Welcome to **E-XFL.COM** **Understanding Embedded - CPLDs (Complex Programmable Logic Devices)** Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware. ### **Applications of Embedded - CPLDs** | Details | | |---------------------------------|---| | Product Status | Obsolete | | Programmable Type | In System Programmable | | Delay Time tpd(1) Max | 15 ns | | Voltage Supply - Internal | 4.75V ~ 5.25V | | Number of Logic Elements/Blocks | 8 | | Number of Macrocells | 128 | | Number of Gates | 2500 | | Number of I/O | 100 | | Operating Temperature | 0°C ~ 70°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 160-BQFP | | Supplier Device Package | 160-PQFP (28x28) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epm7128sqc160-15yy | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Figure 2. MAX 7000E & MAX 7000S Device Block Diagram Figure 2 shows the architecture of MAX 7000E and MAX 7000S devices. **Logic Array Blocks** The MAX 7000 device architecture is based on the linking of high-performance, flexible, logic array modules called logic array blocks (LABs). LABs consist of 16-macrocell arrays, as shown in Figures 1 and 2. Multiple LABs are linked together via the programmable interconnect array (PIA), a global bus that is fed by all dedicated inputs, I/O pins, and macrocells. #### Programmable Interconnect Array Logic is routed between LABs via the programmable interconnect array (PIA). This global bus is a programmable path that connects any signal source to any destination on the device. All MAX 7000 dedicated inputs, I/O pins, and macrocell outputs feed the PIA, which makes the signals available throughout the entire device. Only the signals required by each LAB are actually routed from the PIA into the LAB. Figure 7 shows how the PIA signals are routed into the LAB. An EEPROM cell controls one input to a 2-input AND gate, which selects a PIA signal to drive into the LAB. Figure 7. PIA Routing While the routing delays of channel-based routing schemes in masked or FPGAs are cumulative, variable, and path-dependent, the MAX 7000 PIA has a fixed delay. The PIA thus eliminates skew between signals and makes timing performance easy to predict. #### I/O Control Blocks The I/O control block allows each I/O pin to be individually configured for input, output, or bidirectional operation. All I/O pins have a tri-state buffer that is individually controlled by one of the global output enable signals or directly connected to ground or V_{CC}. Figure 8 shows the I/O control block for the MAX 7000 family. The I/O control block of EPM7032, EPM7064, and EPM7096 devices has two global output enable signals that are driven by two dedicated active-low output enable pins (OE1 and OE2). The I/O control block of MAX 7000E and MAX 7000S devices has six global output enable signals that are driven by the true or complement of two output enable signals, a subset of the I/O pins, or a subset of the I/O macrocells. When the tri-state buffer control is connected to ground, the output is tri-stated (high impedance) and the I/O pin can be used as a dedicated input. When the tri-state buffer control is connected to V_{CC} , the output is enabled. The MAX 7000 architecture provides dual I/O feedback, in which macrocell and pin feedbacks are independent. When an I/O pin is configured as an input, the associated macrocell can be used for buried logic. ## In-System Programmability (ISP) MAX 7000S devices are in-system programmable via an industry-standard 4-pin Joint Test Action Group (JTAG) interface (IEEE Std. 1149.1-1990). ISP allows quick, efficient iterations during design development and debugging cycles. The MAX 7000S architecture internally generates the high programming voltage required to program EEPROM cells, allowing in-system programming with only a single 5.0 V power supply. During in-system programming, the I/O pins are tri-stated and pulled-up to eliminate board conflicts. The pull-up value is nominally 50 k%. ISP simplifies the manufacturing flow by allowing devices to be mounted on a printed circuit board with standard in-circuit test equipment before they are programmed. MAX 7000S devices can be programmed by downloading the information via in-circuit testers (ICT), embedded processors, or the Altera MasterBlaster, ByteBlasterMV, ByteBlaster, BitBlaster download cables. (The ByteBlaster cable is obsolete and is replaced by the ByteBlasterMV cable, which can program and configure 2.5-V, 