

Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	15 ns
Voltage Supply - Internal	4.75V ~ 5.25V
Number of Logic Elements/Blocks	8
Number of Macrocells	128
Number of Gates	2500
Number of I/O	100
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	160-BQFP
Supplier Device Package	160-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm7128sqc160-15n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The MAX 7000E devices—including the EPM7128E, EPM7160E, EPM7192E, and EPM7256E devices—have several enhanced features: additional global clocking, additional output enable controls, enhanced interconnect resources, fast input registers, and a programmable slew rate.

In-system programmable MAX 7000 devices—called MAX 7000S devices—include the EPM7032S, EPM7064S, EPM7128S, EPM7160S, EPM7192S, and EPM7256S devices. MAX 7000S devices have the enhanced features of MAX 7000E devices as well as JTAG BST circuitry in devices with 128 or more macrocells, ISP, and an open-drain output option. See Table 4.

Table 4. MAX 7000 Device Feat	ures		
Feature	EPM7032 EPM7064 EPM7096	All MAX 7000E Devices	All MAX 7000S Devices
ISP via JTAG interface			✓
JTAG BST circuitry			√ (1)
Open-drain output option			✓
Fast input registers		✓	✓
Six global output enables		✓	✓
Two global clocks		✓	✓
Slew-rate control		✓	✓
MultiVolt interface (2)	✓	✓	✓
Programmable register	✓	✓	✓
Parallel expanders	✓	✓	✓
Shared expanders	✓	✓	✓
Power-saving mode	✓	✓	✓
Security bit	✓	✓	✓
PCI-compliant devices available	✓	✓	✓

Notes:

- (1) Available only in EPM7128S, EPM7160S, EPM7192S, and EPM7256S devices only.
- (2) The MultiVolt I/O interface is not available in 44-pin packages.

The MAX 7000 architecture supports 100% TTL emulation and high-density integration of SSI, MSI, and LSI logic functions. The MAX 7000 architecture easily integrates multiple devices ranging from PALs, GALs, and 22V10s to MACH and pLSI devices. MAX 7000 devices are available in a wide range of packages, including PLCC, PGA, PQFP, RQFP, and TQFP packages. See Table 5.

Table 5. M.	AX 7000) Maxim	um Use	r I/O Pii	ıs N	ote (1)						
Device	44- Pin PLCC	44- Pin PQFP	44- Pin TQFP	68- Pin PLCC	84- Pin PLCC	100- Pin PQFP	100- Pin TQFP	160- Pin PQFP	160- Pin PGA	192- Pin PGA	208- Pin PQFP	208- Pin RQFP
EPM7032	36	36	36									
EPM7032S	36		36									
EPM7064	36		36	52	68	68						
EPM7064S	36		36		68		68					
EPM7096				52	64	76						
EPM7128E					68	84		100				
EPM7128S					68	84	84 (2)	100				
EPM7160E					64	84		104				
EPM7160S					64		84 (2)	104				
EPM7192E								124	124			
EPM7192S								124				
EPM7256E								132 (2)		164		164
EPM7256S											164 (2)	164

Notes:

- When the JTAG interface in MAX 7000S devices is used for either boundary-scan testing or for ISP, four I/O pins become JTAG pins.
- (2) Perform a complete thermal analysis before committing a design to this device package. For more information, see the Operating Requirements for Altera Devices Data Sheet.

MAX 7000 devices use CMOS EEPROM cells to implement logic functions. The user-configurable MAX 7000 architecture accommodates a variety of independent combinatorial and sequential logic functions. The devices can be reprogrammed for quick and efficient iterations during design development and debug cycles, and can be programmed and erased up to 100 times.

MAX 7000 devices contain from 32 to 256 macrocells that are combined into groups of 16 macrocells, called logic array blocks (LABs). Each macrocell has a programmable-AND/fixed-OR array and a configurable register with independently programmable clock, clock enable, clear, and preset functions. To build complex logic functions, each macrocell can be supplemented with both shareable expander product terms and high-speed parallel expander product terms to provide up to 32 product terms per macrocell.

The MAX 7000 family provides programmable speed/power optimization. Speed-critical portions of a design can run at high speed/full power, while the remaining portions run at reduced speed/low power. This speed/power optimization feature enables the designer to configure one or more macrocells to operate at 50% or lower power while adding only a nominal timing delay. MAX 7000E and MAX 7000S devices also provide an option that reduces the slew rate of the output buffers, minimizing noise transients when non-speed-critical signals are switching. The output drivers of all MAX 7000 devices (except 44-pin devices) can be set for either 3.3-V or 5.0-V operation, allowing MAX 7000 devices to be used in mixed-voltage systems.

