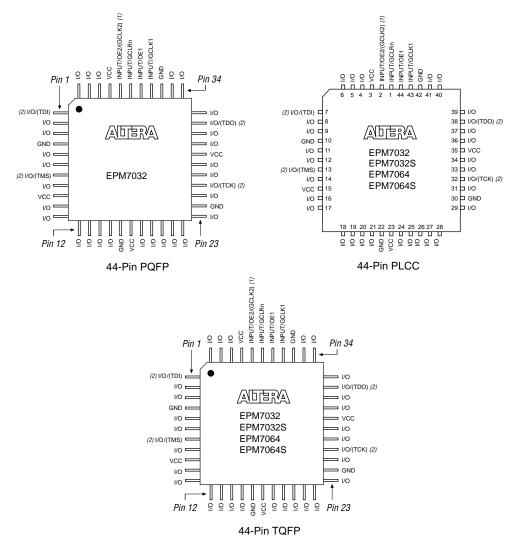
$$P = P_{INT} + P_{IO} = I_{CCINT} \times V_{CC} + P_{IO}$$

The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note* 74 (*Evaluating Power for Altera Devices*).

The I_{CCINT} value, which depends on the switching frequency and the application logic, is calculated with the following equation:

 $I_{CCINT} =$

 $A \times MC_{TON} + B \times (MC_{DEV} - MC_{TON}) + C \times MC_{USED} \times f_{MAX} \times tog_{LC}$


The parameters in this equation are shown below:

MC _{TON}	=	Number of macrocells with the Turbo Bit option turned on,
		as reported in the MAX+PLUS II Report File (.rpt)
MC _{DEV}	=	Number of macrocells in the device
MC _{USED}	=	Total number of macrocells in the design, as reported
		in the MAX+PLUS II Report File (.rpt)
f _{MAX}	=	Highest clock frequency to the device
togLC	=	Average ratio of logic cells toggling at each clock
		(typically 0.125)
A, B, C	=	Constants, shown in Table 39

Figures 16 through 22 show the package pin-out diagrams for MAX 7000 devices.

Figure 16. 44-Pin Package Pin-Out Diagram

Package outlines not drawn to scale.

Notes:

- (1) The pin functions shown in parenthesis are only available in MAX 7000E and MAX 7000S devices.
- (2) JTAG ports are available in MAX 7000S devices only.

Revision History

The information contained in the *MAX 7000 Programmable Logic Device Family Data Sheet* version 6.7 supersedes information published in previous versions. The following changes were made in the *MAX 7000 Programmable Logic Device Family Data Sheet* version 6.7:

Version 6.7

The following changes were made in the *MAX* 7000 *Programmable Logic Device Family Data Sheet* version 6.7:

Reference to AN 88: Using the Jam Language for ISP & ICR via an Embedded Processor has been replaced by AN 122: Using Jam STAPL for ISP & ICR via an Embedded Processor.

Version 6.6

The following changes were made in the *MAX* 7000 *Programmable Logic Device Family Data Sheet* version 6.6:

- Added Tables 6 through 8.
- Added "Programming Sequence" section on page 17 and "Programming Times" section on page 18.

Version 6.5

The following changes were made in the *MAX* 7000 *Programmable Logic Device Family Data Sheet* version 6.5:

Updated text on page 16.

Version 6.4

The following changes were made in the *MAX* 7000 *Programmable Logic Device Family Data Sheet* version 6.4:

Added Note (5) on page 28.

Version 6.3

The following changes were made in the *MAX* 7000 *Programmable Logic Device Family Data Sheet* version 6.3:

 Updated the "Open-Drain Output Option (MAX 7000S Devices Only)" section on page 20.

