E·XFL

Intel - EPM7128SQI160-10N Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	10 ns
Voltage Supply - Internal	4.5V ~ 5.5V
Number of Logic Elements/Blocks	8
Number of Macrocells	128
Number of Gates	2500
Number of I/O	100
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	160-BQFP
Supplier Device Package	160-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm7128sqi160-10n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The MAX 7000E devices—including the EPM7128E, EPM7160E, EPM7192E, and EPM7256E devices—have several enhanced features: additional global clocking, additional output enable controls, enhanced interconnect resources, fast input registers, and a programmable slew rate.

In-system programmable MAX 7000 devices—called MAX 7000S devices—include the EPM7032S, EPM7064S, EPM7128S, EPM7160S, EPM7192S, and EPM7256S devices. MAX 7000S devices have the enhanced features of MAX 7000E devices as well as JTAG BST circuitry in devices with 128 or more macrocells, ISP, and an open-drain output option. See Table 4.

Feature	EPM7032 EPM7064 EPM7096	All MAX 7000E Devices	All MAX 7000S Devices
ISP via JTAG interface			\checkmark
JTAG BST circuitry			✓(1)
Open-drain output option			\checkmark
Fast input registers		~	\checkmark
Six global output enables		~	\checkmark
Two global clocks		~	\checkmark
Slew-rate control		~	\checkmark
MultiVolt interface (2)	\checkmark	~	\checkmark
Programmable register	\checkmark	~	\checkmark
Parallel expanders	\checkmark	~	\checkmark
Shared expanders	\checkmark	~	\checkmark
Power-saving mode	\checkmark	~	\checkmark
Security bit	\checkmark	~	\checkmark
PCI-compliant devices available	\checkmark	\checkmark	\checkmark

Notes:

(1) Available only in EPM7128S, EPM7160S, EPM7192S, and EPM7256S devices only.

(2) The MultiVolt I/O interface is not available in 44-pin packages.

The MAX 7000 architecture includes four dedicated inputs that can be used as general-purpose inputs or as high-speed, global control signals (clock, clear, and two output enable signals) for each macrocell and I/O pin. Figure 1 shows the architecture of EPM7032, EPM7064, and EPM7096 devices.

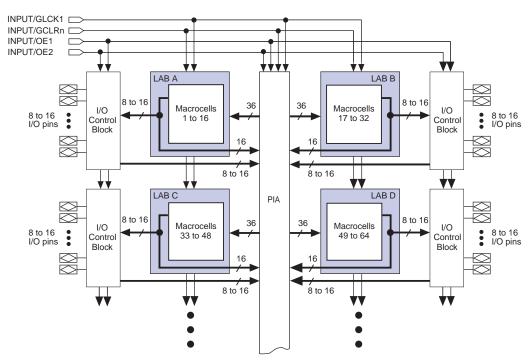


Figure 1. EPM7032, EPM7064 & EPM7096 Device Block Diagram

Figure 2 shows the architecture of MAX 7000E and MAX 7000S devices.

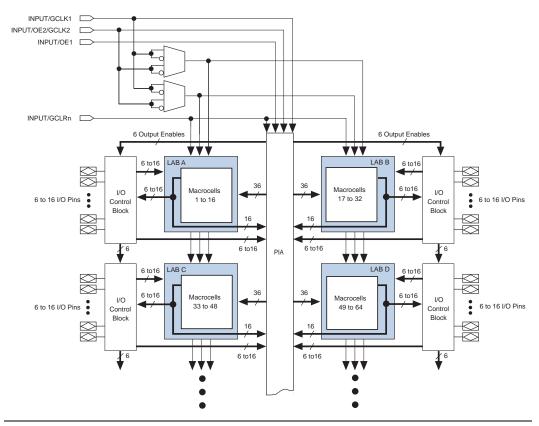
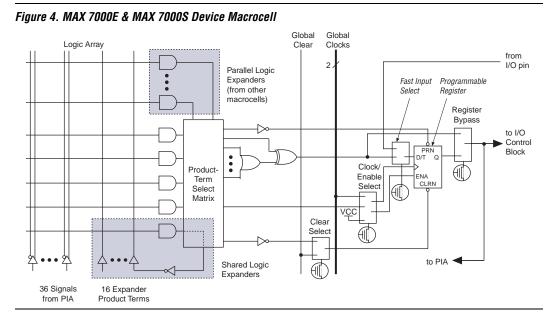
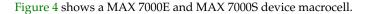
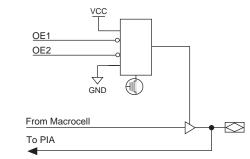