The MAX 7000 family is supported by Altera development systems, which are integrated packages that offer schematic, text—including VHDL, Verilog HDL, and the Altera Hardware Description Language (AHDL)—and waveform design entry, compilation and logic synthesis, simulation and timing analysis, and device programming. The software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry-standard PC- and UNIX-workstation-based EDA tools. The software runs on Windows-based PCs, as well as Sun SPARCstation, and HP 9000 Series 700/800 workstations.

For more information on development tools, see the MAX+PLUS II Programmable Logic Development System & Software Data Sheet and the Quartus Programmable Logic Development System & Software Data Sheet.

Functional Description

The MAX 7000 architecture includes the following elements:

- Logic array blocks
- Macrocells
- Expander product terms (shareable and parallel)
- Programmable interconnect array
- I/O control blocks

Programmable Speed/Power Control

MAX 7000 devices offer a power-saving mode that supports low-power operation across user-defined signal paths or the entire device. This feature allows total power dissipation to be reduced by 50% or more, because most logic applications require only a small fraction of all gates to operate at maximum frequency.

The designer can program each individual macrocell in a MAX 7000 device for either high-speed (i.e., with the Turbo BitTM option turned on) or low-power (i.e., with the Turbo Bit option turned off) operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths can operate at reduced power. Macrocells that run at low power incur a nominal timing delay adder (t_{LPA}) for the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , and t_{SEXP} , t_{ACL} , and t_{CPPW} parameters.

Output Configuration

MAX 7000 device outputs can be programmed to meet a variety of system-level requirements.

MultiVolt I/O Interface

MAX 7000 devices—except 44-pin devices—support the MultiVolt I/O interface feature, which allows MAX 7000 devices to interface with systems that have differing supply voltages. The 5.0-V devices in all packages can be set for 3.3-V or 5.0-V I/O pin operation. These devices have one set of VCC pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

The VCCINT pins must always be connected to a 5.0-V power supply. With a 5.0-V $V_{\rm CCINT}$ level, input voltage thresholds are at TTL levels, and are therefore compatible with both 3.3-V and 5.0-V inputs.

The VCCIO pins can be connected to either a 3.3-V or a 5.0-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 5.0-V supply, the output levels are compatible with 5.0-V systems. When $V_{\rm CCIO}$ is connected to a 3.3-V supply, the output high is 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with $V_{\rm CCIO}$ levels lower than 4.75 V incur a nominally greater timing delay of $t_{\rm OD2}$ instead of $t_{\rm OD1}$.

Open-Drain Output Option (MAX 7000S Devices Only)

MAX 7000S devices provide an optional open-drain (functionally equivalent to open-collector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. It can also provide an additional wired-OR plane.

By using an external 5.0-V pull-up resistor, output pins on MAX 7000S devices can be set to meet 5.0-V CMOS input voltages. When $V_{\rm CCIO}$ is 3.3 V, setting the open drain option will turn off the output pull-up transistor, allowing the external pull-up resistor to pull the output high enough to meet 5.0-V CMOS input voltages. When $V_{\rm CCIO}$ is 5.0 V, setting the output drain option is not necessary because the pull-up transistor will already turn off when the pin exceeds approximately 3.8 V, allowing the external pull-up resistor to pull the output high enough to meet 5.0-V CMOS input voltages.

Slew-Rate Control

The output buffer for each MAX 7000E and MAX 7000S I/O pin has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A faster slew rate provides high-speed transitions for high-performance systems. However, these fast transitions may introduce noise transients into the system. A slow slew rate reduces system noise, but adds a nominal delay of 4 to 5 ns. In MAX 7000E devices, when the Turbo Bit is turned off, the slew rate is set for low noise performance. For MAX 7000S devices, each I/O pin has an individual EEPROM bit that controls the slew rate, allowing designers to specify the slew rate on a pin-by-pin basis.

Programming with External Hardware

MAX 7000 devices can be programmed on Windows-based PCs with the Altera Logic Programmer card, the Master Programming Unit (MPU), and the appropriate device adapter. The MPU performs a continuity check to ensure adequate electrical contact between the adapter and the device.

For more information, see the *Altera Programming Hardware Data Sheet*.

