

Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	6 ns
Voltage Supply - Internal	4.75V ~ 5.25V
Number of Logic Elements/Blocks	8
Number of Macrocells	128
Number of Gates	2500
Number of I/O	84
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm7128stc100-6f

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

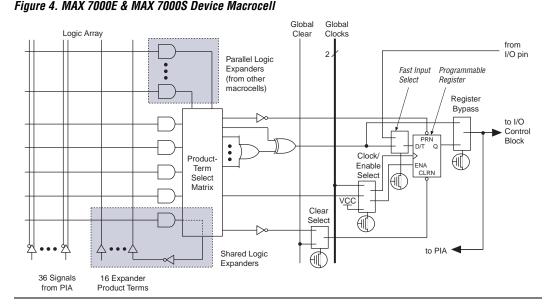


Figure 4 shows a MAX 7000E and MAX 7000S device macrocell.

Combinatorial logic is implemented in the logic array, which provides five product terms per macrocell. The product-term select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as secondary inputs to the macrocell's register clear, preset, clock, and clock enable control functions. Two kinds of expander product terms ("expanders") are available to supplement macrocell logic resources:

- Shareable expanders, which are inverted product terms that are fed back into the logic array
- Parallel expanders, which are product terms borrowed from adjacent macrocells

The Altera development system automatically optimizes product-term allocation according to the logic requirements of the design.

For registered functions, each macrocell flipflop can be individually programmed to implement D, T, JK, or SR operation with programmable clock control. The flipflop can be bypassed for combinatorial operation. During design entry, the designer specifies the desired flipflop type; the Altera development software then selects the most efficient flipflop operation for each registered function to optimize resource utilization.

The compiler can allocate up to three sets of up to five parallel expanders automatically to the macrocells that require additional product terms. Each set of five parallel expanders incurs a small, incremental timing delay (t_{PEXP}). For example, if a macrocell requires 14 product terms, the Compiler uses the five dedicated product terms within the macrocell and allocates two sets of parallel expanders; the first set includes five product terms and the second set includes four product terms, increasing the total delay by $2 \times t_{PEXP}$.

Two groups of 8 macrocells within each LAB (e.g., macrocells 1 through 8 and 9 through 16) form two chains to lend or borrow parallel expanders. A macrocell borrows parallel expanders from lower-numbered macrocells. For example, macrocell 8 can borrow parallel expanders from macrocell 7, from macrocells 7 and 6, or from macrocells 7, 6, and 5. Within each group of 8, the lowest-numbered macrocell can only lend parallel expanders and the highest-numbered macrocell can only borrow them. Figure 6 shows how parallel expanders can be borrowed from a neighboring macrocell.

Figure 6. Parallel Expanders

Unused product terms in a macrocell can be allocated to a neighboring macrocell.

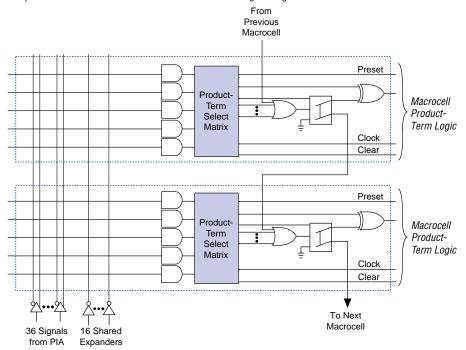
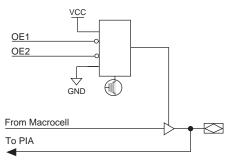
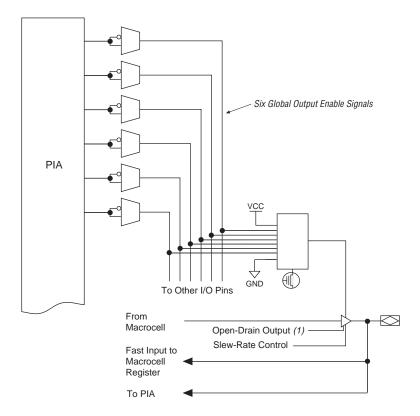




Figure 8. I/O Control Block of MAX 7000 Devices

EPM7032, EPM7064 & EPM7096 Devices

MAX 7000E & MAX 7000S Devices

Note:

(1) The open-drain output option is available only in MAX 7000S devices.

