Welcome to **E-XFL.COM** **Understanding Embedded - CPLDs (Complex Programmable Logic Devices)** Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware. ## **Applications of Embedded - CPLDs** | Details | | |---------------------------------|--| | Product Status | Obsolete | | Programmable Type | In System Programmable | | Delay Time tpd(1) Max | 7.5 ns | | Voltage Supply - Internal | 4.75V ~ 5.25V | | Number of Logic Elements/Blocks | 8 | | Number of Macrocells | 128 | | Number of Gates | 2500 | | Number of I/O | 100 | | Operating Temperature | 0°C ~ 70°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 160-BQFP | | Supplier Device Package | 160-PQFP (28x28) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epm7128sqc160-7yy | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong | Table 2. MAX | Table 2. MAX 7000S Device Features | | | | | | | | | | |------------------------|------------------------------------|----------|----------|----------|----------|----------|--|--|--|--| | Feature | EPM7032S | EPM7064S | EPM7128S | EPM7160S | EPM7192S | EPM7256S | | | | | | Usable gates | 600 | 1,250 | 2,500 | 3,200 | 3,750 | 5,000 | | | | | | Macrocells | 32 | 64 | 128 | 160 | 192 | 256 | | | | | | Logic array blocks | 2 | 4 | 8 | 10 | 12 | 16 | | | | | | Maximum user I/O pins | 36 | 68 | 100 | 104 | 124 | 164 | | | | | | t _{PD} (ns) | 5 | 5 | 6 | 6 | 7.5 | 7.5 | | | | | | t _{SU} (ns) | 2.9 | 2.9 | 3.4 | 3.4 | 4.1 | 3.9 | | | | | | t _{FSU} (ns) | 2.5 | 2.5 | 2.5 | 2.5 | 3 | 3 | | | | | | t _{CO1} (ns) | 3.2 | 3.2 | 4 | 3.9 | 4.7 | 4.7 | | | | | | f _{CNT} (MHz) | 175.4 | 175.4 | 147.1 | 149.3 | 125.0 | 128.2 | | | | | ## ...and More Features - Open-drain output option in MAX 7000S devices - Programmable macrocell flipflops with individual clear, preset, clock, and clock enable controls - Programmable power-saving mode for a reduction of over 50% in each macrocell - Configurable expander product-term distribution, allowing up to 32 product terms per macrocell - 44 to 208 pins available in plastic J-lead chip carrier (PLCC), ceramic pin-grid array (PGA), plastic quad flat pack (PQFP), power quad flat pack (RQFP), and 1.0-mm thin quad flat pack (TQFP) packages - Programmable security bit for protection of proprietary designs - 3.3-V or 5.0-V operation - MultiVoltTM I/O interface operation, allowing devices to interface with 3.3-V or 5.0-V devices (MultiVolt I/O operation is not available in 44-pin packages) - Pin compatible with low-voltage MAX 7000A and MAX 7000B devices - Enhanced features available in MAX 7000E and MAX 7000S devices - Six pin- or logic-driven output enable signals - Two global clock signals with optional inversion - Enhanced interconnect resources for improved routability - Fast input setup times provided by a dedicated path from I/O pin to macrocell registers - Programmable output slew-rate control - Software design support and automatic place-and-route provided by Altera's development system for Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 workstations - Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, and VeriBest - Programming support - Altera's Master Programming Unit (MPU) and programming hardware from third-party manufacturers program all MAX 7000 devices - The BitBlasterTM serial download cable, ByteBlasterMVTM parallel port download cable, and MasterBlasterTM serial/universal serial bus (USB) download cable program MAX 7000S devices # General Description The MAX 7000 family of high-density, high-performance PLDs is based on Altera's second-generation MAX architecture. Fabricated with advanced CMOS technology, the EEPROM-based MAX 7000 family provides 600 to 5,000 usable gates, ISP, pin-to-pin delays as fast as 5 ns, and counter speeds of up to 175.4 MHz. MAX 7000S devices in the -5, -6, -7, and -10 speed grades as well as MAX 7000 and MAX 7000E devices in -5, -6, -7, -10P, and -12P speed grades comply with the PCI Special Interest Group (PCI SIG) *PCI Local Bus Specification, Revision 2.2.* See Table 3 for available speed grades. | Device | | | | | Speed | l Grade | | | | | |----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | | -5 | -6 | -7 | -10P | -10 | -12P | -12 | -15 | -15T | -20 | | EPM7032 | | ✓ | ✓ | | ✓ | | ✓ | ✓ | ✓ | | | EPM7032S | ✓ | ✓ | ✓ | | ✓ | | | | | | | EPM7064 | | ✓ | ✓ | | ~ | | ✓ | ✓ | | | | EPM7064S | ✓ | ✓ | ✓ | | ~ | | | | | | | EPM7096 | | | ✓ | | ~ | | ✓ | ✓ | | | | EPM7128E | | | ✓ | ✓ | ~ | | ✓ | ✓ | | ✓ | | EPM7128S | | ✓ | ✓ | | ✓ | | | ✓ | | | | EPM7160E | | | | ✓ | ✓ | | ✓ | ✓ | | ✓ | | EPM7160S | | ✓ | ✓ | | ~ | | | ✓ | | | | EPM7192E | | | | | | ✓ | ✓ | ✓ | | ✓ | | EPM7192S | | | ✓ | | ✓ | | | ✓ | | | | EPM7256E | | | | | | ✓ | ✓ | ✓ | | ✓ | | EPM7256S | | | ✓ | | ✓ | | | ✓ | | | The MAX 7000E devices—including the EPM7128E, EPM7160E, EPM7192E, and EPM7256E devices—have several enhanced features: additional global clocking, additional output enable controls, enhanced interconnect resources, fast input registers, and a programmable slew rate. In-system programmable MAX 7000 devices—called MAX 7000S devices—include the EPM7032S, EPM7064S, EPM7128S, EPM7160S, EPM7192S, and EPM7256S devices. MAX 7000S devices have the enhanced features of MAX 7000E devices as well as JTAG BST circuitry in devices with 128 or more macrocells, ISP, and an open-drain output option. See Table 4. | Table 4. MAX 7000 Device Feat | ures | | | |---------------------------------|-------------------------------|-----------------------------|-----------------------------| | Feature | EPM7032