The Altera development system can use text- or waveform-format test vectors created with the Text Editor or Waveform Editor to test the programmed device. For added design verification, designers can perform functional testing to compare the functional behavior of a MAX 7000 device with the results of simulation. Moreover, Data I/O, BP Microsystems, and other programming hardware manufacturers also provide programming support for Altera devices.

For more information, see the *Programming Hardware Manufacturers*.

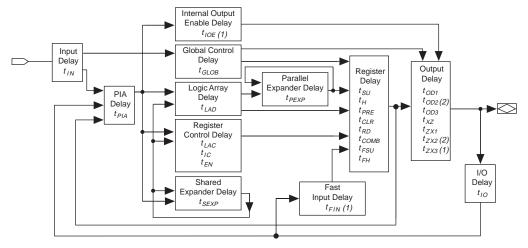

Symbol	Parameter	Conditions	Min	Max	Unit
V _{IH}	High-level input voltage		2.0	V _{CCINT} + 0.5	V
V _{IL}	Low-level input voltage		-0.5 (8)	0.8	V
V _{OH}	5.0-V high-level TTL output voltage	I _{OH} = -4 mA DC, V _{CCIO} = 4.75 V (10)	2.4		V
	3.3-V high-level TTL output voltage	$I_{OH} = -4 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V } (10)$	2.4		V
	3.3-V high-level CMOS output voltage	$I_{OH} = -0.1 \text{ mA DC}, V_{CCIO} = 3.0 \text{ V} (10)$	V _{CCIO} - 0.2		V
V _{OL}	5.0-V low-level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 4.75 V (11)		0.45	V
	3.3-V low-level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 3.00 V (11)		0.45	V
	3.3-V low-level CMOS output voltage	$I_{OL} = 0.1 \text{ mA DC}, V_{CCIO} = 3.0 \text{ V}(11)$		0.2	V
lı	Leakage current of dedicated input pins	V _I = -0.5 to 5.5 V (11)	-10	10	μΑ
l _{OZ}	I/O pin tri-state output off-state current	V _I = -0.5 to 5.5 V (11), (12)	-40	40	μА

Table 1	6. MAX 7000 5.0-V Device Capa	ncitance: EPM7032, EPM7064 & EPM7	7096 Devices	Note (1	3)
Symbol	Parameter	Conditions	Min	Max	Unit
C _{IN}	Input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		12	pF
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		12	pF

Table 1	7. MAX 7000 5.0-V Device Capa	acitance: MAX 7000E Devices Note	(13)		
Symbol	Parameter	Conditions	Min	Max	Unit
C _{IN}	Input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		15	pF
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		15	pF

Table 1	8. MAX 7000 5.0-V Device Capa	ncitance: MAX 7000S Devices Note	(13)		
Symbol	Parameter	Conditions	Min	Max	Unit
C _{IN}	Dedicated input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		10	pF

Figure 12. MAX 7000 Timing Model

Notes:

- (1) Only available in MAX 7000E and MAX 7000S devices.
- (2) Not available in 44-pin devices.

The timing characteristics of any signal path can be derived from the timing model and parameters of a particular device. External timing parameters, which represent pin-to-pin timing delays, can be calculated as the sum of internal parameters. Figure 13 shows the internal timing relationship of internal and external delay parameters.

For more infomration, see *Application Note* 94 (Understanding MAX 7000 *Timing*).