3.3-V, and 5.0-V devices.) Programming the devices after they are placed on the board eliminates lead damage on high-pin-count packages (e.g., QFP packages) due to device handling and allows devices to be reprogrammed after a system has already shipped to the field. For example, product upgrades can be performed in the field via software or modem. In-system programming can be accomplished with either an adaptive or constant algorithm. An adaptive algorithm reads information from the unit and adapts subsequent programming steps to achieve the fastest possible programming time for that unit. Because some in-circuit testers cannot support an adaptive algorithm, Altera offers devices tested with a constant algorithm. Devices tested to the constant algorithm have an "F" suffix in the ordering code. The JamTM Standard Test and Programming Language (STAPL) can be used to program MAX 7000S devices with in-circuit testers, PCs, or embedded processor. The programming times described in Tables 6 through 8 are associated with the worst-case method using the enhanced ISP algorithm. | Table 6. MAX 7000S t _{PU} | able 6. MAX 7000S t _{PULSE} & Cycle _{TCK} Values | | | | | | | | | | |------------------------------------|--|-----------------------|-------------------------|-----------------------|--|--|--|--|--|--| | Device | Progra | ımming | Stand-Alone | Verification | | | | | | | | | t _{PPULSE} (s) | Cycle _{PTCK} | t _{VPULSE} (s) | Cycle _{VTCK} | | | | | | | | EPM7032S | 4.02 | 342,000 | 0.03 | 200,000 | | | | | | | | EPM7064S | 4.50 | 504,000 | 0.03 | 308,000 | | | | | | | | EPM7128S | 5.11 | 832,000 | 0.03 | 528,000 | | | | | | | | EPM7160S | 5.35 | 1,001,000 | 0.03 | 640,000 | | | | | | | | EPM7192S | 5.71 | 1,192,000 | 0.03 | 764,000 | | | | | | | | EPM7256S | 6.43 | 1,603,000 | 0.03 | 1,024,000 | | | | | | | Tables 7 and 8 show the in-system programming and stand alone verification times for several common test clock frequencies. | Table 7. MAX 7000S In-System Programming Times for Different Test Clock Frequencies | | | | | | | | | | |---|--------|-------|-------|-------|---------|---------|---------|--------|-------| | Device | | | | f | TCK | | | | Units | | | 10 MHz | 5 MHz | 2 MHz | 1 MHz | 500 kHz | 200 kHz | 100 kHz | 50 kHz | | | EPM7032S | 4.06 | 4.09 | 4.19 | 4.36 | 4.71 | 5.73 | 7.44 | 10.86 | s | | EPM7064S | 4.55 | 4.60 | 4.76 | 5.01 | 5.51 | 7.02 | 9.54 | 14.58 | S | | EPM7128S | 5.19 | 5.27 | 5.52 | 5.94 | 6.77 | 9.27 | 13.43 | 21.75 | S | | EPM7160S | 5.45 | 5.55 | 5.85 | 6.35 | 7.35 | 10.35 | 15.36 | 25.37 | S | | EPM7192S | 5.83 | 5.95 | 6.30 | 6.90 | 8.09 | 11.67 | 17.63 | 29.55 | S | | EPM7256S | 6.59 | 6.75 | 7.23 | 8.03 | 9.64 | 14.45 | 22.46 | 38.49 | S | | Table 8. MAX | Table 8. MAX 7000S Stand-Alone Verification Times for Different Test Clock Frequencies | | | | | | | | | | | |--------------|--|------------------|-------|-------|---------|---------|---------|--------|---|--|--| | Device | | f _{TCK} | | | | | | | | | | | | 10 MHz | 5 MHz | 2 MHz | 1 MHz | 500 kHz | 200 kHz | 100 kHz | 50 kHz | | | | | EPM7032S | 0.05 | 0.07 | 0.13 | 0.23 | 0.43 | 1.03 | 2.03 | 4.03 | s | | | | EPM7064S | 0.06 | 0.09 | 0.18 | 0.34 | 0.64 | 1.57 | 3.11 | 6.19 | S | | | | EPM7128S | 0.08 | 0.14 | 0.29 | 0.56 | 1.09 | 2.67 | 5.31 | 10.59 | S | | | | EPM7160S | 0.09 | 0.16 | 0.35 | 0.67 | 1.31 | 3.23 | 6.43 | 12.83 | S | | | | EPM7192S | 0.11 | 0.18 | 0.41 | 0.79 | 1.56 | 3.85 | 7.67 | 15.31 | S | | | | EPM7256S | 0.13 | 0.24 | 0.54 | 1.06 | 2.08 | 5.15 | 10.27 | 20.51 | S | | | By using an external 5.0-V pull-up resistor, output pins on MAX 7000S devices can be set to meet 5.0-V CMOS input voltages. When $V_{\rm CCIO}$ is 3.3 V, setting the open drain option will turn off the output pull-up transistor, allowing the external pull-up resistor to pull the output high enough to meet 5.0-V CMOS input voltages. When $V_{\rm CCIO}$ is 5.0 V, setting the output drain option is not necessary because the pull-up transistor will already turn off when the pin exceeds approximately 3.8 V, allowing the external pull-up resistor to pull the output high enough to meet 5.0-V CMOS input voltages. #### Slew-Rate Control The output buffer for each MAX 7000E and MAX 7000S I/O pin has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A faster slew rate provides high-speed transitions for high-performance systems. However, these fast transitions may introduce noise transients into the system. A slow slew rate