Figure 2. MAX 7000E & MAX 7000S Device Block Diagram

Logic Array Blocks

The MAX 7000 device architecture is based on the linking of highperformance, flexible, logic array modules called logic array blocks (LABs). LABs consist of 16-macrocell arrays, as shown in Figures 1 and 2. Multiple LABs are linked together via the programmable interconnect array (PIA), a global bus that is fed by all dedicated inputs, I/O pins, and macrocells.

Combinatorial logic is implemented in the logic array, which provides five product terms per macrocell. The product-term select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as secondary inputs to the macrocell's register clear, preset, clock, and clock enable control functions. Two kinds of expander product terms ("expanders") are available to supplement macrocell logic resources:


- Shareable expanders, which are inverted product terms that are fed back into the logic array
- Parallel expanders, which are product terms borrowed from adjacent macrocells

The Altera development system automatically optimizes product-term allocation according to the logic requirements of the design.

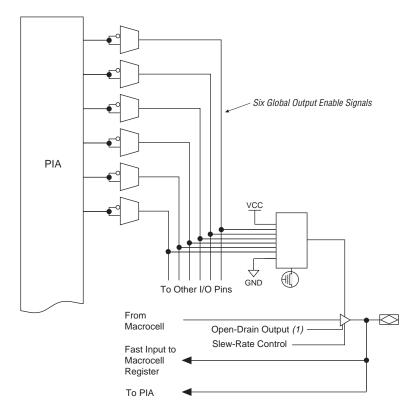

For registered functions, each macrocell flipflop can be individually programmed to implement D, T, JK, or SR operation with programmable clock control. The flipflop can be bypassed for combinatorial operation. During design entry, the designer specifies the desired flipflop type; the Altera development software then selects the most efficient flipflop operation for each registered function to optimize resource utilization.

Figure 8. I/O Control Block of MAX 7000 Devices

EPM7032, EPM7064 & EPM7096 Devices

Note:

(1) The open-drain output option is available only in MAX 7000S devices.

For more information on using the Jam language, refer to AN 122: Using Jam STAPL for ISP & ICR via an Embedded Processor.

The ISP circuitry in MAX 7000S devices is compatible with IEEE Std. 1532 specification. The IEEE Std. 1532 is a standard developed to allow concurrent ISP between multiple PLD vendors.

Programming Sequence

During in-system programming, instructions, addresses, and data are shifted into the MAX 7000S device through the TDI input pin. Data is shifted out through the TDO output pin and compared against the expected data.

Programming a pattern into the device requires the following six ISP stages. A stand-alone verification of a programmed pattern involves only stages 1, 2, 5, and 6.

- 1. *Enter ISP*. The enter ISP stage ensures that the I/O pins transition smoothly from user mode to ISP mode. The enter ISP stage requires 1 ms.
- 2. *Check ID*. Before any program or verify process, the silicon ID is checked. The time required to read this silicon ID is relatively small compared to the overall programming time.
- 3. *Bulk Erase.* Erasing the device in-system involves shifting in the instructions to erase the device and applying one erase pulse of 100 ms.
- 4. *Program*. Programming the device in-system involves shifting in the address and data and then applying the programming pulse to program the EEPROM cells. This process is repeated for each EEPROM address.
- 5. *Verify.* Verifying an Altera device in-system involves shifting in addresses, applying the read pulse to verify the EEPROM cells, and shifting out the data for comparison. This process is repeated for each EEPROM address.
- 6. *Exit ISP*. An exit ISP stage ensures that the I/O pins transition smoothly from ISP mode to user mode. The exit ISP stage requires 1 ms.