Table 24	4. MAX 7000 & MAX 7000E Int	ernal Timing Parame	eters Note	e (1)			
Symbol	Parameter	Conditions		Speed	Grade		Unit
			MAX 700	OE (-12P)		000 (-12) 00E (-12)	
			Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			1.0		2.0	ns
t _{IO}	I/O input pad and buffer delay			1.0		2.0	ns
t _{FIN}	Fast input delay	(2)		1.0		1.0	ns
t _{SEXP}	Shared expander delay			7.0		7.0	ns
t _{PEXP}	Parallel expander delay			1.0		1.0	ns
t _{LAD}	Logic array delay			7.0		5.0	ns
t _{LAC}	Logic control array delay			5.0		5.0	ns
t _{IOE}	Internal output enable delay	(2)		2.0		2.0	ns
t _{OD1}	Output buffer and pad delay Slow slew rate = off V _{CCIO} = 5.0 V	C1 = 35 pF		1.0		3.0	ns
t _{OD2}	Output buffer and pad delay Slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF (7)		2.0		4.0	ns
t _{OD3}	Output buffer and pad delay Slow slew rate = on V _{CCIO} = 5.0 V or 3.3 V	C1 = 35 pF (2)		5.0		7.0	ns
t _{ZX1}	Output buffer enable delay Slow slew rate = off V _{CCIO} = 5.0 V	C1 = 35 pF		6.0		6.0	ns
t _{ZX2}	Output buffer enable delay Slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF (7)		7.0		7.0	ns
t _{ZX3}	Output buffer enable delay Slow slew rate = on V _{CCIO} = 5.0 V or 3.3 V	C1 = 35 pF (2)		10.0		10.0	ns
t_{XZ}	Output buffer disable delay	C1 = 5 pF		6.0		6.0	ns
t _{SU}	Register setup time		1.0		4.0		ns
t _H	Register hold time		6.0		4.0		ns
t _{FSU}	Register setup time of fast input	(2)	4.0		2.0		ns
t _{FH}	Register hold time of fast input	(2)	0.0		2.0		ns
t _{RD}	Register delay			2.0		1.0	ns
t _{COMB}	Combinatorial delay			2.0		1.0	ns
t _{IC}	Array clock delay			5.0		5.0	ns
t _{EN}	Register enable time			7.0		5.0	ns
t _{GLOB}	Global control delay			2.0		0.0	ns
t _{PRE}	Register preset time			4.0		3.0	ns
t _{CLR}	Register clear time			4.0		3.0	ns
t _{PIA}	PIA delay			1.0		1.0	ns
t _{LPA}	Low-power adder	(8)		12.0		12.0	ns

Table 2	7. EPM7032S External Time	ing Parameter	s (Part	2 of 2) No	ote (1)					
Symbol	Parameter	Conditions				Speed	Grade	1			Unit
			-	-5 -6 -7 -10							
			Min	Max	Min	Max	Min	Max	Min	Max	
f _{ACNT}	Maximum internal array clock frequency	(4)	175.4		142.9		116.3		100.0		MHz
f _{MAX}	Maximum clock frequency	(5)	250.0		200.0		166.7		125.0		MHz

Table 2	8. EPM7032\$ Internal Tim	ing Parameter	rs /	Note (1)							
Symbol	Parameter	Conditions				Speed	Grade)			Unit
			_	5	-	6	-	7	-	10	
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.2		0.2		0.3		0.5	ns
t _{IO}	I/O input pad and buffer delay			0.2		0.2		0.3		0.5	ns
t _{FIN}	Fast input delay			2.2		2.1		2.5		1.0	ns
t _{SEXP}	Shared expander delay			3.1		3.8		4.6		5.0	ns
t _{PEXP}	Parallel expander delay			0.9		1.1		1.4		0.8	ns
t_{LAD}	Logic array delay			2.6		3.3		4.0		5.0	ns
t _{LAC}	Logic control array delay			2.5		3.3		4.0		5.0	ns
t _{IOE}	Internal output enable delay			0.7		0.8		1.0		2.0	ns
t _{OD1}	Output buffer and pad delay	C1 = 35 pF		0.2		0.3		0.4		1.5	ns
t _{OD2}	Output buffer and pad delay	C1 = 35 pF (6)		0.7		0.8		0.9		2.0	ns
t _{OD3}	Output buffer and pad delay	C1 = 35 pF		5.2		5.3		5.4		5.5	ns
t _{ZX1}	Output buffer enable delay	C1 = 35 pF		4.0		4.0		4.0		5.0	ns
t _{ZX2}	Output buffer enable delay	C1 = 35 pF (6)		4.5		4.5		4.5		5.5	ns
t _{ZX3}	Output buffer enable delay	C1 = 35 pF		9.0		9.0		9.0		9.0	ns
t_{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		4.0		5.0	ns
t _{SU}	Register setup time		0.8		1.0		1.3		2.0		ns
t_H	Register hold time		1.7		2.0		2.5		3.0		ns
t _{FSU}	Register setup time of fast input		1.9		1.8		1.7		3.0		ns
t _{FH}	Register hold time of fast input		0.6		0.7		0.8		0.5		ns
t_{RD}	Register delay			1.2		1.6		1.9		2.0	ns
t_{COMB}	Combinatorial delay			0.9		1.1		1.4		2.0	ns
t _{IC}	Array clock delay			2.7		3.4		4.2		5.0	ns
t _{EN}	Register enable time			2.6		3.3		4.0		5.0	ns
t _{GLOB}	Global control delay			1.6		1.4		1.7		1.0	ns
t _{PRE}	Register preset time			2.0		2.4		3.0		3.0	ns
t _{CLR}	Register clear time			2.0		2.4		3.0		3.0	ns