EPM7064
EPM7096 | All
MAX 7000E
Devices | All
MAX 7000S
Devices | | ISP via JTAG interface | | | ✓ | | JTAG BST circuitry | | | √ (1) | | Open-drain output option | | | ✓ | | Fast input registers | | ✓ | ✓ | | Six global output enables | | ✓ | ✓ | | Two global clocks | | ✓ | ✓ | | Slew-rate control | | ✓ | ✓ | | MultiVolt interface (2) | ✓ | ✓ | ✓ | | Programmable register | ✓ | ✓ | ✓ | | Parallel expanders | ✓ | ✓ | ✓ | | Shared expanders | ✓ | ✓ | ✓ | | Power-saving mode | ✓ | ✓ | ✓ | | Security bit | ✓ | ✓ | ✓ | | PCI-compliant devices available | ✓ | ✓ | ✓ | #### Notes: - (1) Available only in EPM7128S, EPM7160S, EPM7192S, and EPM7256S devices only. - (2) The MultiVolt I/O interface is not available in 44-pin packages. The MAX 7000 architecture supports 100% TTL emulation and high-density integration of SSI, MSI, and LSI logic functions. The MAX 7000 architecture easily integrates multiple devices ranging from PALs, GALs, and 22V10s to MACH and pLSI devices. MAX 7000 devices are available in a wide range of packages, including PLCC, PGA, PQFP, RQFP, and TQFP packages. See Table 5. | Table 5. M. | AX 7000 |) Maxim | um Use | r I/O Pii | ıs N | ote (1) | | | | | | | |-------------|--------------------|--------------------|--------------------|--------------------|--------------------|---------------------|---------------------|---------------------|--------------------|--------------------|---------------------|---------------------| | Device | 44-
Pin
PLCC | 44-
Pin
PQFP | 44-
Pin
TQFP | 68-
Pin
PLCC | 84-
Pin
PLCC | 100-
Pin
PQFP | 100-
Pin
TQFP | 160-
Pin
PQFP | 160-
Pin
PGA | 192-
Pin
PGA | 208-
Pin
PQFP | 208-
Pin
RQFP | | EPM7032 | 36 | 36 | 36 | | | | | | | | | | | EPM7032S | 36 | | 36 | | | | | | | | | | | EPM7064 | 36 | | 36 | 52 | 68 | 68 | | | | | | | | EPM7064S | 36 | | 36 | | 68 | | 68 | | | | | | | EPM7096 | | | | 52 | 64 | 76 | | | | | | | | EPM7128E | | | | | 68 | 84 | | 100 | | | | | | EPM7128S | | | | | 68 | 84 | 84 (2) | 100 | | | | | | EPM7160E | | | | | 64 | 84 | | 104 | | | | | | EPM7160S | | | | | 64 | | 84 (2) | 104 | | | | | | EPM7192E | | | | | | | | 124 | 124 | | | | | EPM7192S | | | | | | | | 124 | | | | | | EPM7256E | | | | | | | | 132 (2) | | 164 | | 164 | | EPM7256S | | | | | | | | | | | 164 (2) | 164 | #### Notes: - When the JTAG interface in MAX 7000S devices is used for either boundary-scan testing or for ISP, four I/O pins become JTAG pins. - (2) Perform a complete thermal analysis before committing a design to this device package. For more information, see the Operating Requirements for Altera Devices Data Sheet. MAX 7000 devices use CMOS EEPROM cells to implement logic functions. The user-configurable MAX 7000 architecture accommodates a variety of independent combinatorial and sequential logic functions. The devices can be reprogrammed for quick and efficient iterations during design development and debug cycles, and can be programmed and erased up to 100 times. MAX 7000 devices contain from 32 to 256 macrocells that are combined into groups of 16 macrocells, called logic array blocks (LABs). Each macrocell has a programmable-AND/fixed-OR array and a configurable register with independently programmable clock, clock enable, clear, and preset functions. To build complex logic functions, each macrocell can be supplemented with both shareable expander product terms and high-speed parallel expander product terms to provide up to 32 product terms per macrocell. The MAX 7000 family provides programmable speed/power optimization. Speed-critical portions of a design can run at high speed/full power, while the remaining portions run at reduced speed/low power. This speed/power optimization feature enables the designer to configure one or more macrocells to operate at 50% or lower power while adding only a nominal timing delay. MAX 7000E and MAX 7000S devices also provide an option that reduces the slew rate of the output buffers, minimizing noise transients when non-speed-critical signals are switching. The output drivers of all MAX 7000 devices (except 44-pin devices) can be set for either 3.3-V or 5.0-V operation, allowing MAX 7000 devices to be used in mixed-voltage systems. The MAX 7000 