By using an external 5.0-V pull-up resistor, output pins on MAX 7000S devices can be set to meet 5.0-V CMOS input voltages. When V_{CCIO} is 3.3 V, setting the open drain option will turn off the output pull-up transistor, allowing the external pull-up resistor to pull the output high enough to meet 5.0-V CMOS input voltages. When V_{CCIO} is 5.0 V, setting the output drain option is not necessary because the pull-up transistor will already turn off when the pin exceeds approximately 3.8 V, allowing the external pull-up resistor to pull the output high enough to meet 5.0-V CMOS input voltages.

Slew-Rate Control

The output buffer for each MAX 7000E and MAX 7000S I/O pin has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A faster slew rate provides high-speed transitions for high-performance systems. However, these fast transitions may introduce noise transients into the system. A slow slew rate reduces system noise, but adds a nominal delay of 4 to 5 ns. In MAX 7000E devices, when the Turbo Bit is turned off, the slew rate is set for low noise performance. For MAX 7000S devices, each I/O pin has an individual EEPROM bit that controls the slew rate, allowing designers to specify the slew rate on a pin-by-pin basis.

MAX 7000 devices can be programmed on Windows-based PCs with the Altera Logic Programmer card, the Master Programming Unit (MPU), and the appropriate device adapter. The MPU performs a continuity check to ensure adequate electrical contact between the adapter and the device.

For more information, see the *Altera Programming Hardware Data Sheet*.

The Altera development system can use text- or waveform-format test vectors created with the Text Editor or Waveform Editor to test the programmed device. For added design verification, designers can perform functional testing to compare the functional behavior of a MAX 7000 device with the results of simulation. Moreover, Data I/O, BP Microsystems, and other programming hardware manufacturers also provide programming support for Altera devices.

For more information, see the Programming Hardware Manufacturers.

Programming with External Hardware

The instruction register length of MAX 7000S devices is 10 bits. Tables 10 and 11 show the boundary-scan register length and device IDCODE information for MAX 7000S devices.

Table 10. MAX 7000S Boundary-S	Scan Register Length
Device	Boundary-Scan Register Length
EPM7032S	1 (1)
EPM7064S	1 (1)
EPM7128S	288
EPM7160S	312
EPM7192S	360
EPM7256S	480

Note:

 This device does not support JTAG boundary-scan testing. Selecting either the EXTEST or SAMPLE/PRELOAD instruction will select the one-bit bypass register.

Table 11. 32	Table 11. 32-Bit MAX 7000 Device IDCODE Note (1)										
Device		IDCODE (32 Bits)									
	Version (4 Bits)	Part Number (16 Bits)	Manufacturer's Identity (11 Bits)	1 (1 Bit) (2)							
EPM7032S	0000	0111 0000 0011 0010	00001101110	1							
EPM7064S	0000	0111 0000 0110 0100	00001101110	1							
EPM7128S	0000	0111 0001 0010 1000	00001101110	1							
EPM7160S	0000	0111 0001 0110 0000	00001101110	1							
EPM7192S	0000	0111 0001 1001 0010	00001101110	1							
EPM7256S	0000	0111 0010 0101 0110	00001101110	1							

Notes:

(1) The most significant bit (MSB) is on the left.

(2) The least significant bit (LSB) for all JTAG IDCODEs is 1.

devices.

Figure 9 shows the timing requirements for the JTAG signals.

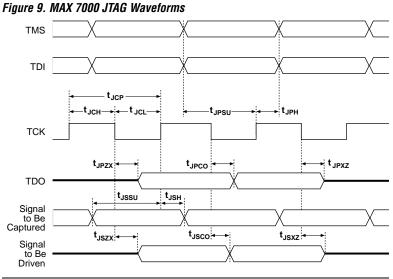
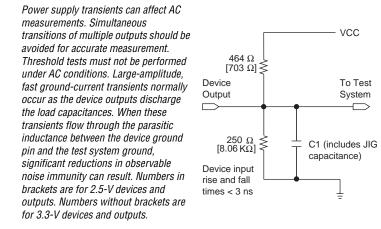