When the tri-state buffer control is connected to ground, the output is tri-stated (high impedance) and the I/O pin can be used as a dedicated input. When the tri-state buffer control is connected to V_{CC} , the output is enabled.

The MAX 7000 architecture provides dual I/O feedback, in which macrocell and pin feedbacks are independent. When an I/O pin is configured as an input, the associated macrocell can be used for buried logic.

In-System Programmability (ISP)

MAX 7000S devices are in-system programmable via an industry-standard 4-pin Joint Test Action Group (JTAG) interface (IEEE Std. 1149.1-1990). ISP allows quick, efficient iterations during design development and debugging cycles. The MAX 7000S architecture internally generates the high programming voltage required to program EEPROM cells, allowing in-system programming with only a single 5.0 V power supply. During in-system programming, the I/O pins are tri-stated and pulled-up to eliminate board conflicts. The pull-up value is nominally 50 k%.

ISP simplifies the manufacturing flow by allowing devices to be mounted on a printed circuit board with standard in-circuit test equipment before they are programmed. MAX 7000S devices can be programmed by downloading the information via in-circuit testers (ICT), embedded processors, or the Altera MasterBlaster, ByteBlasterMV, ByteBlaster, BitBlaster download cables. (The ByteBlaster cable is obsolete and is replaced by the ByteBlasterMV cable, which can program and configure 2.5-V, 3.3-V, and 5.0-V devices.) Programming the devices after they are placed on the board eliminates lead damage on high-pin-count packages (e.g., QFP packages) due to device handling and allows devices to be reprogrammed after a system has already shipped to the field. For example, product upgrades can be performed in the field via software or modem.

In-system programming can be accomplished with either an adaptive or constant algorithm. An adaptive algorithm reads information from the unit and adapts subsequent programming steps to achieve the fastest possible programming time for that unit. Because some in-circuit testers cannot support an adaptive algorithm, Altera offers devices tested with a constant algorithm. Devices tested to the constant algorithm have an "F" suffix in the ordering code.

The JamTM Standard Test and Programming Language (STAPL) can be used to program MAX 7000S devices with in-circuit testers, PCs, or embedded processor.

For more information on using the Jam language, refer to AN 122: Using Jam STAPL for ISP & ICR via an Embedded Processor.

The ISP circuitry in MAX 7000S devices is compatible with IEEE Std. 1532 specification. The IEEE Std. 1532 is a standard developed to allow concurrent ISP between multiple PLD vendors.

Programming Sequence

During in-system programming, instructions, addresses, and data are shifted into the MAX 7000S device through the TDI input pin. Data is shifted out through the TDO output pin and compared against the expected data.

Programming a pattern into the device requires the following six ISP stages. A stand-alone verification of a programmed pattern involves only stages 1, 2, 5, and 6.

- Enter ISP. The enter ISP stage ensures that the I/O pins transition smoothly from user mode to ISP mode. The enter ISP stage requires 1 ms.
- 2. *Check ID*. Before any program or verify process, the silicon ID is checked. The time required to read this silicon ID is relatively small compared to the overall programming time.
- 3. *Bulk Erase*. Erasing the device in-system involves shifting in the instructions to erase the device and applying one erase pulse of 100 ms.
- Program. Programming the device in-system involves shifting in the address and data and then applying the programming pulse to program the EEPROM cells. This process is repeated for each EEPROM address.
- Verify. Verifying an Altera device in-system involves shifting in addresses, applying the read pulse to verify the EEPROM cells, and shifting out the data for comparison. This process is repeated for each EEPROM address.
- 6. Exit ISP. An exit ISP stage ensures that the I/O pins transition smoothly from ISP mode to user mode. The exit ISP stage requires 1 ms.

The programming times described in Tables 6 through 8 are associated with the worst-case method using the enhanced ISP algorithm.