family is supported by Altera development systems, which are integrated packages that offer schematic, text—including VHDL, Verilog HDL, and the Altera Hardware Description Language (AHDL)—and waveform design entry, compilation and logic synthesis, simulation and timing analysis, and device programming. The software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry-standard PC- and UNIX-workstation-based EDA tools. The software runs on Windows-based PCs, as well as Sun SPARCstation, and HP 9000 Series 700/800 workstations. For more information on development tools, see the MAX+PLUS II Programmable Logic Development System & Software Data Sheet and the Quartus Programmable Logic Development System & Software Data Sheet. # Functional Description The MAX 7000 architecture includes the following elements: - Logic array blocks - Macrocells - Expander product terms (shareable and parallel) - Programmable interconnect array - I/O control blocks Each LAB is fed by the following signals: - 36 signals from the PIA that are used for general logic inputs - Global controls that are used for secondary register functions - Direct input paths from I/O pins to the registers that are used for fast setup times for MAX 7000E and MAX 7000S devices ## **Macrocells** The MAX 7000 macrocell can be individually configured for either sequential or combinatorial logic operation. The macrocell consists of three functional blocks: the logic array, the product-term select matrix, and the programmable register. The macrocell of EPM7032, EPM7064, and EPM7096 devices is shown in Figure 3. Figure 3. EPM7032, EPM7064 & EPM7096 Device Macrocell Figure 4 shows a MAX 7000E and MAX 7000S device macrocell. Combinatorial logic is implemented in the logic array, which provides five product terms per macrocell. The product-term select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as secondary inputs to the macrocell's register clear, preset, clock, and clock enable control functions. Two kinds of expander product terms ("expanders") are available to supplement macrocell logic resources: - Shareable expanders, which are inverted product terms that are fed back into the logic array - Parallel expanders, which are product terms borrowed from adjacent macrocells The Altera development system automatically optimizes product-term allocation according to the logic requirements of the design. For registered functions, each macrocell flipflop can be individually programmed to implement D, T, JK, or SR operation with programmable clock control. The flipflop can be bypassed for combinatorial operation. During design entry, the designer specifies the desired flipflop type; the Altera development software then selects the most efficient flipflop operation for each registered function to optimize resource utilization. # Programmable Speed/Power Control MAX 7000 devices offer a power-saving mode that supports low-power operation across user-defined signal paths or the entire device. This feature allows total power dissipation to be reduced by 50% or more, because most logic applications require only a small fraction of all gates to operate at maximum frequency. The designer can program each individual macrocell in a MAX 7000 device for either high-speed (i.e., with the Turbo BitTM option turned on) or low-power (i.e., with the Turbo Bit option turned off) operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths can operate at reduced power. Macrocells that run at low power incur a nominal timing delay adder (t_{LPA}) for the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , and t_{SEXP} , t_{ACL} , and t_{CPPW} parameters. # Output Configuration MAX 7000 device outputs can be programmed to meet a variety of system-level requirements. ## MultiVolt I/O Interface MAX 7000 devices—except 44-pin devices—support the MultiVolt I/O interface feature, which allows MAX 7000 devices to interface with systems that have differing supply voltages. The 5.0-V devices in all packages can be set for 3.3-V or 5.0-V I/O pin operation. These devices have one set of VCC pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO). The VCCINT pins must always be connected to a 5.0-V power supply. With a 5.0-V $V_{\rm CCINT}$ level, input voltage thresholds are at TTL levels, and are therefore compatible with both 3.3-V and 5.0-V inputs. The VCCIO pins can be connected to either a 3.3-V or a 5.0-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 5.0-V supply, the output levels are compatible with 5.0-V systems. When $V_{\rm CCIO}$ is connected to a 3.3-V supply, the output high is 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with $V_{\rm CCIO}$ levels lower than 4.75 V incur a nominally greater timing delay of $t_{\rm OD2}$ instead of $t_{\rm OD1}$. ## Open-Drain Output Option (MAX 7000S Devices Only) MAX 7000S devices provide an optional