reduces system noise, but adds a nominal delay of 4 to 5 ns. In MAX 7000E devices, when the Turbo Bit is turned off, the slew rate is set for low noise performance. For MAX 7000S devices, each I/O pin has an individual EEPROM bit that controls the slew rate, allowing designers to specify the slew rate on a pin-by-pin basis. ## Programming with External Hardware MAX 7000 devices can be programmed on Windows-based PCs with the Altera Logic Programmer card, the Master Programming Unit (MPU), and the appropriate device adapter. The MPU performs a continuity check to ensure adequate electrical contact between the adapter and the device. For more information, see the *Altera Programming Hardware Data Sheet*. The Altera development system can use text- or waveform-format test vectors created with the Text Editor or Waveform Editor to test the programmed device. For added design verification, designers can perform functional testing to compare the functional behavior of a MAX 7000 device with the results of simulation. Moreover, Data I/O, BP Microsystems, and other programming hardware manufacturers also provide programming support for Altera devices. For more information, see the *Programming Hardware Manufacturers*. # Operating Conditions Tables 13 through 18 provide information about absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for 5.0-V MAX 7000 devices. | Table 1 | 3. MAX 7000 5.0-V Device Abso | plute Maximum Ratings Note (1) | | | | |------------------|-------------------------------|------------------------------------|------|-----|------| | Symbol | Parameter | Conditions | Min | Max | Unit | | V _{CC} | Supply voltage | With respect to ground (2) | -2.0 | 7.0 | V | | VI | DC input voltage | | -2.0 | 7.0 | V | | I _{OUT} | DC output current, per pin | | -25 | 25 | mA | | T _{STG} | Storage temperature | No bias | -65 | 150 | ° C | | T _{AMB} | Ambient temperature | Under bias | -65 | 135 | ° C | | TJ | Junction temperature | Ceramic packages, under bias | | 150 | °C | | | | PQFP and RQFP packages, under bias | | 135 | °C | | Symbol | Parameter | Conditions | Min | Max | Unit | |--------------------|---|--------------------|----------------|--------------------------|------| | V _{CCINT} | Supply voltage for internal logic and input buffers | (3), (4), (5) | 4.75
(4.50) | 5.25
(5.50) | V | | V _{CCIO} | Supply voltage for output drivers, 5.0-V operation | (3), (4) | 4.75
(4.50) | 5.25
(5.50) | V | | | Supply voltage for output drivers, 3.3-V operation | (3), (4), (6) | 3.00
(3.00) | 3.60
(3.60) | V | | V _{CCISP} | Supply voltage during ISP | (7) | 4.75 | 5.25 | V | | V _I | Input voltage | | -0.5 (8) | V _{CCINT} + 0.5 | V | | Vo | Output voltage | | 0 | V _{CCIO} | V | | T _A | Ambient temperature | For commercial use | 0 | 70 | °C | | | | For industrial use | -40 | 85 | °C | | TJ | Junction temperature | For commercial use | 0 | 90 | °C | | | | For industrial use | -40 | 105 | ° C | | t _R | Input rise time | | | 40 | ns | | t _F | Input fall time | | | 40 | ns | #### Notes to tables: - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) Minimum DC input voltage on I/O pins is –0.5 V and on 4 dedicated input pins is –0.3 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 7.0 V for input currents less than 100 mA and periods shorter than 20 ns. - (3) Numbers in parentheses are for industrial-temperature-range devices. - (4) V_{CC} must rise monotonically. - (5) The POR time for all 7000S devices does not exceed 300 μs. The sufficient V_{CCINT} voltage level for POR is 4.5 V. The device is fully initialized within the POR time after V_{CCINT} reaches the sufficient POR voltage level. - (6) 3.3-V I/O operation is not available for 44-pin packages. - (7) The V_{CCISP} parameter applies only to MAX 7000S devices. - (8) During in-system programming, the minimum DC input voltage is –0.3 V. - (9) These values are specified under the MAX 7000 recommended operating conditions in Table 14 on page 26. - (10) The parameter is measured with 50% of the outputs each sourcing the specified current. The I_{OH} parameter refers to high-level TTL or CMOS output current. - (11) The parameter is measured with 50% of the outputs each sinking the specified current. The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. - (12) When the JTAG interface is enabled in MAX 7000S devices, the input leakage current on the JTAG pins is typically -60 uA. - (13) Capacitance is measured at 25° C and