Symbol	Parameter	Conditions				Speed	Grade				Unit
			-	5	-	6	-	7	-1	10	
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{FSU}	Register setup time of fast input		1.9		1.8		3.0		3.0		ns
t _{FH}	Register hold time of fast input		0.6		0.7		0.5		0.5		ns
t _{RD}	Register delay			1.2		1.6		1.0		2.0	ns
t _{COMB}	Combinatorial delay			0.9		1.0		1.0		2.0	ns
t _{IC}	Array clock delay			2.7		3.3		3.0		5.0	ns
t _{EN}	Register enable time			2.6		3.2		3.0		5.0	ns
t_{GLOB}	Global control delay			1.6		1.9		1.0		1.0	ns
t_{PRE}	Register preset time			2.0		2.4		2.0		3.0	ns
t _{CLR}	Register clear time			2.0		2.4		2.0		3.0	ns
t _{PIA}	PIA delay	(7)		1.1		1.3		1.0		1.0	ns
t_{LPA}	Low-power adder	(8)		12.0		11.0		10.0		11.0	ns

Notes to tables:

- These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode.

Symbol	Parameter	Conditions	Speed Grade								
			-	6	-	7	-10		-15		
			Min	Max	Min	Max	Min	Max	Min	Max	-
t _{IN}	Input pad and buffer delay			0.2		0.5		0.5		2.0	ns
t _{IO}	I/O input pad and buffer delay			0.2		0.5		0.5		2.0	ns
t _{FIN}	Fast input delay			2.6		1.0		1.0		2.0	ns
t _{SEXP}	Shared expander delay			3.7		4.0		5.0		8.0	ns
t _{PEXP}	Parallel expander delay			1.1		0.8		0.8		1.0	ns
t_{LAD}	Logic array delay			3.0		3.0		5.0		6.0	ns
t_{LAC}	Logic control array delay			3.0		3.0		5.0		6.0	ns
t _{IOE}	Internal output enable delay			0.7		2.0		2.0		3.0	ns
t _{OD1}	Output buffer and pad delay	C1 = 35 pF		0.4		2.0		1.5		4.0	ns
t _{OD2}	Output buffer and pad delay	C1 = 35 pF (6)		0.9		2.5		2.0		5.0	ns
t _{OD3}	Output buffer and pad delay	C1 = 35 pF		5.4		7.0		5.5		8.0	ns
t _{ZX1}	Output buffer enable delay	C1 = 35 pF		4.0		4.0		5.0		6.0	ns
t _{ZX2}	Output buffer enable delay	C1 = 35 pF (6)		4.5		4.5		5.5		7.0	ns
t_{ZX3}	Output buffer enable delay	C1 = 35 pF		9.0		9.0		9.0		10.0	ns
t_{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		5.0		6.0	ns
t _{SU}	Register setup time		1.0		3.0		2.0		4.0		ns
t _H	Register hold time		1.7		2.0		5.0		4.0		ns
t _{FSU}	Register setup time of fast input		1.9		3.0		3.0		2.0		ns
t _{FH}	Register hold time of fast input		0.6		0.5		0.5		1.0		ns
t_{RD}	Register delay			1.4		1.0		2.0		1.0	ns
t _{COMB}	Combinatorial delay			1.0		1.0		2.0		1.0	ns
t _{IC}	Array clock delay			3.1		3.0		5.0		6.0	ns
t _{EN}	Register enable time			3.0		3.0		5.0		6.0	ns
t_{GLOB}	Global control delay			2.0		1.0		1.0		1.0	ns
t _{PRE}	Register preset time			2.4		2.0		3.0		4.0	ns
t _{CLR}	Register clear time			2.4		2.0		3.0		4.0	ns
t_{PIA}	PIA delay	(7)		1.4		1.0		1.0		2.0	ns
t_{LPA}	Low-power adder	(8)		11.0		10.0		11.0		13.0	ns

Table 33. EPM7160S External Timing Parameters (Part 2 of 2) Note (1)												
Symbol	Parameter	Conditions	Speed Grade									
			-	-6 -7		-1	0	-15				
			Min	Max	Min	Max	Min	Max	Min	Max		
t _{ACNT}	Minimum array clock period			6.7		8.2		10.0		13.0	ns	
f _{ACNT}	Maximum internal array clock frequency	(4)	149.3		122.0		100.0		76.9		MHz	
f _{MAX}	Maximum clock frequency	(5)	166.7		166.7		125.0		100.0		MHz	