Table 6. MAX 7000S t _{PU}	able 6. MAX 7000S t _{PULSE} & Cycle _{TCK} Values									
Device	Progra	ımming	Stand-Alone Verification							
	t _{PPULSE} (s)	Cycle _{PTCK}	t _{VPULSE} (s)	Cycle _{VTCK}						
EPM7032S	4.02	342,000	0.03	200,000						
EPM7064S	4.50	504,000	0.03	308,000						
EPM7128S	5.11	832,000	0.03	528,000						
EPM7160S	5.35	1,001,000	0.03	640,000						
EPM7192S	5.71	1,192,000	0.03	764,000						
EPM7256S	6.43	1,603,000	0.03	1,024,000						

Tables 7 and 8 show the in-system programming and stand alone verification times for several common test clock frequencies.

Table 7. MAX 7000S In-System Programming Times for Different Test Clock Frequencies										
Device		f _{TCK}								
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz		
EPM7032S	4.06	4.09	4.19	4.36	4.71	5.73	7.44	10.86	s	
EPM7064S	4.55	4.60	4.76	5.01	5.51	7.02	9.54	14.58	S	
EPM7128S	5.19	5.27	5.52	5.94	6.77	9.27	13.43	21.75	S	
EPM7160S	5.45	5.55	5.85	6.35	7.35	10.35	15.36	25.37	S	
EPM7192S	5.83	5.95	6.30	6.90	8.09	11.67	17.63	29.55	S	
EPM7256S	6.59	6.75	7.23	8.03	9.64	14.45	22.46	38.49	S	

Table 8. MAX 7000S Stand-Alone Verification Times for Different Test Clock Frequencies									
Device		f _{TCK}							
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz	
EPM7032S	0.05	0.07	0.13	0.23	0.43	1.03	2.03	4.03	s
EPM7064S	0.06	0.09	0.18	0.34	0.64	1.57	3.11	6.19	S
EPM7128S	0.08	0.14	0.29	0.56	1.09	2.67	5.31	10.59	S
EPM7160S	0.09	0.16	0.35	0.67	1.31	3.23	6.43	12.83	S
EPM7192S	0.11	0.18	0.41	0.79	1.56	3.85	7.67	15.31	S
EPM7256S	0.13	0.24	0.54	1.06	2.08	5.15	10.27	20.51	S

The instruction register length of MAX 7000S devices is 10 bits. Tables 10 and 11 show the boundary-scan register length and device IDCODE information for MAX 7000S devices.

Table 10. MAX 7000S Boundary-Scan Register Length							
Device Boundary-Scan Register Leng							
EPM7032S	1 (1)						
EPM7064S	1 (1)						
EPM7128S	288						
EPM7160S	312						
EPM7192S	360						
EPM7256S	480						

Note:

(1) This device does not support JTAG boundary-scan testing. Selecting either the EXTEST or SAMPLE/PRELOAD instruction will select the one-bit bypass register.

Table 11. 32	Table 11. 32-Bit MAX 7000 Device IDCODE Note (1)										
Device		IDCODE (32 Bits)									
	Version (4 Bits)	Part Number (16 Bits)	Manufacturer's Identity (11 Bits)	1 (1 Bit) (2)							
EPM7032S	0000	0111 0000 0011 0010	00001101110	1							
EPM7064S	0000	0111 0000 0110 0100	00001101110	1							
EPM7128S	0000	0111 0001 0010 1000	00001101110	1							
EPM7160S	0000	0111 0001 0110 0000	00001101110	1							
EPM7192S	0000	0111 0001 1001 0010	00001101110	1							
EPM7256S	0000	0111 0010 0101 0110	00001101110	1							

Notes:

- (1) The most significant bit (MSB) is on the left.
- (2) The least significant bit (LSB) for all JTAG IDCODEs is 1.

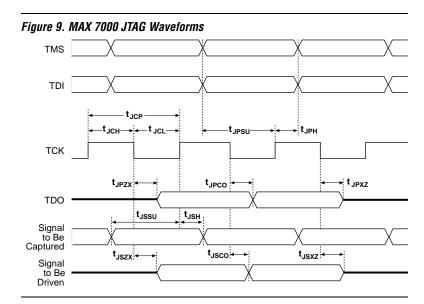


Figure 9 shows the timing requirements for the JTAG signals.

