Welcome to **E-XFL.COM** **Understanding Embedded - CPLDs (Complex Programmable Logic Devices)** Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware. # **Applications of Embedded - CPLDs** | Details | | |---------------------------------|--| | Product Status | Obsolete | | Programmable Type | In System Programmable | | Delay Time tpd(1) Max | 7.5 ns | | Voltage Supply - Internal | 4.75V ~ 5.25V | | Number of Logic Elements/Blocks | 8 | | Number of Macrocells | 128 | | Number of Gates | 2500 | | Number of I/O | 84 | | Operating Temperature | 0°C ~ 70°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 100-TQFP | | Supplier Device Package | 100-TQFP (14x14) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epm7128stc100-7 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong - Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, and VeriBest - Programming support - Altera's Master Programming Unit (MPU) and programming hardware from third-party manufacturers program all MAX 7000 devices - The BitBlasterTM serial download cable, ByteBlasterMVTM parallel port download cable, and MasterBlasterTM serial/universal serial bus (USB) download cable program MAX 7000S devices # General Description The MAX 7000 family of high-density, high-performance PLDs is based on Altera's second-generation MAX architecture. Fabricated with advanced CMOS technology, the EEPROM-based MAX 7000 family provides 600 to 5,000 usable gates, ISP, pin-to-pin delays as fast as 5 ns, and counter speeds of up to 175.4 MHz. MAX 7000S devices in the -5, -6, -7, and -10 speed grades as well as MAX 7000 and MAX 7000E devices in -5, -6, -7, -10P, and -12P speed grades comply with the PCI Special Interest Group (PCI SIG) *PCI Local Bus Specification, Revision 2.2.* See Table 3 for available speed grades. | Device | | | | | Speed | l Grade | | | | | |----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | | -5 | -6 | -7 | -10P | -10 | -12P | -12 | -15 | -15T | -20 | | EPM7032 | | ✓ | ✓ | | ✓ | | ✓ | ✓ | ✓ | | | EPM7032S | ✓ | ✓ | ✓ | | ✓ | | | | | | | EPM7064 | | ✓ | ✓ | | ~ | | ✓ | ✓ | | | | EPM7064S | ✓ | ✓ | ✓ | | ~ | | | | | | | EPM7096 | | | ✓ | | ~ | | ✓ | ✓ | | | | EPM7128E | | | ✓ | ✓ | ~ | | ✓ | ✓ | | ✓ | | EPM7128S | | ✓ | ✓ | | ~ | | | ✓ | | | | EPM7160E | | | | ✓ | ✓ | | ✓ | ✓ | | ✓ | | EPM7160S | | ✓ | ✓ | | ~ | | | ✓ | | | | EPM7192E | | | | | | ✓ | ✓ | ✓ | | ✓ | | EPM7192S | | | ✓ | | ✓ | | | ✓ | | | | EPM7256E | | | | | | ✓ | ✓ | ✓ | | ✓ | | EPM7256S | | | ✓ | | ✓ | | | ✓ | | | Each LAB is fed by the following signals: - 36 signals from the PIA that are used for general logic inputs - Global controls that are used for secondary register functions - Direct input paths from I/O pins to the registers that are used for fast setup times for MAX 7000E and MAX 7000S devices ### **Macrocells** The MAX 7000 macrocell can be individually configured for either sequential or combinatorial logic operation. The macrocell consists of three functional blocks: the logic array, the product-term select matrix, and the programmable register. The macrocell of EPM7032, EPM7064, and EPM7096 devices is shown in Figure 3. Figure 3. EPM7032, EPM7064 & EPM7096 Device Macrocell Figure 8. I/O Control Block of MAX 7000 Devices ### EPM7032, EPM7064 & EPM7096 Devices #### MAX 7000E & MAX 7000S Devices #### Note: (1) The open-drain output option is available only in MAX 7000S devices. For more information on using the Jam language, refer to AN 122: Using Jam STAPL for ISP & ICR via an Embedded Processor. The ISP circuitry in MAX 7000S devices is compatible with IEEE Std. 1532 specification. The IEEE Std. 1532 is a standard developed to allow concurrent ISP between multiple PLD vendors. ## **Programming Sequence** During in-system programming, instructions, addresses, and data are shifted into the MAX 7000S device through the TDI input pin. Data is shifted out