Table 12 shows the JTAG timing parameters and values for MAX 7000S

Table 1	2. JTAG Timing Parameters & Values for MAX 70	00S De	vices	
Symbol	Parameter	Min	Мах	Unit
t _{JCP}	TCK clock period	100		ns
t _{JCH}	TCK clock high time	50		ns
t _{JCL}	TCK clock low time	50		ns
t _{JPSU}	JTAG port setup time	20		ns
t _{JPH}	JTAG port hold time	45		ns
t _{JPCO}	JTAG port clock to output		25	ns
t _{JPZX}	JTAG port high impedance to valid output		25	ns
t _{JPXZ}	JTAG port valid output to high impedance		25	ns
t _{JSSU}	Capture register setup time	20		ns
t _{JSH}	Capture register hold time	45		ns
t _{JSCO}	Update register clock to output		25	ns
t _{JSZX}	Update register high impedance to valid output		25	ns
t _{JSXZ}	Update register valid output to high impedance		25	ns


For more information, see *Application Note* 39 (IEEE 1149.1 (JTAG) *Boundary-Scan Testing in Altera Devices*).

Design Security All MAX 7000 devices contain a programmable security bit that controls access to the data programmed into the device. When this bit is programmed, a proprietary design implemented in the device cannot be copied or retrieved. This feature provides a high level of design security because programmed data within EEPROM cells is invisible. The security bit that controls this function, as well as all other programmed data, is reset only when the device is reprogrammed.

Generic Testing

Each MAX 7000 device is functionally tested. Complete testing of each programmable EEPROM bit and all internal logic elements ensures 100% programming yield. AC test measurements are taken under conditions equivalent to those shown in Figure 10. Test patterns can be used and then erased during early stages of the production flow.

Figure 10. MAX 7000 AC Test Conditions

QFP Carrier & Development Socket

MAX 7000 and MAX 7000E devices in QFP packages with 100 or more pins are shipped in special plastic carriers to protect the QFP leads. The carrier is used with a prototype development socket and special programming hardware available from Altera. This carrier technology makes it possible to program, test, erase, and reprogram a device without exposing the leads to mechanical stress.

For detailed information and carrier dimensions, refer to the *QFP Carrier* & *Development Socket Data Sheet*.

MAX 7000S devices are not shipped in carriers.

Table 1	5. MAX 7000 5.0-V Device DC (Operating Conditions Note (9)			
Symbol	Parameter	Conditions	Min	Max	Unit
V _{IH}	High-level input voltage		2.0	V _{CCINT} + 0.5	V
V _{IL}	Low-level input voltage		-0.5 (8)	0.8	V
V _{OH}	5.0-V high-level TTL output voltage	$I_{OH} = -4 \text{ mA DC}, V_{CCIO} = 4.75 \text{ V} (10)$	2.4		V
	3.3-V high-level TTL output voltage	$I_{OH} = -4 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V} (10)$	2.4		V
	3.3-V high-level CMOS output voltage	I_{OH} = -0.1 mA DC, V_{CCIO} = 3.0 V (10)	V _{CCIO} – 0.2		V
V _{OL}	5.0-V low-level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 4.75 V (11)		0.45	V
	3.3-V low-level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 3.00 V (11)		0.45	V
	3.3-V low-level CMOS output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 3.0 V(11)		0.2	V
I _I	Leakage current of dedicated input pins	$V_{I} = -0.5$ to 5.5 V (11)	-10	10	μΑ
I _{OZ}	I/O pin tri-state output off-state current	V _I = -0.5 to 5.5 V (11), (12)	-40	40	μA

Table 1	Table 16. MAX 7000 5.0-V Device Capacitance: EPM7032, EPM7064 & EPM7096 Devices Note (13)								
Symbol	bol Parameter Conditions Min								
CIN	Input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		12	pF				
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		12	pF				

Table 1	Table 17. MAX 7000 5.0-V Device Capacitance: MAX 7000E Devices Note (13)								
Symbol	Parameter	Min	Max	Unit					
C _{IN}	Input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		15	pF				
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		15	pF				

Table 1	Table 18. MAX 7000 5.0-V Device Capacitance: MAX 7000S Devices Note (13)								
Symbol	Parameter	Conditions	Min	Max	Unit				
CIN	Dedicated input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF				
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		10	pF				

.