open-drain (functionally equivalent to open-collector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. It can also provide an additional wired-OR plane. | Symbol | Parameter | Conditions | Min | Max | Unit | |-----------------|--|--|-------------------------|--------------------------|------| | V _{IH} | High-level input voltage | | 2.0 | V _{CCINT} + 0.5 | V | | V _{IL} | Low-level input voltage | | -0.5 (8) | 0.8 | V | | V _{OH} | 5.0-V high-level TTL output voltage | I _{OH} = -4 mA DC, V _{CCIO} = 4.75 V (10) | 2.4 | | V | | | 3.3-V high-level TTL output voltage | I _{OH} = -4 mA DC, V _{CCIO} = 3.00 V (10) | 2.4 | | V | | | 3.3-V high-level CMOS output voltage | $I_{OH} = -0.1 \text{ mA DC}, V_{CCIO} = 3.0 \text{ V} (10)$ | V _{CCIO} - 0.2 | | V | | V _{OL} | 5.0-V low-level TTL output voltage | I _{OL} = 12 mA DC, V _{CCIO} = 4.75 V (11) | | 0.45 | V | | | 3.3-V low-level TTL output voltage | I _{OL} = 12 mA DC, V _{CCIO} = 3.00 V (11) | | 0.45 | V | | | 3.3-V low-level CMOS output voltage | $I_{OL} = 0.1 \text{ mA DC}, V_{CCIO} = 3.0 \text{ V}(11)$ | | 0.2 | V | | lı | Leakage current of dedicated input pins | $V_I = -0.5 \text{ to } 5.5 \text{ V } (11)$ | -10 | 10 | μА | | l _{OZ} | I/O pin tri-state output off-state current | $V_I = -0.5 \text{ to } 5.5 \text{ V } (11), (12)$ | -40 | 40 | μА | | Table 1 | Table 16. MAX 7000 5.0-V Device Capacitance: EPM7032, EPM7064 & EPM7096 Devices | | | | | | | |------------------|---|-------------------------------------|-----|-----|------|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | C _{IN} | Input pin capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 12 | pF | | | | C _{I/O} | I/O pin capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 12 | pF | | | | Table 1 | 7. MAX 7000 5.0-V Device Capa | acitance: MAX 7000E Devices Note | (13) | | | |------------------|-------------------------------|-------------------------------------|------|-----|------| | Symbol | Parameter | Conditions | Min | Max | Unit | | C _{IN} | Input pin capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 15 | pF | | C _{I/O} | I/O pin capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 15 | pF | | Table 1 | Table 18. MAX 7000 5.0-V Device Capacitance: MAX 7000S Devices Note (13) | | | | | | | | | |------------------|--|-------------------------------------|-----|-----|------|--|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | | C _{IN} | Dedicated input pin capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 10 | pF | | | | | | C _{I/O} | I/O pin capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 10 | pF | | | | | Tables 19 through 26 show the MAX 7000 and MAX 7000E AC operating conditions. | Symbol | Parameter | Conditions | -6 Speed Grade | | -7 Speed Grade | | Unit | |-------------------|--|----------------|----------------|-----|----------------|-----|------| | | | | Min | Max | Min | Max | | | t _{PD1} | Input to non-registered output | C1 = 35 pF | | 6.0 | | 7.5 | ns | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF | | 6.0 | | 7.5 | ns | | t _{SU} | Global clock setup time | | 5.0 | | 6.0 | | ns | | t _H | Global clock hold time | | 0.0 | | 0.0 | | ns | | t _{FSU} | Global clock setup time of fast input | (2) | 2.5 | | 3.0 | | ns | | t _{FH} | Global clock hold time of fast input | (2) | 0.5 | | 0.5 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 4.0 | | 4.5 | ns | | t _{CH} | Global clock high time | | 2.5 | | 3.0 | | ns | | t _{CL} | Global clock low time | | 2.5 | | 3.0 | | ns | | t _{ASU} | Array clock setup time | | 2.5 | | 3.0 | | ns | | t _{AH} | Array clock hold time | | 2.0 | | 2.0 | | ns | | t _{ACO1} | Array clock to output delay | C1 = 35 pF | | 6.5 | | 7.5 | ns | | t _{ACH} | Array clock high time | | 3.0 | | 3.0 | | ns | | t _{ACL} | Array clock low time | | 3.0 | | 3.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | (3) | 3.0 | | 3.0 | | ns | | t _{ODH} | Output data hold time after clock | C1 = 35 pF (4) | 1.0 | | 1.0 | | ns | | t _{CNT} | Minimum global clock period | | | 6.6 | | 8.0 | ns | | f _{CNT} | Maximum internal global clock frequency | (5) | 151.5 | | 125.0 | | MHz | | t _{ACNT} | Minimum array clock period | | | 6.6 | | 8.0 | ns | | f _{ACNT} | Maximum internal array clock frequency | (5) | 151.5 | | 125.0 | | MHz | | f _{MAX} | Maximum clock frequency | (6) | 200 | | 166.7 | | MHz | | Symbol | Parameter | Conditions | Speed | Grade -6 | Speed (| Grade -7 | Unit | |-------------------|---|----------------|-------|----------|---------|----------|------| | | | | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.4 | | 0.5 | ns | | t_{IO} | I/O input pad and buffer delay | | | 0.4 | | 0.5 | ns | | t _{FIN} | Fast input delay | (2) | | 0.8 | | 1.0 | ns | | t _{SEXP} | Shared expander delay | | | 3.5 | | 4.0 | ns | | t_{PEXP} | Parallel expander delay | | | 0.8 | | 0.8 | ns | | t_{LAD} | Logic array delay | | | 2.0 | | 3.0 | ns | | t _{LAC} | Logic control array delay | | | 2.0 | | 3.0 | ns | | t _{IOE} | Internal output enable delay | (2) | | | | 2.0 | ns | | t _{OD1} | Output buffer and pad delay