Table 12 shows the JTAG timing parameters and values for MAX 7000S devices.

Table 1	Table 12. JTAG Timing Parameters & Values for MAX 7000S Devices									
Symbol	Parameter	Min	Max	Unit						
t _{JCP}	TCK clock period	100		ns						
t _{JCH}	TCK clock high time	50		ns						
t _{JCL}	TCK clock low time	50		ns						
t _{JPSU}	JTAG port setup time	20		ns						
t _{JPH}	JTAG port hold time	45		ns						
t _{JPCO}	JTAG port clock to output		25	ns						
t _{JPZX}	JTAG port high impedance to valid output		25	ns						
t _{JPXZ}	JTAG port valid output to high impedance		25	ns						
t _{JSSU}	Capture register setup time	20		ns						
t _{JSH}	Capture register hold time	45		ns						
t _{JSCO}	Update register clock to output		25	ns						
t _{JSZX}	Update register high impedance to valid output		25	ns						
t _{JSXZ}	Update register valid output to high impedance		25	ns						

For more information, see *Application Note* 39 (*IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices*).

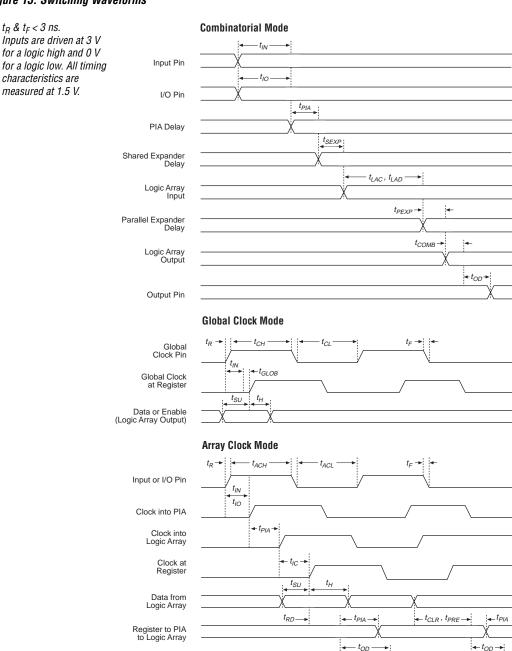

Symbol	Parameter	Conditions	Min	Max	Unit
V _{IH}	High-level input voltage		2.0	V _{CCINT} + 0.5	V
V _{IL}	Low-level input voltage		-0.5 (8)	0.8	V
V _{OH}	5.0-V high-level TTL output voltage	I _{OH} = -4 mA DC, V _{CCIO} = 4.75 V (10)	2.4		V
	3.3-V high-level TTL output voltage	I _{OH} = -4 mA DC, V _{CCIO} = 3.00 V (10)	2.4		V
	3.3-V high-level CMOS output voltage	$I_{OH} = -0.1 \text{ mA DC}, V_{CCIO} = 3.0 \text{ V} (10)$	V _{CCIO} - 0.2		V
V _{OL}	5.0-V low-level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 4.75 V (11)		0.45	V
	3.3-V low-level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 3.00 V (11)		0.45	V
	3.3-V low-level CMOS output voltage	$I_{OL} = 0.1 \text{ mA DC}, V_{CCIO} = 3.0 \text{ V}(11)$		0.2	V
lı	Leakage current of dedicated input pins	$V_I = -0.5 \text{ to } 5.5 \text{ V } (11)$	-10	10	μА
l _{OZ}	I/O pin tri-state output off-state current	$V_I = -0.5 \text{ to } 5.5 \text{ V } (11), (12)$	-40	40	μА

Table 1	Table 16. MAX 7000 5.0-V Device Capacitance: EPM7032, EPM7064 & EPM7096 Devices Note (13)							
Symbol	nbol Parameter Conditions Min							
C _{IN}	Input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		12	pF			
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		12	pF			