	5. MAX 7000 & MAX 7000E	-	aramete		lote (1)				Unit
Symbol	Parameter	Conditions	Speed Grade						
			-	15	-1	5T	-2	20	
			Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF		15.0		15.0		20.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		15.0		15.0		20.0	ns
t _{SU}	Global clock setup time		11.0		11.0		12.0		ns
t _H	Global clock hold time		0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input	(2)	3.0		-		5.0		ns
t _{FH}	Global clock hold time of fast input	(2)	0.0		-		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		8.0		8.0		12.0	ns
t _{CH}	Global clock high time		5.0		6.0		6.0		ns
t _{CL}	Global clock low time		5.0		6.0		6.0		ns
t _{ASU}	Array clock setup time		4.0		4.0		5.0		ns
t _{AH}	Array clock hold time		4.0		4.0		5.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		15.0		15.0		20.0	ns
t _{ACH}	Array clock high time		6.0		6.5		8.0		ns
t _{ACL}	Array clock low time		6.0		6.5		8.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	6.0		6.5		8.0		ns
t _{odh}	Output data hold time after clock	C1 = 35 pF (4)	1.0		1.0		1.0		ns
t _{CNT}	Minimum global clock period			13.0		13.0		16.0	ns
fcnt	Maximum internal global clock frequency	(5)	76.9		76.9		62.5		MHz
t _{ACNT}	Minimum array clock period			13.0		13.0		16.0	ns
facnt	Maximum internal array clock frequency	(5)	76.9		76.9		62.5		MHz
f _{MAX}	Maximum clock frequency	(6)	100		83.3		83.3		MHz

Notes to tables:

- (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This parameter applies to MAX 7000E devices only.
- (3) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (4) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (5) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (6) The f_{MAX} values represent the highest frequency for pipelined data.
- (7) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells running in the low-power mode.

Tables 27 and 28 show the EPM7032S AC operating conditions.

Symbol	Parameter	Conditions	Speed Grade							Unit	
			-	5	-	6	; -		-10		-
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF		5.0		6.0		7.5		10.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		5.0		6.0		7.5		10.0	ns
t _{SU}	Global clock setup time		2.9		4.0		5.0		7.0		ns
t _H	Global clock hold time		0.0		0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		2.5		2.5		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.0		0.5		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		3.2		3.5		4.3		5.0	ns
t _{CH}	Global clock high time		2.0		2.5		3.0		4.0		ns
t _{CL}	Global clock low time		2.0		2.5		3.0		4.0		ns
t _{ASU}	Array clock setup time		0.7		0.9		1.1		2.0		ns
t _{AH}	Array clock hold time		1.8		2.1		2.7		3.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		5.4		6.6		8.2		10.0	ns
t _{ACH}	Array clock high time		2.5		2.5		3.0		4.0		ns
t _{ACL}	Array clock low time		2.5		2.5		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(2)	2.5		2.5		3.0		4.0		ns
t _{odh}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		1.0		ns
t _{CNT}	Minimum global clock period			5.7		7.0		8.6		10.0	ns
f _{CNT}	Maximum internal global clock frequency	(4)	175.4		142.9		116.3		100.0		MHz
t _{ACNT}	Minimum array clock period			5.7		7.0		8.6		10.0	ns

Symbol	Parameter	Conditions		Speed				d Grade				
			-	6	-7		-10		-15		-	
			Min	Max	Min	Max	Min	Max	Min	Max		
t _{PD1}	Input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns	
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns	
t _{SU}	Global clock setup time		3.4		6.0		7.0		11.0		ns	
t _H	Global clock hold time		0.0		0.0		0.0		0.0		ns	
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		3.0		ns	
t _{FH}	Global clock hold time of fast input		0.0		0.5		0.5		0.0		ns	
t _{CO1}	Global clock to output delay	C1 = 35 pF		4.0		4.5		5.0		8.0	ns	
t _{CH}	Global clock high time		3.0		3.0		4.0		5.0		ns	
t _{CL}	Global clock low time		3.0		3.0		4.0		5.0		ns	
t _{ASU}	Array clock setup time		0.9		3.0		2.0		4.0		ns	
t _{AH}	Array clock hold time		1.8		2.0		5.0		4.0		ns	
t _{ACO1}	Array clock to output delay	C1 = 35 pF		6.5		7.5		10.0		15.0	ns	
t _{ACH}	Array clock high time		3.0		3.0		4.0		6.0		ns	
t _{ACL}	Array clock low time		3.0		3.0		4.0		6.0		ns	
t _{CPPW}	Minimum pulse width for clear and preset	(2)	3.0		3.0		4.0		6.0		ns	
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		1.0		ns	
t _{CNT}	Minimum global clock period			6.8		8.0		10.0		13.0	ns	
fcnt	Maximum internal global clock frequency	(4)	147.1		125.0		100.0		76.9		MHz	
t _{ACNT}	Minimum array clock period			6.8		8.0		10.0		13.0	ns	
f _{acnt}	Maximum internal array clock frequency	(4)	147.1		125.0		100.0		76.9		MHz	
f _{MAX}	Maximum clock frequency	(5)	166.7		166.7		125.0		100.0		MHz	