Table 3	4. EPM7160\$ Internal Tim	ing Parameters	(Part	1 of 2)	No	te (1)							
Symbol	Parameter	Conditions	onditions Speed Grade										
			-	-6		-7		-10		-15			
			Min	Max	Min	Max	Min	Max	Min	Max			
t _{IN}	Input pad and buffer delay			0.2		0.3		0.5		2.0	ns		
t _{IO}	I/O input pad and buffer delay			0.2		0.3		0.5		2.0	ns		
t _{FIN}	Fast input delay			2.6		3.2		1.0		2.0	ns		
t _{SEXP}	Shared expander delay			3.6		4.3		5.0		8.0	ns		
t _{PEXP}	Parallel expander delay			1.0		1.3		0.8		1.0	ns		
t_{LAD}	Logic array delay			2.8		3.4		5.0		6.0	ns		
t _{LAC}	Logic control array delay			2.8		3.4		5.0		6.0	ns		
t _{IOE}	Internal output enable delay			0.7		0.9		2.0		3.0	ns		
t _{OD1}	Output buffer and pad delay	C1 = 35 pF		0.4		0.5		1.5		4.0	ns		
t _{OD2}	Output buffer and pad delay	C1 = 35 pF (6)		0.9		1.0		2.0		5.0	ns		
t _{OD3}	Output buffer and pad delay	C1 = 35 pF		5.4		5.5		5.5		8.0	ns		
t_{ZX1}	Output buffer enable delay	C1 = 35 pF		4.0		4.0		5.0		6.0	ns		
t _{ZX2}	Output buffer enable delay	C1 = 35 pF (6)		4.5		4.5		5.5		7.0	ns		
t _{ZX3}	Output buffer enable delay	C1 = 35 pF		9.0		9.0		9.0		10.0	ns		
t _{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		5.0		6.0	ns		
t _{SU}	Register setup time		1.0		1.2		2.0		4.0		ns		
t _H	Register hold time		1.6		2.0		3.0		4.0		ns		
t _{FSU}	Register setup time of fast input		1.9		2.2		3.0		2.0		ns		
t _{FH}	Register hold time of fast input		0.6		0.8		0.5		1.0		ns		
t_{RD}	Register delay			1.3		1.6		2.0		1.0	ns		
t _{COMB}	Combinatorial delay			1.0		1.3		2.0		1.0	ns		
t _{IC}	Array clock delay			2.9		3.5		5.0		6.0	ns		
t _{EN}	Register enable time			2.8		3.4		5.0		6.0	ns		
t _{GLOB}	Global control delay			2.0		2.4		1.0		1.0	ns		
t _{PRE}	Register preset time			2.4		3.0		3.0		4.0	ns		

Table 34. EPM7160S Internal Timing Parameters (Part 2 of 2) Note (1)											
Symbol Parameter Conditions Speed Grade										Unit	
			-6		-	-7 -10		10	-15		
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{CLR}	Register clear time			2.4		3.0		3.0		4.0	ns
t _{PIA}	PIA delay	(7)		1.6		2.0		1.0		2.0	ns
t_{LPA}	Low-power adder	(8)		11.0		10.0		11.0		13.0	ns

Notes to tables:

- These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells running in the low-power mode.

Tables 35 and 36 show the EPM7192S AC operating conditions.

Table 35. EPM7192S External Timing Parameters (Part 1 of 2) Note (1)											
Symbol	Parameter	Conditions			Speed	Grade			Unit		
			-	-7		-10		15	1		
			Min	Max	Min	Max	Min	Max			
t _{PD1}	Input to non-registered output	C1 = 35 pF		7.5		10.0		15.0	ns		
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		7.5		10.0		15.0	ns		
t _{SU}	Global clock setup time		4.1		7.0		11.0		ns		
t _H	Global clock hold time		0.0		0.0		0.0		ns		
t _{FSU}	Global clock setup time of fast input		3.0		3.0		3.0		ns		
t _{FH}	Global clock hold time of fast input		0.0		0.5		0.0		ns		
t _{CO1}	Global clock to output delay	C1 = 35 pF		4.7		5.0		8.0	ns		
t _{CH}	Global clock high time		3.0		4.0		5.0		ns		
t _{CL}	Global clock low time		3.0		4.0		5.0		ns		
t _{ASU}	Array clock setup time		1.0		2.0		4.0		ns		