Table 1	Table 17. MAX 7000 5.0-V Device Capacitance: MAX 7000E Devices Note (13)									
Symbol	Parameter	Conditions	Min	Max	Unit					
C _{IN}	Input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		15	pF					
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		15	pF					

Table 1	Table 18. MAX 7000 5.0-V Device Capacitance: MAX 7000S DevicesNote (13)								
Symbol	Parameter	Conditions	Min	Max	Unit				
C _{IN}	Dedicated input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF				
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		10	pF				

Figure 13. Switching Waveforms

30 Altera Corporation

Register Output to Pin

Symbol	Parameter	Conditions	Speed Grade						Unit
			-	15	-1	5T	-20		
			Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			2.0		2.0		3.0	ns
t _{IO}	I/O input pad and buffer delay			2.0		2.0		3.0	ns
t _{FIN}	Fast input delay	(2)		2.0		_		4.0	ns
t _{SEXP}	Shared expander delay			8.0		10.0		9.0	ns
t _{PEXP}	Parallel expander delay			1.0		1.0		2.0	ns
t _{LAD}	Logic array delay			6.0		6.0		8.0	ns
t _{LAC}	Logic control array delay			6.0		6.0		8.0	ns
t _{IOE}	Internal output enable delay	(2)		3.0		_		4.0	ns
t _{OD1}	Output buffer and pad delay Slow slew rate = off V _{CCIO} = 5.0 V	C1 = 35 pF		4.0		4.0		5.0	ns
t _{OD2}	Output buffer and pad delay Slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF (7)		5.0		-		6.0	ns
t _{OD3}	Output buffer and pad delay Slow slew rate = on V _{CCIO} = 5.0 V or 3.3 V	C1 = 35 pF (2)		8.0		-		9.0	ns
t _{ZX1}	Output buffer enable delay Slow slew rate = off V _{CCIO} = 5.0 V	C1 = 35 pF		6.0		6.0		10.0	ns
t _{ZX2}	Output buffer enable delay Slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF (7)		7.0		-		11.0	ns
t _{ZX3}	Output buffer enable delay Slow slew rate = on V _{CCIO} = 5.0 V or 3.3 V	C1 = 35 pF (2)		10.0		-		14.0	ns
t_{XZ}	Output buffer disable delay	C1 = 5 pF		6.0		6.0		10.0	ns
t _{SU}	Register setup time		4.0		4.0		4.0		ns
t _H	Register hold time		4.0		4.0		5.0		ns
t _{FSU}	Register setup time of fast input	(2)	2.0		-		4.0		ns
t _{FH}	Register hold time of fast input	(2)	2.0		-		3.0		ns
t _{RD}	Register delay			1.0		1.0		1.0	ns
t _{COMB}	Combinatorial delay			1.0		1.0		1.0	ns
t _{IC}	Array clock delay			6.0		6.0		8.0	ns
t _{EN}	Register enable time			6.0		6.0		8.0	ns
t _{GLOB}	Global control delay			1.0		1.0		3.0	ns
t _{PRE}	Register preset time			4.0		4.0		4.0	ns
t _{CLR}	Register clear time			4.0		4.0		4.0	ns
t _{PIA}	PIA delay			2.0		2.0		3.0	ns
t _{LPA}	Low-power adder	(8)		13.0		15.0		15.0	ns

Table 27. EPM7032S External Timing Parameters (Part 2 of 2) Note (1)												
Symbol	Parameter	Conditions		Speed Grade								
			-	5	-6		-7		-10			
			Min	Max	Min	Max	Min	Max	Min	Max		
f _{ACNT}	Maximum internal array clock frequency	(4)	175.4		142.9		116.3		100.0		MHz	
f _{MAX}	Maximum clock frequency	(5)	250.0		200.0		166.7		125.0		MHz	