Tables 31 and 32 show the EPM7128S AC operating conditions.

٦

Г

Symbol	Parameter	Conditions	itions Speed Grade								Unit
			-6		-7		-10		-15		1
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.2		0.5		0.5		2.0	ns
t _{IO}	I/O input pad and buffer delay			0.2		0.5		0.5		2.0	ns
t _{FIN}	Fast input delay			2.6		1.0		1.0		2.0	ns
t _{SEXP}	Shared expander delay			3.7		4.0		5.0		8.0	ns
t _{PEXP}	Parallel expander delay			1.1		0.8		0.8		1.0	ns
t _{LAD}	Logic array delay			3.0		3.0		5.0		6.0	ns
t _{LAC}	Logic control array delay			3.0		3.0		5.0		6.0	ns
t _{IOE}	Internal output enable delay			0.7		2.0		2.0		3.0	ns
t _{OD1}	Output buffer and pad delay	C1 = 35 pF		0.4		2.0		1.5		4.0	ns
t _{OD2}	Output buffer and pad delay	C1 = 35 pF (6)		0.9		2.5		2.0		5.0	ns
t _{OD3}	Output buffer and pad delay	C1 = 35 pF		5.4		7.0		5.5		8.0	ns
t _{ZX1}	Output buffer enable delay	C1 = 35 pF		4.0		4.0		5.0		6.0	ns
t _{ZX2}	Output buffer enable delay	C1 = 35 pF (6)		4.5		4.5		5.5		7.0	ns
t _{ZX3}	Output buffer enable delay	C1 = 35 pF		9.0		9.0		9.0		10.0	ns
t _{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		5.0		6.0	ns
t _{SU}	Register setup time		1.0		3.0		2.0		4.0		ns
t _H	Register hold time		1.7		2.0		5.0		4.0		ns
t _{FSU}	Register setup time of fast input		1.9		3.0		3.0		2.0		ns
t _{FH}	Register hold time of fast input		0.6		0.5		0.5		1.0		ns
t _{RD}	Register delay			1.4		1.0		2.0		1.0	ns
t _{COMB}	Combinatorial delay			1.0		1.0		2.0		1.0	ns
t _{IC}	Array clock delay			3.1		3.0		5.0		6.0	ns
t _{EN}	Register enable time			3.0		3.0		5.0		6.0	ns
t _{GLOB}	Global control delay			2.0		1.0		1.0		1.0	ns
t _{PRE}	Register preset time			2.4		2.0		3.0		4.0	ns
t _{CLR}	Register clear time			2.4		2.0		3.0		4.0	ns
t _{PIA}	PIA delay	(7)		1.4		1.0		1.0		2.0	ns
t _{LPA}	Low-power adder	(8)		11.0		10.0		11.0		13.0	ns

Table 3	4. EPM7160S Internal 1	<i>Timing Parameters</i>	s (Part)	2 of 2)	No	te (1)					
Symbol	Parameter	Conditions				Speed	Grade)			Unit
			-	6	-	7	-1	10		15	
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{CLR}	Register clear time			2.4		3.0		3.0		4.0	ns
t _{PIA}	PIA delay	(7)		1.6		2.0		1.0		2.0	ns
t _{LPA}	Low-power adder	(8)		11.0		10.0		11.0		13.0	ns

Notes to tables:

- These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more (1)information on switching waveforms.
- This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter (2)must be added to this minimum width if the clear or reset signal incorporates the t_{IAD} parameter into the signal path.