through the TDO output pin and compared against the expected data. Programming a pattern into the device requires the following six ISP stages. A stand-alone verification of a programmed pattern involves only stages 1, 2, 5, and 6. - Enter ISP. The enter ISP stage ensures that the I/O pins transition smoothly from user mode to ISP mode. The enter ISP stage requires 1 ms. - 2. *Check ID*. Before any program or verify process, the silicon ID is checked. The time required to read this silicon ID is relatively small compared to the overall programming time. - 3. *Bulk Erase*. Erasing the device in-system involves shifting in the instructions to erase the device and applying one erase pulse of 100 ms. - Program. Programming the device in-system involves shifting in the address and data and then applying the programming pulse to program the EEPROM cells. This process is repeated for each EEPROM address. - Verify. Verifying an Altera device in-system involves shifting in addresses, applying the read pulse to verify the EEPROM cells, and shifting out the data for comparison. This process is repeated for each EEPROM address. - 6. Exit ISP. An exit ISP stage ensures that the I/O pins transition smoothly from ISP mode to user mode. The exit ISP stage requires 1 ms. By using an external 5.0-V pull-up resistor, output pins on MAX 7000S devices can be set to meet 5.0-V CMOS input voltages. When $V_{\rm CCIO}$ is 3.3 V, setting the open drain option will turn off the output pull-up transistor, allowing the external pull-up resistor to pull the output high enough to meet 5.0-V CMOS input voltages. When $V_{\rm CCIO}$ is 5.0 V, setting the output drain option is not necessary because the pull-up transistor will already turn off when the pin exceeds approximately 3.8 V, allowing the external pull-up resistor to pull the output high enough to meet 5.0-V CMOS input voltages. #### Slew-Rate Control The output buffer for each MAX 7000E and MAX 7000S I/O pin has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A faster slew rate provides high-speed transitions for high-performance systems. However, these fast transitions may introduce noise transients into the system. A slow slew rate reduces system noise, but adds a nominal delay of 4 to 5 ns. In MAX 7000E devices, when the Turbo Bit is turned off, the slew rate is set for low noise performance. For MAX 7000S devices, each I/O pin has an individual EEPROM bit that controls the slew rate, allowing designers to specify the slew rate on a pin-by-pin basis. # Programming with External Hardware MAX 7000 devices can be programmed on Windows-based PCs with the Altera Logic Programmer card, the Master Programming Unit (MPU), and the appropriate device adapter. The MPU performs a continuity check to ensure adequate electrical contact between the adapter and the device. For more information, see the *Altera Programming Hardware Data Sheet*. The Altera development system can use text- or waveform-format test vectors created with the Text Editor or Waveform Editor to test the programmed device. For added design verification, designers can perform functional testing to compare the functional behavior of a MAX 7000 device with the results of simulation. Moreover, Data I/O, BP Microsystems, and other programming hardware manufacturers also provide programming support for Altera devices. For more information, see the *Programming Hardware Manufacturers*. The instruction register length of MAX 7000S devices is 10 bits. Tables 10 and 11 show the boundary-scan register length and device IDCODE information for MAX 7000S devices. | Table 10. MAX 7000S Boundary-Scan Register Length | | | | | | | |---|-------|--|--|--|--|--| | Device Boundary-Scan Register Length | | | | | | | | EPM7032S | 1 (1) | | | | | | | EPM7064S | 1 (1) | | | | | | | EPM7128S | 288 | | | | | | | EPM7160S | 312 | | | | | | | EPM7192S | 360 | | | | | | | EPM7256S | 480 | | | | | | #### Note: (1) This device does not support JTAG boundary-scan testing. Selecting either the EXTEST or SAMPLE/PRELOAD instruction will select the one-bit bypass register. | Table 11. 32-Bit MAX 7000 Device IDCODE Note (1) | | | | | | | | | | |--|---------------------|-----------------------|--------------------------------------|------------------|--|--|--|--|--| | Device | | IDCODE (32 Bits) | | | | | | | | | | Version