Table 2	Table 28. EPM7032S Internal Timing Parameters Note (1) Symbol Parameter Conditions Speed Grade Unit											
Symbol	Parameter	Conditions	Speed Grade									
			-5		-	6	-	7		10		
			Min	Max	Min	Max	Min	Max	Min	Max		
t _{IN}	Input pad and buffer delay			0.2		0.2		0.3		0.5	ns	
t _{IO}	I/O input pad and buffer delay			0.2		0.2		0.3		0.5	ns	
t _{FIN}	Fast input delay			2.2		2.1		2.5		1.0	ns	
t _{SEXP}	Shared expander delay			3.1		3.8		4.6		5.0	ns	
t _{PEXP}	Parallel expander delay			0.9		1.1		1.4		0.8	ns	
t _{LAD}	Logic array delay			2.6		3.3		4.0		5.0	ns	
t _{LAC}	Logic control array delay			2.5		3.3		4.0		5.0	ns	
t _{IOE}	Internal output enable delay			0.7		0.8		1.0		2.0	ns	
t _{OD1}	Output buffer and pad delay	C1 = 35 pF		0.2		0.3		0.4		1.5	ns	
t _{OD2}	Output buffer and pad delay	C1 = 35 pF (6)		0.7		0.8		0.9		2.0	ns	
t _{OD3}	Output buffer and pad delay	C1 = 35 pF		5.2		5.3		5.4		5.5	ns	
t _{ZX1}	Output buffer enable delay	C1 = 35 pF		4.0		4.0		4.0		5.0	ns	
t _{ZX2}	Output buffer enable delay	C1 = 35 pF (6)		4.5		4.5		4.5		5.5	ns	
t _{ZX3}	Output buffer enable delay	C1 = 35 pF		9.0		9.0		9.0		9.0	ns	
t _{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		4.0		5.0	ns	
t _{SU}	Register setup time		0.8		1.0		1.3		2.0		ns	
t _H	Register hold time		1.7		2.0		2.5		3.0		ns	
t _{FSU}	Register setup time of fast input		1.9		1.8		1.7		3.0		ns	
t _{FH}	Register hold time of fast input		0.6		0.7		0.8		0.5		ns	
t _{RD}	Register delay			1.2		1.6		1.9		2.0	ns	
t _{COMB}	Combinatorial delay			0.9		1.1		1.4		2.0	ns	
t _{IC}	Array clock delay			2.7		3.4		4.2		5.0	ns	
t _{EN}	Register enable time			2.6		3.3		4.0		5.0	ns	
t _{GLOB}	Global control delay			1.6		1.4		1.7		1.0	ns	
t _{PRE}	Register preset time			2.0		2.4		3.0		3.0	ns	
t _{CLR}	Register clear time			2.0		2.4		3.0		3.0	ns	

Notes to tables:

- These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode.

Tables 33 and 34 show the EPM7160S AC operating conditions.

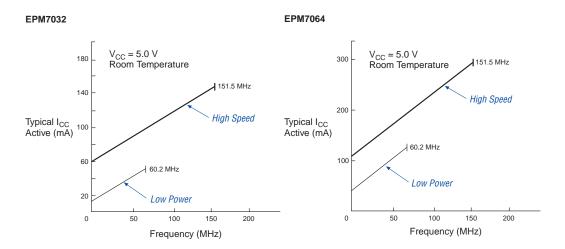
Table 33. EPM7160S External Timing Parameters (Part 1 of 2) Note (1)												
Symbol	Parameter	Conditions Speed Grade									Unit	
			-6		-	-7		-10		-15		
			Min	Max	Min	Max	Min	Max	Min	Max		
t _{PD1}	Input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns	
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns	
t _{SU}	Global clock setup time		3.4		4.2		7.0		11.0		ns	
t _H	Global clock hold time		0.0		0.0		0.0		0.0		ns	
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		3.0		ns	
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.5		0.0		ns	
t _{CO1}	Global clock to output delay	C1 = 35 pF		3.9		4.8		5		8	ns	
t _{CH}	Global clock high time		3.0		3.0		4.0		5.0		ns	
t _{CL}	Global clock low time		3.0		3.0		4.0		5.0		ns	
t _{ASU}	Array clock setup time		0.9		1.1		2.0		4.0		ns	
t _{AH}	Array clock hold time		1.7		2.1		3.0		4.0		ns	
t _{ACO1}	Array clock to output delay	C1 = 35 pF		6.4		7.9		10.0		15.0	ns	
t _{ACH}	Array clock high time		3.0		3.0		4.0		6.0		ns	
t _{ACL}	Array clock low time		3.0		3.0		4.0		6.0		ns	
t _{CPPW}	Minimum pulse width for clear and preset	(2)	2.5		3.0		4.0		6.0		ns	
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		1.0		ns	
t _{CNT}	Minimum global clock period			6.7		8.2		10.0		13.0	ns	
f _{CNT}	Maximum internal global clock frequency	(4)	149.3		122.0		100.0		76.9		MHz	