Table 3	Table 36. EPM7192S Internal Timing Parameters (Part 2 of 2) Note (1)											
Symbol	Parameter	Conditions			Unit							
				-7		-10		-15				
			Min	Max	Min	Max	Min	Max				
t _H	Register hold time		1.7		3.0		4.0		ns			
t _{FSU}	Register setup time of fast input		2.3		3.0		2.0		ns			
t _{FH}	Register hold time of fast input		0.7		0.5		1.0		ns			
t _{RD}	Register delay			1.4		2.0		1.0	ns			
t _{COMB}	Combinatorial delay			1.2		2.0		1.0	ns			
t_{IC}	Array clock delay			3.2		5.0		6.0	ns			
t _{EN}	Register enable time			3.1		5.0		6.0	ns			
t_{GLOB}	Global control delay			2.5		1.0		1.0	ns			
t _{PRE}	Register preset time			2.7		3.0		4.0	ns			
t _{CLR}	Register clear time			2.7		3.0		4.0	ns			
t _{PIA}	PIA delay	(7)		2.4		1.0		2.0	ns			
t_{LPA}	Low-power adder	(8)		10.0		11.0		13.0	ns			

Notes to tables:

- These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells running in the low-power mode.

Symbol	Parameter	Conditions			Speed	Grade			Unit
			-	7	-10		-15		
			Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.3		0.5		2.0	ns
t _{IO}	I/O input pad and buffer delay			0.3		0.5		2.0	ns
t _{FIN}	Fast input delay			3.4		1.0		2.0	ns
t _{SEXP}	Shared expander delay			3.9		5.0		8.0	ns
t_{PEXP}	Parallel expander delay			1.1		0.8		1.0	ns
t_{LAD}	Logic array delay			2.6		5.0		6.0	ns
t _{LAC}	Logic control array delay			2.6		5.0		6.0	ns
t _{IOE}	Internal output enable delay			0.8		2.0		3.0	ns
t _{OD1}	Output buffer and pad delay	C1 = 35 pF		0.5		1.5		4.0	ns
t _{OD2}	Output buffer and pad delay	C1 = 35 pF (6)		1.0		2.0		5.0	ns
t _{OD3}	Output buffer and pad delay	C1 = 35 pF		5.5		5.5		8.0	ns
t _{ZX1}	Output buffer enable delay	C1 = 35 pF		4.0		5.0		6.0	ns
t _{ZX2}	Output buffer enable delay	C1 = 35 pF (6)		4.5		5.5		7.0	ns
t _{ZX3}	Output buffer enable delay	C1 = 35 pF		9.0		9.0		10.0	ns
t_{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		5.0		6.0	ns
t _{SU}	Register setup time		1.1		2.0		4.0		ns
t _H	Register hold time		1.6		3.0		4.0		ns
t _{FSU}	Register setup time of fast input		2.4		3.0		2.0		ns
t _{FH}	Register hold time of fast input		0.6		0.5		1.0		ns
t_{RD}	Register delay			1.1		2.0		1.0	ns
t _{COMB}	Combinatorial delay			1.1		2.0		1.0	ns
t _{IC}	Array clock delay			2.9		5.0		6.0	ns
t_{EN}	Register enable time			2.6		5.0		6.0	ns
t _{GLOB}	Global control delay			2.8		1.0		1.0	ns
t _{PRE}	Register preset time			2.7		3.0		4.0	ns
t _{CLR}	Register clear time			2.7		3.0		4.0	ns
t _{PIA}	PIA delay	(7)		3.0		1.0		2.0	ns
t _{LPA}	Low-power adder	(8)		10.0	İ	11.0		13.0	ns

Notes to tables:

- These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode.

Power Consumption

Supply power (P) versus frequency (f_{MAX} in MHz) for MAX 7000 devices is calculated with the following equation:

$$P = P_{INT} + P_{IO} = I_{CCINT} \times V_{CC} + P_{IO}$$

The $P_{\rm IO}$ value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note 74 (Evaluating Power for Altera Devices)*.