Slow slew rate = off, V _{CCIO} = 5.0 V | C1 = 35 pF | | 2.0 | | 2.0 | ns | | t _{OD2} | Output buffer and pad delay
Slow slew rate = off, V _{CCIO} = 3.3 V | C1 = 35 pF (7) | | 2.5 | | 2.5 | ns | | t _{OD3} | Output buffer and pad delay
Slow slew rate = on,
V _{CCIO} = 5.0 V or 3.3 V | C1 = 35 pF (2) | | 7.0 | | 7.0 | ns | | t _{ZX1} | Output buffer enable delay
Slow slew rate = off, V _{CCIO} = 5.0 V | C1 = 35 pF | | 4.0 | | 4.0 | ns | | t _{ZX2} | Output buffer enable delay
Slow slew rate = off, V _{CCIO} = 3.3 V | C1 = 35 pF (7) | | 4.5 | | 4.5 | ns | | t _{ZX3} | Output buffer enable delay
Slow slew rate = on
V _{CCIO} = 5.0 V or 3.3 V | C1 = 35 pF (2) | | 9.0 | | 9.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 4.0 | ns | | t_{SU} | Register setup time | | 3.0 | | 3.0 | | ns | | t_H | Register hold time | | 1.5 | | 2.0 | | ns | | t _{FSU} | Register setup time of fast input | (2) | 2.5 | | 3.0 | | ns | | t_{FH} | Register hold time of fast input | (2) | 0.5 | | 0.5 | | ns | | t_{RD} | Register delay | | | 0.8 | | 1.0 | ns | | t _{COMB} | Combinatorial delay | | | 0.8 | | 1.0 | ns | | t _{IC} | Array clock delay | | | 2.5 | | 3.0 | ns | | t _{EN} | Register enable time | | | 2.0 | | 3.0 | ns | | t _{GLOB} | Global control delay | | | 0.8 | | 1.0 | ns | | t _{PRE} | Register preset time | | | 2.0 | | 2.0 | ns | | t _{CLR} | Register clear time | | | 2.0 | | 2.0 | ns | | t _{PIA} | PIA delay | | | 0.8 | | 1.0 | ns | | t_{LPA} | Low-power adder | (8) | | 10.0 | | 10.0 | ns | | Table 2 | 21. MAX 7000 & MAX 7000E Ext | ernal Timing Param | eters Note | (1) | | | | |-------------------|--|--------------------|------------|-----------|--------|------|------| | Symbol | Parameter | Conditions | | Speed (| Grade | | Unit | | | | | MAX 700 | 0E (-10P) | MAX 70 | | | | | | | Min | Max | Min | Max | | | t _{PD1} | Input to non-registered output | C1 = 35 pF | | 10.0 | | 10.0 | ns | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF | | 10.0 | | 10.0 | ns | | t _{SU} | Global clock setup time | | 7.0 | | 8.0 | | ns | | t _H | Global clock hold time | | 0.0 | | 0.0 | | ns | | t _{FSU} | Global clock setup time of fast input | (2) | 3.0 | | 3.0 | | ns | | t _{FH} | Global clock hold time of fast input | (2) | 0.5 | | 0.5 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 5.0 | | 5 | ns | | t _{CH} | Global clock high time | | 4.0 | | 4.0 | | ns | | t _{CL} | Global clock low time | | 4.0 | | 4.0 | | ns | | t _{ASU} | Array clock setup time | | 2.0 | | 3.0 | | ns | | t _{AH} | Array clock hold time | | 3.0 | | 3.0 | | ns | | t _{ACO1} | Array clock to output delay | C1 = 35 pF | | 10.0 | | 10.0 | ns | | t _{ACH} | Array clock high time | | 4.0 | | 4.0 | | ns | | t _{ACL} | Array clock low time | | 4.0 | | 4.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | (3) | 4.0 | | 4.0 | | ns | | t _{ODH} | Output data hold time after clock | C1 = 35 pF (4) | 1.0 | | 1.0 | | ns | | t _{CNT} | Minimum global clock period | | | 10.0 | | 10.0 | ns | | f _{CNT} | Maximum internal global clock frequency | (5) | 100.0 | | 100.0 | | MHz | | t _{ACNT} | Minimum array clock period | | | 10.0 | | 10.0 | ns | | f _{ACNT} | Maximum internal array clock frequency | (5) | 100.0 | | 100.0 | | MHz | | f _{MAX} | Maximum clock frequency | (6) | 125.0 | | 125.0 | | MHz | | Table 2 | 8. EPM7032S Internal Tim | ing Parameter | rs / | lote (1) | | | | | | | | |------------------|--------------------------|---------------|--------------|----------|-----|-------|-------|------|-----|------|------| | Symbol | Parameter | Conditions | | | | Speed | Grade | | | | Unit | | | | | -5 -6 -7 -10 | | | | | | 0 | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{PIA} | PIA delay | (7) | | 1.1 | | 1.1 | | 1.4 | | 1.0 | ns | | t_{LPA} | Low-power adder | (8) | | 12.0 | | 10.0 | | 10.0 | | 11.0 | ns | #### Notes to tables: - These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms. - (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path. - (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking. - (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (5) The f_{MAX} values represent the highest frequency for pipelined data. - (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use. - (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value. - (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode. Tables 29 and 30 show the EPM7064S AC operating conditions. | Table 2 | 9. EPM7064\$ External Timi | ing Parameters | (Part | 1 of 2) | No | nte (1) | | | | | | |------------------|---------------------------------------|----------------|-------|---------|-----|---------|-------|-----|-----|------|------| | Symbol | Parameter | Conditions | | | | Speed | Grade |) | | | Unit | | | | | - | 5 | - | 6 | -7 | | -10 | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{PD1} | Input to non-registered output | C1 = 35 pF | | 5.0 | | 6.0 | | 7.5 | | 10.0 | ns | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF | | 5.0 | | 6.0 | | 7.5 | | 10.0 | ns | | t _{SU} | Global clock setup time | | 2.9 | | 3.6 | | 6.0 | | 7.0 | | ns | | t _H | Global clock hold time | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{FSU} | Global clock setup time of fast input | | 2.5 | | 2.5 | | 3.0 | | 3.0 | | ns | | t _{FH} | Global clock hold time of fast input | | 0.0 | | 0.0 | | 0.5 | | 0.5 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 3.2 | | 4.0 | | 4.5 | | 5.0 | ns | | t _{CH} | Global clock high time | | 2.0 | | 2.5 | | 3.0 | | 4.0 | | ns | | t _{CL} | Global clock low time | | 2.0 | | 2.5 | | 3.0 | | 4.0 | | ns | | t _{ASU} | Array clock setup time | | 0.7 | | 0.9 | | 3.0 | | 2.0 | | ns | | t _{AH} | Array clock hold time | | 1.8 | | 2.1 | | 2.0 | | 3.0 | | ns | | Table 2 | 9. EPM7064\$ External Timi | ing Parameters | (Part 2 | 2 of 2) | No | te (1) | | | | | | |-------------------|--|----------------|---------|---------|-------|--------|-------|-----|-------|------|------| | Symbol | Parameter | Conditions | | | | Speed | Grade | | | | Unit | | | | | - | 5 | - | 6 | - | 7 | -10 | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{ACO1} | Array clock to output delay | C1 = 35 pF | | 5.4 | | 6.7 | | 7.5 | | 10.0 | ns | | t _{ACH} | Array clock high time | | 2.5 | | 2.5 | | 3.0 | | 4.0 | | ns | | t _{ACL} | Array clock low time | | 2.5 | | 2.5 | | 3.0 | | 4.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | (2) | 2.5 | | 2.5 | | 3.0 | | 4.0 | | ns | | t _{ODH} | Output data hold time after clock | C1 = 35 pF (3) | 1.0 | | 1.0 | | 1.0 | | 1.0 | | ns | | t _{CNT} | Minimum global clock period | | | 5.7 | | 7.1 | | 8.0 | | 10.0 | ns | | f _{CNT} | Maximum internal global clock frequency | (4) | 175.4 | | 140.8 | | 125.0 | | 100.0 | | MHz | | t _{ACNT} | Minimum array clock period | | | 5.7 | | 7.1 | | 8.0 | | 10.0 | ns | | f _{ACNT} | Maximum internal array clock frequency | (4) | 175.4 | | 140.8 | | 125.0 | | 100.0 | | MHz | | f _{MAX} | Maximum clock frequency | (5) | 250.0 | | 200.0 | | 166.7 | | 125.0 | | MHz | | Table 3 | O. EPM7064\$ Internal Tim | ing Parameters | (Part | 1 of 2) | No | te (1) | | | | | | |-------------------|--------------------------------|----------------|-------|---------|-----|--------|-------|-----|-----|-----|------| | Symbol | Parameter | Conditions | | | | Speed | Grade | | | | Unit | | | | | - | 5 | - | 6 | - | 7 | -1 | 10 | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.2 | | 0.2 | | 0.5 | | 0.5 | ns | | t _{IO} | I/O input pad and buffer delay | | | 0.2 | | 0.2 | | 0.5 | | 0.5 | ns | | t _{FIN} | Fast input delay | | | 2.2 | | 2.6 | | 1.0 | | 1.0 | ns | | t _{SEXP} | Shared expander delay | | | 3.1 | | 3.8 | | 4.0 | | 5.0 | ns | | t_{PEXP} | Parallel expander delay | | | 0.9 | | 1.1 | | 0.8 | | 0.8 | ns | | t_{LAD} | Logic array delay | | | 2.6 | | 3.2 | | 3.0 | | 5.0 | ns | | t _{LAC} | Logic control array delay | | | 2.5 | | 3.2 | | 3.0 | | 5.0 | ns | | t _{IOE} | Internal output enable delay | | | 0.7 | | 0.8 | | 2.0 | | 2.0 | ns | | t _{OD1} | Output buffer and pad delay | C1 = 35 pF | | 0.2 | | 0.3 | | 2.0 | | 1.5 | ns | | t _{OD2} | Output buffer and pad delay | C1 = 35 pF (6) | | 0.7 | | 0.8 | | 2.5 | | 2.0 | ns | | t _{OD3} | Output buffer and pad delay | C1 = 35 pF | | 5.2 | | 5.3 | | 7.0 | | 5.5 | ns | | t_{ZX1} | Output buffer enable delay | C1 = 35 pF | | 4.0 | | 4.0 | | 4.0 | | 5.0 | ns | | t _{ZX2} | Output buffer enable delay | C1 = 35 pF (6) | | 4.5 | | 4.5 | | 4.5 | | 5.5 | ns | | t _{ZX3} | Output buffer enable delay | C1 = 35 pF | | 9.0 | | 9.0 | | 9.0 | | 9.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 4.0 | | 4.0 | | 5.0 | ns | | t _{SU} | Register setup time | | 0.8 | | 1.0 | | 3.0 | | 2.0 | | ns | | t _H | Register hold time | | 1.7 | | 2.0 | | 2.0 | | 3.0 | | ns | Tables 31 and 32 show the EPM7128S AC operating conditions. | Table 3 | 11. EPM7128\$ External Time | ing Parameters | : No | te (1) | | | | | | | | |-------------------|--|----------------|-------------|--------|-------|-----|-------|------|-------|------|-----| | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | | | | | | -6 | | -7 | | -10 | | -15 | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{PD1} | Input to non-registered output | C1 = 35 pF | | 6.0 | | 7.5 | | 10.0 | | 15.0 | ns | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF | | 6.0 | | 7.5 | | 10.0 | | 15.0 | ns | | t _{SU} | Global clock setup time | | 3.4 | | 6.0 | | 7.0 | | 11.0 | | ns | | t _H | Global clock hold time | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{FSU} | Global clock setup time of fast input | | 2.5 | | 3.0 | | 3.0 | | 3.0 | | ns | | t _{FH} | Global clock hold time of fast input | | 0.0 | | 0.5 | | 0.5 | | 0.0 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 4.0 | | 4.5 | | 5.0 | | 8.0 | ns | | t _{CH} | Global clock high time | | 3.0 | | 3.0 | | 4.0 | | 5.0 | | ns | | t _{CL} | Global clock low time | | 3.0 | | 3.0 | | 4.0 | | 5.0 | | ns | | t _{ASU} | Array clock setup time | | 0.9 | | 3.0 | | 2.0 | | 4.0 | | ns | | t _{AH} | Array clock hold time | | 1.8 | | 2.0 | | 5.0 | | 4.0 | | ns | | t _{ACO1} | Array clock to output delay | C1 = 35 pF | | 6.5 | | 7.5 | | 10.0 | | 15.0 | ns | | t _{ACH} | Array clock high time | | 3.0 | | 3.0 | | 4.0 | | 6.0 | | ns | | t _{ACL} | Array clock low time | | 3.0 | | 3.0 | | 4.0 | | 6.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | (2) | 3.0 | | 3.0 | | 4.0 | | 6.0 | | ns | | t _{ODH} | Output data hold time after clock | C1 = 35 pF (3) | 1.0 | | 1.0 | | 1.0 | | 1.0 | | ns | | t _{CNT} | Minimum global clock period | | | 6.8 | | 8.0 | | 10.0 | | 13.0 | ns | | f _{CNT} | Maximum internal global clock frequency | (4) | 147.1 | | 125.0 | | 100.0 | | 76.9 | | MHz | | t _{ACNT} | Minimum array clock period | | | 6.8 | | 8.0 | | 10.0 | | 13.0 | ns | | f _{ACNT} | Maximum internal array clock frequency | (4) | 147.1 | | 125.0 | | 100.0 | | 76.9 | | MHz | | f _{MAX} | Maximum clock frequency | (5) | 166.7 | | 166.7 | | 125.0 | | 100.0 | | MHz | | Symbol | Parameter | Conditions | | | | Speed | Grade | | | | Unit | |-------------------|-----------------------------------|----------------|-----|------|-----|-------|-------|------|-----|------|------| | | | | - | 6 | - | 7 | -1 | 10 | -1 | 15 | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | - | | t _{IN} | Input pad and buffer delay | | | 0.2 | | 0.5 | | 0.5 | | 2.0 | ns | | t _{IO} | I/O input pad and buffer delay | | | 0.2 | | 0.5 | | 0.5 | | 2.0 | ns | | t _{FIN} | Fast input delay | | | 2.6 | | 1.0 | | 1.0 | | 2.0 | ns | | t _{SEXP} | Shared expander delay | | | 3.7 | | 4.0 | | 5.0 | | 8.0 | ns | | t _{PEXP} | Parallel expander delay | | | 1.1 | | 0.8 | | 0.8 | | 1.0 | ns | | t_{LAD} | Logic array delay | | | 3.0 | | 3.0 | | 5.0 | | 6.0 | ns | | t_{LAC} | Logic control array delay | | | 3.0 | | 3.0 | | 5.0 | | 6.0 | ns | | t _{IOE} | Internal output enable delay | | | 0.7 | | 2.0 | | 2.0 | | 3.0 | ns | | t _{OD1} | Output buffer and pad delay | C1 = 35 pF | | 0.4 | | 2.0 | | 1.5 | | 4.0 | ns | | t _{OD2} | Output buffer and pad delay | C1 = 35 pF (6) | | 0.9 | | 2.5 | | 2.0 | | 5.0 | ns | | t _{OD3} | Output buffer and pad delay | C1 = 35 pF | | 5.4 | | 7.0 | | 5.5 | | 8.0 | ns | | t _{ZX1} | Output buffer enable delay | C1 = 35 pF | | 4.0 | | 4.0 | | 5.0 | | 6.0 | ns | | t _{ZX2} | Output buffer enable delay | C1 = 35 pF (6) | | 4.5 | | 4.5 | | 5.5 | | 7.0 | ns | | t_{ZX3} | Output buffer enable delay | C1 = 35 pF | | 9.0 | | 9.0 | | 9.0 | | 10.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 4.0 | | 5.0 | | 6.0 | ns | | t _{SU} | Register setup time | | 1.0 | | 3.0 | | 2.0 | | 4.0 | | ns | | t _H | Register hold time | | 1.7 | | 2.0 | | 5.0 | | 4.0 | | ns | | t _{FSU} | Register setup time of fast input | | 1.9 | | 3.0 | | 3.0 | | 2.0 | | ns | | t _{FH} | Register hold time of fast input | | 0.6 | | 0.5 | | 0.5 | | 1.0 | | ns | | t_{RD} | Register delay | | | 1.4 | | 1.0 | | 2.0 | | 1.0 | ns | | t _{COMB} | Combinatorial delay | | | 1.0 | | 1.0 | | 2.0 | | 1.0 | ns | | t _{IC} | Array clock delay | | | 3.1 | | 3.0 | | 5.0 | | 6.0 | ns | | t _{EN} | Register enable time | | | 3.0 | | 3.0 | | 5.0 | | 6.0 | ns | | t_{GLOB} | Global control delay | | | 2.0 | | 1.0 | | 1.0 | | 1.0 | ns | | t _{PRE} | Register preset time | | | 2.4 | | 2.0 | | 3.0 | | 4.0 | ns | | t _{CLR} | Register clear time | | | 2.4 | | 2.0 | | 3.0 | | 4.0 | ns | | t_{PIA} | PIA delay | (7) | | 1.4 | | 1.0 | | 1.0 | | 2.0 | ns | | t_{LPA} | Low-power adder | (8) | | 11.0 | | 10.0 | | 11.0 | | 13.0 | ns | #### Notes to tables: - These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms. - (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path. - (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking. - (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (5) The f_{MAX} values represent the highest frequency for pipelined data. - (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use. - (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value. - (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode. Tables 33 and 34 show the EPM7160S AC operating conditions. | Table 3 | 33. EPM7160S External Timi | ng Parameters | (Part | 1 of 2) | No | nte (1) | | | | | | |-------------------|--|----------------|----------------|---------|-------|---------|-------|------|------|------|------| | Symbol | Parameter | Conditions | ns Speed Grade | | | | | | | | Unit | | | | | -6 | | -7 | | -10 | | -15 | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{PD1} | Input to non-registered output | C1 = 35 pF | | 6.0 | | 7.5 | | 10.0 | | 15.0 | ns | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF | | 6.0 | | 7.5 | | 10.0 | | 15.0 | ns | | t _{SU} | Global clock setup time | | 3.4 | | 4.2 | | 7.0 | | 11.0 | | ns | | t _H | Global clock hold time | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{FSU} | Global clock setup time of fast input | | 2.5 | | 3.0 | | 3.0 | | 3.0 | | ns | | t _{FH} | Global clock hold time of fast input | | 0.0 | | 0.0 | | 0.5 | | 0.0 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 3.9 | | 4.8 | | 5 | | 8 | ns | | t _{CH} | Global clock high time | | 3.0 | | 3.0 | | 4.0 | | 5.0 | | ns | | t _{CL} | Global clock low time | | 3.0 | | 3.0 | | 4.0 | | 5.0 | | ns | | t _{ASU} | Array clock setup time | | 0.9 | | 1.1 | | 2.0 | | 4.0 | | ns | | t _{AH} | Array clock hold time | | 1.7 | | 2.1 | | 3.0 | | 4.0 | | ns | | t _{ACO1} | Array clock to output delay | C1 = 35 pF | | 6.4 | | 7.9 | | 10.0 | | 15.0 | ns | | t _{ACH} | Array clock high time | | 3.0 | | 3.0 | | 4.0 | | 6.0 | | ns | | t _{ACL} | Array clock low time | | 3.0 | | 3.0 | | 4.0 | | 6.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | (2) | 2.5 | | 3.0 | | 4.0 | | 6.0 | | ns | | t _{ODH} | Output data hold time after clock | C1 = 35 pF (3) | 1.0 | | 1.0 | | 1.0 | | 1.0 | | ns | | t _{CNT} | Minimum global clock period | | | 6.7 | | 8.2 | | 10.0 | | 13.0 | ns | | f _{CNT} | Maximum internal global clock frequency | (4) | 149.3 | | 122.0 | | 100.0 | | 76.9 | | MHz | Tables 37 and 38 show the EPM7256S AC operating conditions. | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | |-------------------|---|--------------------------|-------------|-----|--------|------|--------|------|----------|--| | Oymbor | i arameter | Conditions | _ | 7 | · · | 10 | 1 | | | | | | | | Min | Max | Min | Max | Min | Max | | | | 4 | Innut to non variatored output | C4 25 pF | IVIIII | 7.5 | IVIIII | 10.0 | IVIIII | 15.0 | | | | t _{PD1} | Input to non-registered output I/O input to non-registered output | C1 = 35 pF
C1 = 35 pF | | 7.5 | | 10.0 | | 15.0 | ns
ns | | | t _{SU} | Global clock setup time | | 3.9 | | 7.0 | | 11.0 | | ns | | | t _H | Global clock hold time | | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{FSU} | Global clock setup time of fast input | | 3.0 | | 3.0 | | 3.0 | | ns | | | t _{FH} | Global clock hold time of fast input | | 0.0 | | 0.5 | | 0.0 | | ns | | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 4.7 | | 5.0 | | 8.0 | ns | | | t _{CH} | Global clock high time | | 3.0 | | 4.0 | | 5.0 | | ns | | | t _{CL} | Global clock low time | | 3.0 | | 4.0 | | 5.0 | | ns | | | t _{ASU} | Array clock setup time | | 0.8 | | 2.0 | | 4.0 | | ns | | | t _{AH} | Array clock hold time | | 1.9 | | 3.0 | | 4.0 | | ns | | | t _{ACO1} | Array clock to output delay | C1 = 35 pF | | 7.8 | | 10.0 | | 15.0 | ns | | | t _{ACH} | Array clock high time | | 3.0 | | 4.0 | | 6.0 | | ns | | | t _{ACL} | Array clock low time | | 3.0 | | 4.0 | | 6.0 | | ns | | | t _{CPPW} | Minimum pulse width for clear and preset | (2) | 3.0 | | 4.0 | | 6.0 | | ns | | | t _{ODH} | Output data hold time after clock | C1 = 35 pF (3) | 1.0 | | 1.0 | | 1.0 | | ns | | | t _{CNT} | Minimum global clock period | | | 7.8 | | 10.0 | | 13.0 | ns | | | f _{CNT} | Maximum internal global clock frequency | (4) | 128.2 | | 100.0 | | 76.9 | | MHz | | | t _{ACNT} | Minimum array clock period | | | 7.8 | | 10.0 | | 13.0 | ns | | | f _{ACNT} | Maximum internal array clock frequency | (4) | 128.2 | | 100.0 | | 76.9 | | MHz | | | f _{MAX} | Maximum clock frequency | (5) | 166.7 | | 125.0 | | 100.0 | | MHz | | | Table 39. MAX 7000 I _{CC} Equation Constants | | | | | | | | | |---|------|------|-------|--|--|--|--|--| | Device | Α | В | С | | | | | | | EPM7032 | 1.87 | 0.52 | 0.144 | | | | | | | EPM7064 | 1.63 | 0.74 | 0.144 | | | | | | | EPM7096 | 1.63 | 0.74 | 0.144 | | | | | | | EPM7128E | 1.17 | 0.54 | 0.096 | | | | | | | EPM7160E | 1.17 | 0.54 | 0.096 | | | | | | | EPM7192E | 1.17 | 0.54 | 0.096 | | | | | | | EPM7256E | 1.17 | 0.54 | 0.096 | | | | | | | EPM7032S | 0.93 | 0.40 | 0.040 | | | | | | | EPM7064S | 0.93 | 0.40 | 0.040 | | | | | | | EPM7128S | 0.93 | 0.40 | 0.040 | | | | | | | EPM7160S | 0.93 | 0.40 | 0.040 | | | | | | | EPM7192S | 0.93 | 0.40 | 0.040 | | | | | | | EPM7256S | 0.93 | 0.40 | 0.040 | | | | | | This calculation provides an I_{CC} estimate based on typical conditions using a pattern of a 16-bit, loadable, enabled, up/down counter in each LAB with no output load. Actual I_{CC} values should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions. Figure 15 shows typical supply current versus frequency for MAX 7000S devices. ### EPM7128S EPM7160S