Table 33. EPM7160S External Timing Parameters (Part 2 of 2) Note (1)											
Symbol	Parameter	Conditions	Speed Grade (
			-	-6 -7			-10		-15		
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{ACNT}	Minimum array clock period			6.7		8.2		10.0		13.0	ns
f _{ACNT}	Maximum internal array clock frequency	(4)	149.3		122.0		100.0		76.9		MHz
f _{MAX}	Maximum clock frequency	(5)	166.7		166.7		125.0		100.0		MHz

Table 34. EPM7160S Internal Timing Parameters (Part 1 of 2) Note (1)											
Symbol	Parameter	Conditions	Speed Grade								
			-6		-7		-10		-15		
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.2		0.3		0.5		2.0	ns
t _{IO}	I/O input pad and buffer delay			0.2		0.3		0.5		2.0	ns
t _{FIN}	Fast input delay			2.6		3.2		1.0		2.0	ns
t _{SEXP}	Shared expander delay			3.6		4.3		5.0		8.0	ns
t _{PEXP}	Parallel expander delay			1.0		1.3		0.8		1.0	ns
t_{LAD}	Logic array delay			2.8		3.4		5.0		6.0	ns
t _{LAC}	Logic control array delay			2.8		3.4		5.0		6.0	ns
t _{IOE}	Internal output enable delay			0.7		0.9		2.0		3.0	ns
t _{OD1}	Output buffer and pad delay	C1 = 35 pF		0.4		0.5		1.5		4.0	ns
t _{OD2}	Output buffer and pad delay	C1 = 35 pF (6)		0.9		1.0		2.0		5.0	ns
t _{OD3}	Output buffer and pad delay	C1 = 35 pF		5.4		5.5		5.5		8.0	ns
t_{ZX1}	Output buffer enable delay	C1 = 35 pF		4.0		4.0		5.0		6.0	ns
t _{ZX2}	Output buffer enable delay	C1 = 35 pF (6)		4.5		4.5		5.5		7.0	ns
t _{ZX3}	Output buffer enable delay	C1 = 35 pF		9.0		9.0		9.0		10.0	ns
t _{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		5.0		6.0	ns
t _{SU}	Register setup time		1.0		1.2		2.0		4.0		ns
t _H	Register hold time		1.6		2.0		3.0		4.0		ns
t _{FSU}	Register setup time of fast input		1.9		2.2		3.0		2.0		ns
t _{FH}	Register hold time of fast input		0.6		0.8		0.5		1.0		ns
t_{RD}	Register delay			1.3		1.6		2.0		1.0	ns
t _{COMB}	Combinatorial delay			1.0		1.3		2.0		1.0	ns
t _{IC}	Array clock delay			2.9		3.5		5.0		6.0	ns
t _{EN}	Register enable time			2.8		3.4		5.0		6.0	ns
t _{GLOB}	Global control delay			2.0		2.4		1.0		1.0	ns
t _{PRE}	Register preset time			2.4		3.0		3.0		4.0	ns

Table 34. EPM7160S Internal Timing Parameters (Part 2 of 2) Note (1)												
Symbol	Parameter	Conditions		Speed Grade								
			-	-6 -7			-10		-15			
			Min	Max	Min	Max	Min	Max	Min	Max		
t _{CLR}	Register clear time			2.4		3.0		3.0		4.0	ns	
t _{PIA}	PIA delay	(7)		1.6		2.0		1.0		2.0	ns	
t _{LPA}	Low-power adder	(8)		11.0		10.0		11.0		13.0	ns	

Notes to tables:


- These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells running in the low-power mode.