(4 Bits) | Part Number (16 Bits) | Manufacturer's
Identity (11 Bits) | 1 (1 Bit)
(2) | | | | | | | EPM7032S | 0000 | 0111 0000 0011 0010 | 00001101110 | 1 | | | | | | | EPM7064S | 0000 | 0111 0000 0110 0100 | 00001101110 | 1 | | | | | | | EPM7128S | 0000 | 0111 0001 0010 1000 | 00001101110 | 1 | | | | | | | EPM7160S | 0000 | 0111 0001 0110 0000 | 00001101110 | 1 | | | | | | | EPM7192S | 0000 | 0111 0001 1001 0010 | 00001101110 | 1 | | | | | | | EPM7256S | 0000 | 0111 0010 0101 0110 | 00001101110 | 1 | | | | | | #### Notes: - (1) The most significant bit (MSB) is on the left. - (2) The least significant bit (LSB) for all JTAG IDCODEs is 1. # Operating Conditions Tables 13 through 18 provide information about absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for 5.0-V MAX 7000 devices. | Table 1 | Table 13. MAX 7000 5.0-V Device Absolute Maximum Ratings Note (1) | | | | | | | | | | | |------------------|---|------------------------------------|------|-----|------|--|--|--|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | | | | V _{CC} | Supply voltage | With respect to ground (2) | -2.0 | 7.0 | V | | | | | | | | VI | DC input voltage | | -2.0 | 7.0 | V | | | | | | | | I _{OUT} | DC output current, per pin | | -25 | 25 | mA | | | | | | | | T _{STG} | Storage temperature | No bias | -65 | 150 | ° C | | | | | | | | T _{AMB} | Ambient temperature | Under bias | -65 | 135 | ° C | | | | | | | | TJ | Junction temperature | Ceramic packages, under bias | | 150 | °C | | | | | | | | | | PQFP and RQFP packages, under bias | | 135 | °C | | | | | | | | Symbol | Parameter | Conditions | Min | Max | Unit | |--------------------|---|--------------------|----------------|--------------------------|------| | V _{CCINT} | Supply voltage for internal logic and input buffers | (3), (4), (5) | 4.75
(4.50) | 5.25
(5.50) | V | | V _{CCIO} | Supply voltage for output drivers, 5.0-V operation | (3), (4) | 4.75
(4.50) | 5.25
(5.50) | V | | | Supply voltage for output drivers, 3.3-V operation | (3), (4), (6) | 3.00
(3.00) | 3.60
(3.60) | V | | V _{CCISP} | Supply voltage during ISP | (7) | 4.75 | 5.25 | V | | V _I | Input voltage | | -0.5 (8) | V _{CCINT} + 0.5 | V | | Vo | Output voltage | | 0 | V _{CCIO} | V | | T _A | Ambient temperature | For commercial use | 0 | 70 | °C | | | | For industrial use | -40 | 85 | °C | | TJ | Junction temperature | For commercial use | 0 | 90 | °C | | | | For industrial use | -40 | 105 | ° C | | t _R | Input rise time | | | 40 | ns | | t _F | Input fall time | | | 40 | ns | | Symbol | Parameter | Conditions | Min | Max | Unit | |-----------------|--|--|-------------------------|--------------------------|------| | V _{IH} | High-level input voltage | | 2.0 | V _{CCINT} + 0.5 | V | | V _{IL} | Low-level input voltage | | -0.5 (8) | 0.8 | V | | V _{OH} | 5.0-V high-level TTL output voltage | I _{OH} = -4 mA DC, V _{CCIO} = 4.75 V (10) | 2.4 | | V | | | 3.3-V high-level TTL output voltage | $I_{OH} = -4 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V } (10)$ | 2.4 | | V | | | 3.3-V high-level CMOS output voltage | $I_{OH} = -0.1 \text{ mA DC}, V_{CCIO} = 3.0 \text{ V} (10)$ | V _{CCIO} - 0.2 | | V | | V _{OL} | 5.0-V low-level TTL output voltage | I _{OL} = 12 mA DC, V _{CCIO} = 4.75 V (11) | | 0.45 | V | | | 3.3-V low-level TTL output voltage | I _{OL} = 12 mA DC, V _{CCIO} = 3.00 V (11) | | 0.45 | V | | | 3.3-V low-level CMOS