is sample-tested only. The OE1 pin has a maximum capacitance of 20 pF. Figure 11 shows the typical output drive characteristics of MAX 7000 devices. Figure 11. Output Drive Characteristics of 5.0-V MAX 7000 Devices ### **Timing Model** MAX 7000 device timing can be analyzed with the Altera software, with a variety of popular industry-standard EDA simulators and timing analyzers, or with the timing model shown in Figure 12. MAX 7000 devices have fixed internal delays that enable the designer to determine the worst-case timing of any design. The Altera software provides timing simulation, point-to-point delay prediction, and detailed timing analysis for a device-wide performance evaluation. Tables 19 through 26 show the MAX 7000 and MAX 7000E AC operating conditions. | Symbol | Parameter | Conditions | -6 Speed Grade | | -7 Spee | d Grade | Unit | |-------------------|--|----------------|----------------|-----|---------|---------|------| | | | | Min | Max | Min | Max | | | t _{PD1} | Input to non-registered output | C1 = 35 pF | | 6.0 | | 7.5 | ns | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF | | 6.0 | | 7.5 | ns | | t _{SU} | Global clock setup time | | 5.0 | | 6.0 | | ns | | t _H | Global clock hold time | | 0.0 | | 0.0 | | ns | | t _{FSU} | Global clock setup time of fast input | (2) | 2.5 | | 3.0 | | ns | | t _{FH} | Global clock hold time of fast input | (2) | 0.5 | | 0.5 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 4.0 | | 4.5 | ns | | t _{CH} | Global clock high time | | 2.5 | | 3.0 | | ns | | t _{CL} | Global clock low time | | 2.5 | | 3.0 | | ns | | t _{ASU} | Array clock setup time | | 2.5 | | 3.0 | | ns | | t _{AH} | Array clock hold time | | 2.0 | | 2.0 | | ns | | t _{ACO1} | Array clock to output delay | C1 = 35 pF | | 6.5 | | 7.5 | ns | | t _{ACH} | Array clock high time | | 3.0 | | 3.0 | | ns | | t _{ACL} | Array clock low time | | 3.0 | | 3.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | (3) | 3.0 | | 3.0 | | ns | | t _{ODH} | Output data hold time after clock | C1 = 35 pF (4) | 1.0 | | 1.0 | | ns | | t _{CNT} | Minimum global clock period | | | 6.6 | | 8.0 | ns | | f _{CNT} | Maximum internal global clock frequency | (5) | 151.5 | | 125.0 | | MHz | | t _{ACNT} | Minimum array clock period | | | 6.6 | | 8.0 | ns | | f _{ACNT} | Maximum internal array clock frequency | (5) | 151.5 | | 125.0 | | MHz | | f _{MAX} | Maximum clock frequency | (6) | 200 | | 166.7 | | MHz | | Symbol | Parameter | Conditions | | Speed | Grade | | Unit | |-------------------|--|----------------|---------|-----------|-------|-----------------------|------| | | | | MAX 700 | OE (-10P) | | 00 (-10)
DOE (-10) | | | | | | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.5 | | 1.0 | ns | | t _{IO} | I/O input pad and buffer delay | | | 0.5 | | 1.0 | ns | | t _{FIN} | Fast input delay | (2) | | 1.0 | | 1.0 | ns | | t _{SEXP} | Shared expander delay | | | 5.0 | | 5.0 | ns | | t _{PEXP} | Parallel expander delay | | | 0.8 | | 0.8 | ns | | t_{LAD} | Logic array delay | | | 5.0 | | 5.0 | ns | | t _{LAC} | Logic control array delay | | | 5.0 | | 5.0 | ns | | t _{IOE} | Internal output enable delay | (2) | | 2.0 | | 2.0 | ns | | t _{OD1} | Output buffer and pad delay
Slow slew rate = off
V _{CCIO} = 5.0 V | C1 = 35 pF | | 1.5 | | 2.0 | ns | | t _{OD2} | Output buffer and pad delay
Slow slew rate = off
V _{CCIO} = 3.3 V | C1 = 35 pF (7) | | 2.0 | | 2.5 | ns | | t _{OD3} | Output buffer and pad delay
Slow slew rate = on
V _{CCIO} = 5.0 V or 3.3 V | C1 = 35 pF (2) | | 5.5 | | 6.0 | ns | | t _{ZX1} | Output buffer enable delay
Slow slew rate = off
V _{CCIO} = 5.0 V | C1 = 35 pF | | 5.0 | | 5.0 | ns | | t _{ZX2} | Output buffer enable delay
Slow slew rate = off
V _{CCIO} = 3.3 V | C1 = 35 pF (7) | | 5.5 | | 5.5 | ns | | t _{ZX3} | Output buffer enable delay
Slow slew rate = on
V _{CCIO} = 5.0 V or 3.3 V | C1 = 35 pF (2) | | 9.0 | | 9.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 5.0 | | 5.0 | ns | | t_{SU} | Register setup time | | 2.0 | | 3.0 | | ns | | t_H | Register hold time | | 3.0 | | 3.0 | | ns | | t _{FSU} | Register setup time of fast input | (2) | 3.0 | | 3.0 | | ns | | t_{FH} | Register hold time of fast input | (2) | 0.5 | | 0.5 | | ns | | t_{RD} | Register delay | | | 2.0 | | 1.0 | ns | | t _{COMB} | Combinatorial delay | | | 2.0 | | 1.0 | ns | | t _{IC} | Array clock delay | | | 5.0 | | 5.0 | ns | | t_{EN} | Register enable time | | | 5.0 | | 5.0 | ns | | t _{GLOB} | Global control delay | | | 1.0 | | 1.0 | ns | | t _{PRE} | Register preset time | | | 3.0 | | 3.0 | ns | | t _{CLR} | Register clear time | | | 3.0 | | 3.0 | ns | | t_{PIA} | PIA delay | | | 1.0 | | 1.0 | ns | | t _{LPA} | Low-power adder | (8) | | 11.0 | | 11.0 | ns | | Table 2 | 23. MAX 7000 & MAX 7000E Ext | ernal Timing Param | eters Note | e (1) | | | | | |-------------------|--|--------------------|-------------------|-----------|-------|-----------------------|------|--| | Symbol | Parameter | Conditions | | Speed | Grade | | Unit | | | | | | MAX 700 | 0E (-12P) | | 00 (-12)