The I_{CCINT} value, which depends on the switching frequency and the application logic, is calculated with the following equation:

$$I_{CCINT} =$$

$$A \times MC_{TON} + B \times (MC_{DEV} - MC_{TON}) + C \times MC_{USED} \times f_{MAX} \times tog_{USED}$$

The parameters in this equation are shown below:

 MC_{TON} = Number of macrocells with the Turbo Bit option turned on,

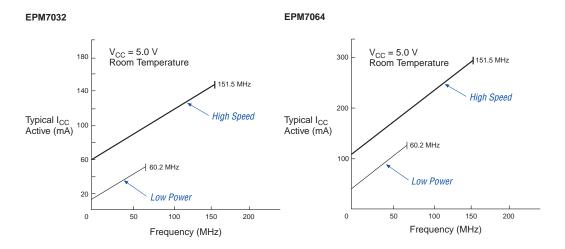
as reported in the MAX+PLUS II Report File (.rpt)

 MC_{DEV} = Number of macrocells in the device

MC_{USED} = Total number of macrocells in the design, as reported

in the MAX+PLUS II Report File (.rpt)

 f_{MAX} = Highest clock frequency to the device


tog_{LC} = Average ratio of logic cells toggling at each clock

(typically 0.125)

A, B, C = Constants, shown in Table 39

Figure 14 shows typical supply current versus frequency for MAX 7000 devices.

Figure 14. I_{CC} vs. Frequency for MAX 7000 Devices (Part 1 of 2)

EPM7096

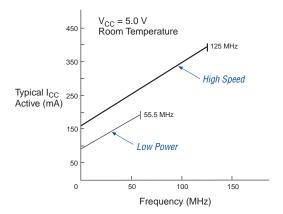
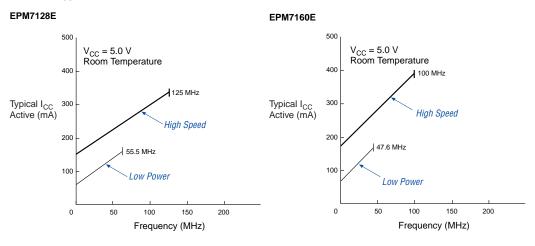
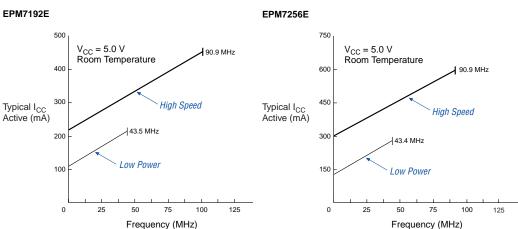
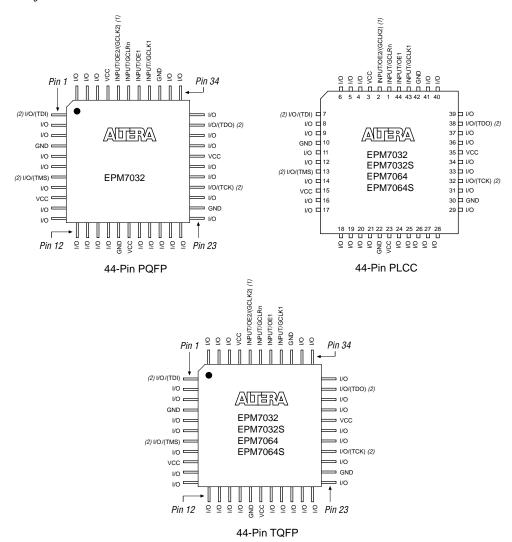




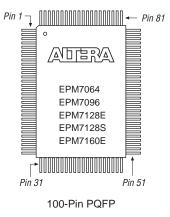
Figure 14. I_{CC} vs. Frequency for MAX 7000 Devices (Part 2 of 2)



Figures 16 through 22 show the package pin-out diagrams for MAX 7000 devices.

Figure 16. 44-Pin Package Pin-Out Diagram

Package outlines not drawn to scale.



Notes:

- (1) The pin functions shown in parenthesis are only available in MAX 7000E and MAX 7000S devices.
- (2) JTAG ports are available in MAX 7000S devices only.

Figure 19. 100-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

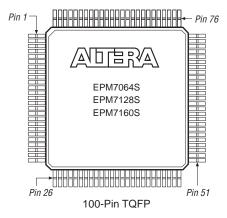
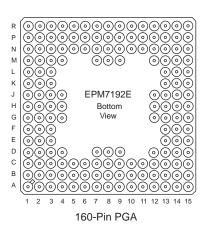
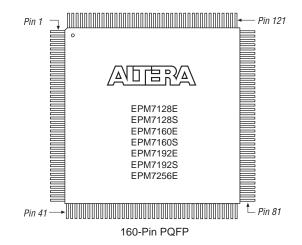




Figure 20. 160-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