output voltage | $I_{OL} = 0.1 \text{ mA DC}, V_{CCIO} = 3.0 \text{ V}(11)$ | | 0.2 | V | | lı | Leakage current of dedicated input pins | $V_I = -0.5 \text{ to } 5.5 \text{ V } (11)$ | -10 | 10 | μА | | l _{OZ} | I/O pin tri-state output off-state current | $V_I = -0.5 \text{ to } 5.5 \text{ V } (11), (12)$ | -40 | 40 | μА | | Table 1 | Table 16. MAX 7000 5.0-V Device Capacitance: EPM7032, EPM7064 & EPM7096 Devices | | | | | | |------------------|---|-------------------------------------|-----|-----|------|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | C _{IN} | Input pin capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 12 | pF | | | C _{I/O} | I/O pin capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 12 | pF | | | Table 1 | Table 17. MAX 7000 5.0-V Device Capacitance: MAX 7000E Devices Note (13) | | | | | | | | | |------------------|--|-------------------------------------|-----|-----|------|--|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | | C _{IN} | Input pin capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 15 | pF | | | | | | C _{I/O} | I/O pin capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 15 | pF | | | | | | Table 1 | Table 18. MAX 7000 5.0-V Device Capacitance: MAX 7000S Devices Note (13) | | | | | | | | |------------------|--|-------------------------------------|-----|-----|------|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | C _{IN} | Dedicated input pin capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 10 | pF | | | | | C _{I/O} | I/O pin capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 10 | pF | | | | Figure 12. MAX 7000 Timing Model #### Notes: - (1) Only available in MAX 7000E and MAX 7000S devices. - (2) Not available in 44-pin devices. The timing characteristics of any signal path can be derived from the timing model and parameters of a particular device. External timing parameters, which represent pin-to-pin timing delays, can be calculated as the sum of internal parameters. Figure 13 shows the internal timing relationship of internal and external delay parameters. For more infomration, see *Application Note* 94 (Understanding MAX 7000 *Timing*). ### Figure 13. Switching Waveforms 30 Altera Corporation Register Output to Pin | Symbol | Parameter | Conditions | Speed | Grade -6 | Speed (| Unit | | |-------------------|---|----------------|-------|----------|---------|------|----| | | | | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.4 | | 0.5 | ns | | t_{IO} | I/O input pad and buffer delay | | | 0.4 | | 0.5 | ns | | t _{FIN} | Fast input delay | (2) | | 0.8 | | 1.0 | ns | | t _{SEXP} | Shared expander delay | | | 3.5 | | 4.0 | ns | | t_{PEXP} | Parallel expander delay | | | 0.8 | | 0.8 | ns | | t_{LAD} | Logic array delay | | | 2.0 | | 3.0 | ns | | t _{LAC} | Logic control array delay | | | 2.0 | | 3.0 | ns | | t _{IOE} | Internal output enable delay | (2) | | | | 2.0 | ns | | t _{OD1} | Output buffer and pad delay
Slow slew rate = off, V _{CCIO} = 5.0 V | C1 = 35 pF | | 2.0 | | 2.0 | ns | | t _{OD2} | Output buffer and pad delay
Slow slew rate = off, V _{CCIO} = 3.3 V | C1 = 35 pF (7) | | 2.5 | | 2.5 | ns | | t _{OD3} | Output buffer and pad delay
Slow slew rate = on,
V _{CCIO} = 5.0 V or 3.3 V | C1 = 35 pF (2) | | 7.0 | | 7.0 | ns | | t _{ZX1} | Output buffer enable delay
Slow slew rate = off, V _{CCIO} = 5.0 V | C1 = 35 pF | | 4.0 | | 4.0 | ns | | t _{ZX2} | Output buffer enable delay
Slow slew rate = off, V _{CCIO} = 3.3 V | C1 = 35 pF (7) | | 4.5 | | 4.5 | ns | | t _{ZX3} | Output buffer enable delay
Slow slew rate = on