DOE (-12) | | | | | | | Min | Max | Min | Max | | | | t _{PD1} | Input to non-registered output | C1 = 35 pF | | 12.0 | | 12.0 | ns | | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF | | 12.0 | | 12.0 | ns | | | t _{SU} | Global clock setup time | | 7.0 | | 10.0 | | ns | | | t _H | Global clock hold time | | 0.0 | | 0.0 | | ns | | | t _{FSU} | Global clock setup time of fast input | (2) | 3.0 | | 3.0 | | ns | | | t _{FH} | Global clock hold time of fast input | (2) | 0.0 | | 0.0 | | ns | | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 6.0 | | 6.0 | ns | | | t _{CH} | Global clock high time | | 4.0 | | 4.0 | | ns | | | t _{CL} | Global clock low time | | 4.0 | | 4.0 | | ns | | | t _{ASU} | Array clock setup time | | 3.0 | | 4.0 | | ns | | | t _{AH} | Array clock hold time | | 4.0 | | 4.0 | | ns | | | t _{ACO1} | Array clock to output delay | C1 = 35 pF | | 12.0 | | 12.0 | ns | | | t _{ACH} | Array clock high time | | 5.0 | | 5.0 | | ns | | | t _{ACL} | Array clock low time | | 5.0 | | 5.0 | | ns | | | t _{CPPW} | Minimum pulse width for clear and preset | (3) | 5.0 | | 5.0 | | ns | | | t _{ODH} | Output data hold time after clock | C1 = 35 pF (4) | 1.0 | | 1.0 | | ns | | | t _{CNT} | Minimum global clock period | | | 11.0 | | 11.0 | ns | | | f _{CNT} | Maximum internal global clock frequency | (5) | 90.9 | | 90.9 | | MHz | | | t _{ACNT} | Minimum array clock period | | | 11.0 | | 11.0 | ns | | | f _{ACNT} | Maximum internal array clock frequency | (5) | 90.9 | | 90.9 | | MHz | | | f _{MAX} | Maximum clock frequency | (6) | 125.0 | | 125.0 | | MHz | | | Table 2 | 5. MAX 7000 & MAX 7000E | External Timing I | Paramete | ers / | lote (1) | | | | | |-------------------|--|-------------------|----------|-------|----------|-------|------|------|------| | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | | | | | - | 15 | -1 | 5T | -2 | 20 | | | | | | Min | Max | Min | Max | Min | Max | | | t _{PD1} | Input to non-registered output | C1 = 35 pF | | 15.0 | | 15.0 | | 20.0 | ns | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF | | 15.0 | | 15.0 | | 20.0 | ns | | t _{SU} | Global clock setup time | | 11.0 | | 11.0 | | 12.0 | | ns | | t _H | Global clock hold time | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{FSU} | Global clock setup time of fast input | (2) | 3.0 | | - | | 5.0 | | ns | | t _{FH} | Global clock hold time of fast input | (2) | 0.0 | | - | | 0.0 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 8.0 | | 8.0 | | 12.0 | ns | | t _{CH} | Global clock high time | | 5.0 | | 6.0 | | 6.0 | | ns | | t _{CL} | Global clock low time | | 5.0 | | 6.0 | | 6.0 | | ns | | t _{ASU} | Array clock setup time | | 4.0 | | 4.0 | | 5.0 | | ns | | t _{AH} | Array clock hold time | | 4.0 | | 4.0 | | 5.0 | | ns | | t _{ACO1} | Array clock to output delay | C1 = 35 pF | | 15.0 | | 15.0 | | 20.0 | ns | | t _{ACH} | Array clock high time | | 6.0 | | 6.5 | | 8.0 | | ns | | t _{ACL} | Array clock low time | | 6.0 | | 6.5 | | 8.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | (3) | 6.0 | | 6.5 | | 8.0 | | ns | | t _{ODH} | Output data hold time after clock | C1 = 35 pF (4) | 1.0 | | 1.0 | | 1.0 | | ns | | t _{CNT} | Minimum global clock period | | | 13.0 | | 13.0 | | 16.0 | ns | | f _{CNT} | Maximum internal global clock frequency | (5) | 76.9 | | 76.9 | | 62.5 | | MHz | | t _{ACNT} | Minimum array clock period | | | 13.0 | | 13.0 | | 16.0 | ns | | f _{ACNT} | Maximum internal array clock frequency | (5) | 76.9 | | 76.9 | | 62.5 | | MHz | | f _{MAX} | Maximum clock frequency | (6) | 100 | | 83.3 | _ | 83.3 | _ | MHz | | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | |-------------------|--|----------------|-----|------|-------|-------|-----|------|------| | | | | - | 15 | -1 | 5T | -2 | 20 | | | | | | Min | Max | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 2.0 | | 2.0 | | 3.0 | ns | | t _{IO} | I/O input pad and buffer delay | | | 2.0 | | 2.0 | | 3.0 | ns | | t _{FIN} | Fast input delay | (2) | | 2.0 | | _ | | 4.0 | ns | | t _{SEXP} | Shared expander delay | | | 8.0 | | 10.0 | | 9.0 | ns | | t _{PEXP} | Parallel expander delay | | | 1.0 | | 1.0 | | 2.0 | ns | | t _{LAD} | Logic array delay | | | 6.0 | | 6.0 | | 8.0 | ns | | t _{LAC} | Logic control array delay | | | 6.0 | | 6.0 | | 8.0 | ns | | t _{IOE} | Internal output enable delay | (2) | | 3.0 | | _ | | 4.0 | ns | | t _{OD1} | Output buffer and pad delay