Tables 35 and 36 show the EPM7192S AC operating conditions.

Table 35. EPM7192S External Timing Parameters (Part 1 of 2) Note (1)											
Symbol	Parameter	Conditions	Speed Grade								
			-7		-10		-1	15	1		
			Min	Max	Min	Max	Min	Max			
t _{PD1}	Input to non-registered output	C1 = 35 pF		7.5		10.0		15.0	ns		
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		7.5		10.0		15.0	ns		
t _{SU}	Global clock setup time		4.1		7.0		11.0		ns		
t _H	Global clock hold time		0.0		0.0		0.0		ns		
t _{FSU}	Global clock setup time of fast input		3.0		3.0		3.0		ns		
t _{FH}	Global clock hold time of fast input		0.0		0.5		0.0		ns		
t _{CO1}	Global clock to output delay	C1 = 35 pF		4.7		5.0		8.0	ns		
t _{CH}	Global clock high time		3.0		4.0		5.0		ns		
t _{CL}	Global clock low time		3.0		4.0		5.0		ns		
t _{ASU}	Array clock setup time		1.0		2.0		4.0		ns		

Figure 14 shows typical supply current versus frequency for MAX 7000 devices.

Figure 14. I_{CC} vs. Frequency for MAX 7000 Devices (Part 1 of 2)

EPM7096

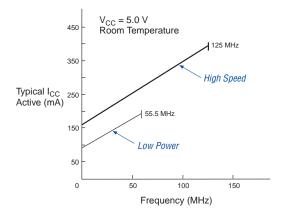
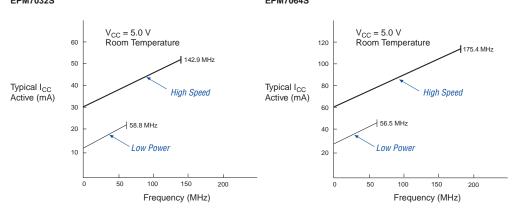
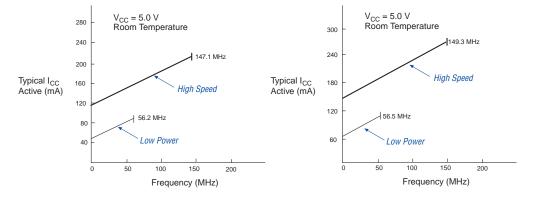
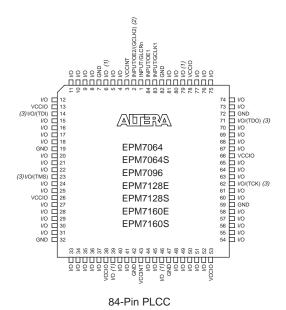




Figure 15 shows typical supply current versus frequency for MAX 7000S devices.



EPM7128S EPM7160S

Figure 18. 84-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

Notes:

- (1) Pins 6, 39, 46, and 79 are no-connect (N.C.) pins on EPM7096, EPM7160E, and EPM7160S devices.
- (2) The pin functions shown in parenthesis are only available in MAX 7000E and MAX 7000S devices.
- (3) JTAG ports are available in MAX 7000S devices only.

Figure 21. 192-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

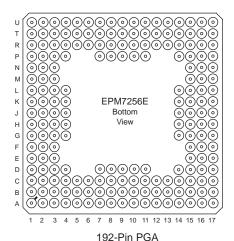
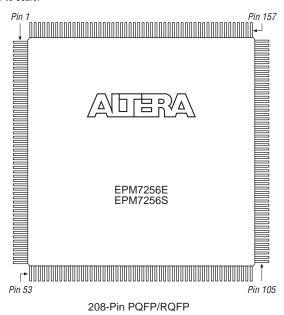



Figure 22. 208-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 www.altera.com Applications Hotline: (800) 800-EPLD Literature Services: literature@altera.com Copyright © 2005 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

I.S. EN ISO 9001