This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This (3) parameter applies for both global and array clocking.

These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. (4)

- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use. (6)

For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, (7)these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.

(8)The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} and t_{CPPW} parameters for macrocells running in the low-power mode.

Tables 35 and 36 show the EPM7192S AC operating conditions.

Table 35. EPM7192S External Timing Parameters (Part 1 of 2) Note (1)									
Symbol	Parameter	Conditions	Speed Grade						
			-	7	-*	10	-1	15	
			Min	Max	Min	Max	Min	Мах	1
t _{PD1}	Input to non-registered output	C1 = 35 pF		7.5		10.0		15.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		7.5		10.0		15.0	ns
t _{SU}	Global clock setup time		4.1		7.0		11.0		ns
t _H	Global clock hold time		0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		3.0		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.5		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		4.7		5.0		8.0	ns
t _{CH}	Global clock high time		3.0		4.0		5.0		ns
t _{CL}	Global clock low time		3.0		4.0		5.0		ns
t _{ASU}	Array clock setup time		1.0		2.0		4.0		ns

Symbol	Parameter	Conditions	Speed Grade						
			-7		-10		-15		
			Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF		7.5		10.0		15.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		7.5		10.0		15.0	ns
t _{SU}	Global clock setup time		3.9		7.0		11.0		ns
t _H	Global clock hold time		0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		3.0		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.5		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		4.7		5.0		8.0	ns
t _{CH}	Global clock high time		3.0		4.0		5.0		ns
t _{CL}	Global clock low time		3.0		4.0		5.0		ns
t _{ASU}	Array clock setup time		0.8		2.0		4.0		ns
t _{AH}	Array clock hold time		1.9		3.0		4.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		7.8		10.0		15.0	ns
t _{ACH}	Array clock high time		3.0		4.0		6.0		ns
t _{ACL}	Array clock low time		3.0		4.0		6.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(2)	3.0		4.0		6.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		ns
t _{CNT}	Minimum global clock period			7.8		10.0		13.0	ns
fcnt	Maximum internal global clock frequency	(4)	128.2		100.0		76.9		MHz
t _{ACNT}	Minimum array clock period			7.8		10.0		13.0	ns
f _{acnt}	Maximum internal array clock frequency	(4)	128.2		100.0		76.9		MHz
f _{MAX}	Maximum clock frequency	(5)	166.7		125.0		100.0		MHz

Tables 37 and 38 show the EPM7256S AC operating conditions.

Table 39. MAX 7000 I _{CC} Equation Constants								
Device	A	В	C					
EPM7032	1.87	0.52	0.144					
EPM7064	1.63	0.74	0.144					
EPM7096	1.63	0.74	0.144					
EPM7128E	1.17	0.54	0.096					
EPM7160E	1.17	0.54	0.096					
EPM7192E	1.17	0.54	0.096					
EPM7256E	1.17	0.54	0.096					
EPM7032S	0.93	0.40	0.040					
EPM7064S	0.93	0.40	0.040					
EPM7128S	0.93	0.40	0.040					
EPM7160S	0.93	0.40	0.040					
EPM7192S	0.93	0.40	0.040					
EPM7256S	0.93	0.40	0.040					

This calculation provides an I_{CC} estimate based on typical conditions using a pattern of a 16-bit, loadable, enabled, up/down counter in each LAB with no output load. Actual I_{CC} values should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions.

Figure 21. 192-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

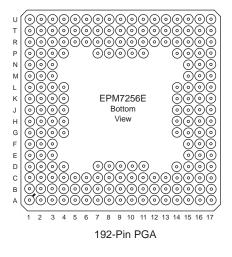
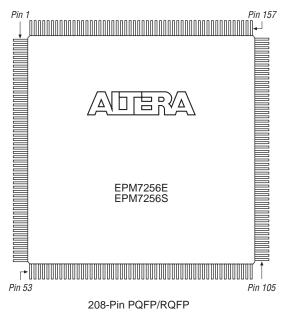



Figure 22. 208-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