Slow slew rate = off
V _{CCIO} = 5.0 V | C1 = 35 pF | | 4.0 | | 4.0 | | 5.0 | ns | | t _{OD2} | Output buffer and pad delay
Slow slew rate = off
V _{CCIO} = 3.3 V | C1 = 35 pF (7) | | 5.0 | | - | | 6.0 | ns | | t _{OD3} | Output buffer and pad delay
Slow slew rate = on
V _{CCIO} = 5.0 V or 3.3 V | C1 = 35 pF (2) | | 8.0 | | - | | 9.0 | ns | | t _{ZX1} | Output buffer enable delay
Slow slew rate = off
V _{CCIO} = 5.0 V | C1 = 35 pF | | 6.0 | | 6.0 | | 10.0 | ns | | t _{ZX2} | Output buffer enable delay
Slow slew rate = off
V _{CCIO} = 3.3 V | C1 = 35 pF (7) | | 7.0 | | - | | 11.0 | ns | | t _{ZX3} | Output buffer enable delay
Slow slew rate = on
V _{CCIO} = 5.0 V or 3.3 V | C1 = 35 pF (2) | | 10.0 | | - | | 14.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 6.0 | | 6.0 | | 10.0 | ns | | t _{SU} | Register setup time | | 4.0 | | 4.0 | | 4.0 | | ns | | t _H | Register hold time | | 4.0 | | 4.0 | | 5.0 | | ns | | t _{FSU} | Register setup time of fast input | (2) | 2.0 | | - | | 4.0 | | ns | | t _{FH} | Register hold time of fast input | (2) | 2.0 | | - | | 3.0 | | ns | | t _{RD} | Register delay | | | 1.0 | | 1.0 | | 1.0 | ns | | t _{COMB} | Combinatorial delay | | | 1.0 | | 1.0 | | 1.0 | ns | | t _{IC} | Array clock delay | | | 6.0 | | 6.0 | | 8.0 | ns | | t _{EN} | Register enable time | | | 6.0 | | 6.0 | | 8.0 | ns | | t _{GLOB} | Global control delay | | | 1.0 | | 1.0 | | 3.0 | ns | | t _{PRE} | Register preset time | | | 4.0 | | 4.0 | | 4.0 | ns | | t _{CLR} | Register clear time | | | 4.0 | | 4.0 | | 4.0 | ns | | t _{PIA} | PIA delay | | | 2.0 | | 2.0 | | 3.0 | ns | | t _{LPA} | Low-power adder | (8) | | 13.0 | | 15.0 | | 15.0 | ns | | Table 28. EPM7032S Internal Timing Parameters Note (1) | | | | | | | | | | | | |--|-----------------|------------|-------|------|-----|-------|-------|------|-----|------|------| | Symbol | Parameter | Conditions | | | | Speed | Grade | | | | Unit | | | | | -5 -6 | | | - | -7 | | | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{PIA} | PIA delay | (7) | | 1.1 | | 1.1 | | 1.4 | | 1.0 | ns | | t_{LPA} | Low-power adder | (8) | | 12.0 | | 10.0 | | 10.0 | | 11.0 | ns | #### Notes to tables: - These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms. - (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path. - (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking. - (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (5) The f_{MAX} values represent the highest frequency for pipelined data. - (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use. - (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value. - (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode. Tables 29 and 30 show the EPM7064S AC operating conditions. | Table 29. EPM7064S External Timing Parameters (Part 1 of 2) Note (1) | | | | | | | | | | | | |--|---------------------------------------|------------|-------------|-----|-----|-----|-----|-----|-----|------|------| | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | Unit | | | | | -5 | | -6 | | -7 | | -10 | | • | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{PD1} | Input to non-registered output | C1 = 35 pF | | 5.0 | | 6.0 | | 7.5 | | 10.0 | ns | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF | | 5.0 | | 6.0 | | 7.5 | | 10.0 | ns | | t _{SU} | Global clock setup time | | 2.9 | | 3.6 | | 6.0 | | 7.0 | | ns | | t _H | Global clock hold time | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{FSU} | Global clock setup time of fast input | | 2.5 | | 2.5 | | 3.0 | | 3.0 | | ns | | t _{FH} | Global clock hold time of fast input | | 0.0 | | 0.0 | | 0.5 | | 0.5 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 3.2 | | 4.0 | | 4.5 | | 5.0 | ns | | t _{CH} | Global clock high time | | 2.0 | | 2.5 | | 3.0 | | 4.0 | | ns | | t _{CL} | Global clock low time | | 2.0 | | 2.5 | | 3.0 | | 4.0 | | ns | | t _{ASU} | Array clock setup time | | 0.7 | | 0.9 | | 3.0 | | 2.0 | | ns | | t _{AH} | Array clock hold time | | 1.8 | | 2.1 | | 2.0 | | 3.0 | | ns | | Table 3 | Table 36. EPM7192S Internal Timing Parameters (Part 2 of 2)Note (1) | | | | | | | | | | |-------------------|---|------------|-----|-------------|-----|------|-----|------|----|--| | Symbol | Parameter | Conditions | | Speed Grade | | | | | | | | | | | -7 | | -10 | | -15 | | | | | | | | Min | Max | Min | Max | Min | Max | | | | t _H | Register hold time | | 1.7 | | 3.0 | | 4.0 | | ns | | | t _{FSU} | Register setup time of fast input | | 2.3 | | 3.0 | | 2.0 | | ns | | | t _{FH} | Register hold time of fast input | | 0.7 | | 0.5 | | 1.0 | | ns | | | t _{RD} | Register delay | | | 1.4 | | 2.0 | | 1.0 | ns | | | t _{COMB} | Combinatorial delay | | | 1.2 | | 2.0 | | 1.0 | ns | | | t_{IC} | Array clock delay | | | 3.2 | | 5.0 | | 6.0 | ns | | | t _{EN} | Register enable time | | | 3.1 | | 5.0 | | 6.0 | ns | | | t_{GLOB} | Global control delay | | | 2.5 | | 1.0 | | 1.0 | ns | | | t _{PRE} | Register preset time | | | 2.7 | | 3.0 | | 4.0 | ns | | | t _{CLR} | Register clear time | | | 2.7 | | 3.0 | | 4.0 | ns | | | t _{PIA} | PIA delay | (7) | | 2.4 | | 1.0 | | 2.0 | ns | | | t_{LPA} | Low-power adder | (8) | | 10.0 | | 11.0 | | 13.0 | ns | | #### Notes to tables: - These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms. - (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path. - (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking. - (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (5) The f_{MAX} values represent the highest frequency for pipelined data. - (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use. - (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value. - (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode. Tables 37 and 38 show the EPM7256S AC operating conditions. | Symbol | Parameter | Conditions | Speed Grade | | | | | | | |-------------------|---|--------------------------|-------------|-----|---------|------|---------|------|----------| | | | | -7 -10 | | | | -15 | | Unit | | | | | Min Max | | Min Max | | Min Max | | - | | 4 | Innut to non variatored output | C4 25 pF | IVIIII | 7.5 | IVIIII | 10.0 | IVIIII | 15.0 | | | t _{PD1} | Input to non-registered output I/O input to non-registered output | C1 = 35 pF
C1 = 35 pF | | 7.5 | | 10.0 | | 15.0 | ns
ns | | t _{SU} | Global clock setup time | | 3.9 | | 7.0 | | 11.0 | | ns | | t _H | Global clock hold time | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{FSU} | Global clock setup time of fast input | | 3.0 | | 3.0 | | 3.0 | | ns | | t _{FH} | Global clock hold time of fast input | | 0.0 | | 0.5 | | 0.0 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 4.7 | | 5.0 | | 8.0 | ns | | t _{CH} | Global clock high time | | 3.0 | | 4.0 | | 5.0 | | ns | | t _{CL} | Global clock low time | | 3.0 | | 4.0 | | 5.0 | | ns | | t _{ASU} | Array clock setup time | | 0.8 | | 2.0 | | 4.0 | | ns | | t _{AH} | Array clock hold time | | 1.9 | | 3.0 | | 4.0 | | ns | | t _{ACO1} | Array clock to output delay | C1 = 35 pF | | 7.8 | | 10.0 | | 15.0 | ns | | t _{ACH} | Array clock high time | | 3.0 | | 4.0 | | 6.0 | | ns | | t _{ACL} | Array clock low time | | 3.0 | | 4.0 | | 6.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | (2) | 3.0 | | 4.0 | | 6.0 | | ns | | t _{ODH} | Output data hold time after clock | C1 = 35 pF (3) | 1.0 | | 1.0 | | 1.0 | | ns | | t _{CNT} | Minimum global clock period | | | 7.8 | | 10.0 | | 13.0 | ns | | f _{CNT} | Maximum internal global clock frequency | (4) | 128.2 | | 100.0 | | 76.9 | | MHz | | t _{ACNT} | Minimum array clock period | | | 7.8 | | 10.0 | | 13.0 | ns | | f _{ACNT} | Maximum internal array clock frequency | (4) | 128.2 | | 100.0 | | 76.9 | | MHz | | f _{MAX} | Maximum clock frequency | (5) | 166.7 | | 125.0 | | 100.0 | | MHz | | Symbol | Parameter | Conditions | Speed Grade | | | | | | | |-------------------|-----------------------------------|----------------|-------------|------|-----|------|-----|------|----| | | | | -7 | | -10 | | -15 | | | | | | | Min | Max | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.3 | | 0.5 | | 2.0 | ns | | t _{IO} | I/O input pad and buffer delay | | | 0.3 | | 0.5 | | 2.0 | ns | | t _{FIN} | Fast input delay | | | 3.4 | | 1.0 | | 2.0 | ns | | t _{SEXP} | Shared expander delay | | | 3.9 | | 5.0 | | 8.0 | ns | | t_{PEXP} | Parallel expander delay | | | 1.1 | | 0.8 | | 1.0 | ns | | t_{LAD} | Logic array delay | | | 2.6 | | 5.0 | | 6.0 | ns | | t _{LAC} | Logic control array delay | | | 2.6 | | 5.0 | | 6.0 | ns | | t _{IOE} | Internal output enable delay | | | 0.8 | | 2.0 | | 3.0 | ns | | t _{OD1} | Output buffer and pad delay | C1 = 35 pF | | 0.5 | | 1.5 | | 4.0 | ns | | t _{OD2} | Output buffer and pad delay | C1 = 35 pF (6) | | 1.0 | | 2.0 | | 5.0 | ns | | t _{OD3} | Output buffer and pad delay | C1 = 35 pF | | 5.5 | | 5.5 | | 8.0 | ns | | t _{ZX1} | Output buffer enable delay | C1 = 35 pF | | 4.0 | | 5.0 | | 6.0 | ns | | t _{ZX2} | Output buffer enable delay | C1 = 35 pF (6) | | 4.5 | | 5.5 | | 7.0 | ns | | t _{ZX3} | Output buffer enable delay | C1 = 35 pF | | 9.0 | | 9.0 | | 10.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 5.0 | | 6.0 | ns | | t _{SU} | Register setup time | | 1.1 | | 2.0 | | 4.0 | | ns | | t _H | Register hold time | | 1.6 | | 3.0 | | 4.0 | | ns | | t _{FSU} | Register setup time of fast input | | 2.4 | | 3.0 | | 2.0 | | ns | | t _{FH} | Register hold time of fast input | | 0.6 | | 0.5 | | 1.0 | | ns | | t_{RD} | Register delay | | | 1.1 | | 2.0 | | 1.0 | ns | | t _{COMB} | Combinatorial delay | | | 1.1 | | 2.0 | | 1.0 | ns | | t _{IC} | Array clock delay | | | 2.9 | | 5.0 | | 6.0 | ns | | t_{EN} | Register enable time | | | 2.6 | | 5.0 | | 6.0 | ns | | t _{GLOB} | Global control delay | | | 2.8 | | 1.0 | | 1.0 | ns | | t _{PRE} | Register preset time | | | 2.7 | | 3.0 | | 4.0 | ns | | t _{CLR} | Register clear time | | | 2.7 | | 3.0 | | 4.0 | ns | | t _{PIA} | PIA delay | (7) | | 3.0 | | 1.0 | | 2.0 | ns | | t _{LPA} | Low-power adder | (8) | | 10.0 | İ | 11.0 | | 13.0 | ns | #### Notes to tables: - These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms. - (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path. - (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking. - (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (5) The f_{MAX} values represent the highest frequency for pipelined data. - (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use. - (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value. - (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode. # Power Consumption Supply power (P) versus frequency (f_{MAX} in MHz) for MAX 7000 devices is calculated with the following equation: $$P = P_{INT} + P_{IO} = I_{CCINT} \times V_{CC} + P_{IO}$$ The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note* 74 (*Evaluating Power for Altera Devices*). The I_{CCINT} value, which depends on the switching frequency and the application logic, is calculated with the following equation: $$I_{CCINT} =$$ $$A \times MC_{TON} + B \times (MC_{DEV} - MC_{TON}) + C \times MC_{USED} \times f_{MAX} \times tog_{USED}$$ The parameters in this equation are shown below: MC_{TON} = Number of macrocells with the Turbo Bit option turned on, as reported in the MAX+PLUS II Report File (.rpt) MC_{DEV} = Number of macrocells in the device MC_{USED} = Total number of macrocells in the design, as reported in the MAX+PLUS II Report File (.rpt) f_{MAX} = Highest clock frequency to the device tog_{LC} = Average ratio of logic cells toggling at each clock (typically 0.125) A, B, C = Constants, shown in Table 39 | Table 39. MAX 7000 I _{CC} Equation Constants | | | | | | | | | |---|------|------|-------|--|--|--|--|--| | Device | Α | В | С | | | | | | | EPM7032 | 1.87 | 0.52 | 0.144 | | | | | | | EPM7064 | 1.63 | 0.74 | 0.144 | | | | | | | EPM7096 | 1.63 | 0.74 | 0.144 | | | | | | | EPM7128E | 1.17 | 0.54 | 0.096 | | | | | | | EPM7160E | 1.17 | 0.54 | 0.096 | | | | | | | EPM7192E | 1.17 | 0.54 | 0.096 | | | | | | | EPM7256E | 1.17 | 0.54 | 0.096 | | | | | | | EPM7032S | 0.93 | 0.40 | 0.040 | | | | | | | EPM7064S | 0.93 | 0.40 | 0.040 | | | | | | | EPM7128S | 0.93 | 0.40 | 0.040 | | | | | | | EPM7160S | 0.93 | 0.40 | 0.040 | | | | | | | EPM7192S | 0.93 | 0.40 | 0.040 | | | | | | | EPM7256S | 0.93 | 0.40 | 0.040 | | | | | | This calculation provides an I_{CC} estimate based on typical conditions using a pattern of a 16-bit, loadable, enabled, up/down counter in each LAB with no output load. Actual I_{CC} values should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions. Figure 14. I_{CC} vs. Frequency for MAX 7000 Devices (Part 2 of 2) Figure 17. 68-Pin Package Pin-Out Diagram Package outlines not drawn to scale. #### Notes: - The pin functions shown in parenthesis are only available in MAX 7000E and MAX 7000S devices. - (2) JTAG ports are available in MAX 7000S devices only.