V _{CCIO} = 5.0 V or 3.3 V | C1 = 35 pF (2) | | 9.0 | | 9.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 4.0 | ns | | t_{SU} | Register setup time | | 3.0 | | 3.0 | | ns | | t_H | Register hold time | | 1.5 | | 2.0 | | ns | | t _{FSU} | Register setup time of fast input | (2) | 2.5 | | 3.0 | | ns | | t_{FH} | Register hold time of fast input | (2) | 0.5 | | 0.5 | | ns | | t_{RD} | Register delay | | | 0.8 | | 1.0 | ns | | t _{COMB} | Combinatorial delay | | | 0.8 | | 1.0 | ns | | t _{IC} | Array clock delay | | | 2.5 | | 3.0 | ns | | t _{EN} | Register enable time | | | 2.0 | | 3.0 | ns | | t _{GLOB} | Global control delay | | | 0.8 | | 1.0 | ns | | t _{PRE} | Register preset time | | | 2.0 | | 2.0 | ns | | t _{CLR} | Register clear time | | | 2.0 | | 2.0 | ns | | t _{PIA} | PIA delay | | | 0.8 | | 1.0 | ns | | t_{LPA} | Low-power adder | (8) | | 10.0 | | 10.0 | ns | | Table 2 | Table 21. MAX 7000 & MAX 7000E External Timing Parameters Note (1) | | | | | | | | | | |-------------------|--|----------------|---------|------------------|-------|------------------------|-----|--|--|--| | Symbol | Parameter | Conditions | | Speed Grade | | | | | | | | | | | MAX 700 | MAX 7000E (-10P) | | 000 (-10)
00E (-10) | | | | | | | | | Min | Max | Min | Max | | | | | | t _{PD1} | Input to non-registered output | C1 = 35 pF | | 10.0 | | 10.0 | ns | | | | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF | | 10.0 | | 10.0 | ns | | | | | t _{SU} | Global clock setup time | | 7.0 | | 8.0 | | ns | | | | | t _H | Global clock hold time | | 0.0 | | 0.0 | | ns | | | | | t _{FSU} | Global clock setup time of fast input | (2) | 3.0 | | 3.0 | | ns | | | | | t _{FH} | Global clock hold time of fast input | (2) | 0.5 | | 0.5 | | ns | | | | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 5.0 | | 5 | ns | | | | | t _{CH} | Global clock high time | | 4.0 | | 4.0 | | ns | | | | | t _{CL} | Global clock low time | | 4.0 | | 4.0 | | ns | | | | | t _{ASU} | Array clock setup time | | 2.0 | | 3.0 | | ns | | | | | t _{AH} | Array clock hold time | | 3.0 | | 3.0 | | ns | | | | | t _{ACO1} | Array clock to output delay | C1 = 35 pF | | 10.0 | | 10.0 | ns | | | | | t _{ACH} | Array clock high time | | 4.0 | | 4.0 | | ns | | | | | t _{ACL} | Array clock low time | | 4.0 | | 4.0 | | ns | | | | | t _{CPPW} | Minimum pulse width for clear and preset | (3) | 4.0 | | 4.0 | | ns | | | | | t _{ODH} | Output data hold time after clock | C1 = 35 pF (4) | 1.0 | | 1.0 | | ns | | | | | t _{CNT} | Minimum global clock period | | | 10.0 | | 10.0 | ns | | | | | f _{CNT} | Maximum internal global clock frequency | (5) | 100.0 | | 100.0 | | MHz | | | | | t _{ACNT} | Minimum array clock period | | | 10.0 | | 10.0 | ns | | | | | f _{ACNT} | Maximum internal array clock frequency | (5) | 100.0 | | 100.0 | | MHz | | | | | f _{MAX} | Maximum clock frequency | (6) | 125.0 | | 125.0 | | MHz | | | | | Symbol | Parameter | Conditions | Speed Grade | | | | | | | |-------------------|--|----------------|-------------|-----------|--------|------|----|--|--| | | | | MAX 700 | OE (-10P) | MAX 70 | | | | | | | | | Min | Max | Min | Max | | | | | t _{IN} | Input pad and buffer delay | | | 0.5 | | 1.0 | ns | | | | t _{IO} | I/O input pad and buffer delay | | | 0.5 | | 1.0 | ns | | | | t _{FIN} | Fast input delay | (2) | | 1.0 | | 1.0 | ns | | | | t _{SEXP} | Shared expander delay | | | 5.0 | | 5.0 | ns | | | | t _{PEXP} | Parallel expander delay | | | 0.8 | | 0.8 | ns | | | | t_{LAD} | Logic array delay | | | 5.0 | | 5.0 | ns | | | | t _{LAC} | Logic control array delay | | | 5.0 | | 5.0 | ns | | | | t _{IOE} | Internal output enable delay | (2) | | 2.0 | | 2.0 | ns | | | | t _{OD1} | Output buffer and pad delay
Slow slew rate = off
V _{CCIO} = 5.0 V | C1 = 35 pF | | 1.5 | | 2.0 | ns | | | | t _{OD2} | Output buffer and pad delay
Slow slew rate = off
V _{CCIO} = 3.3 V | C1 = 35 pF (7) | | 2.0 | | 2.5 | ns | | | | t _{OD3} | Output buffer and pad delay
Slow slew rate = on
V _{CCIO} = 5.0 V or 3.3 V | C1 = 35 pF (2) | | 5.5 | | 6.0 | ns | | | | t _{ZX1} | Output buffer enable delay
Slow slew rate = off
V _{CCIO} = 5.0 V | C1 = 35 pF | | 5.0 | | 5.0 | ns | | | | t _{ZX2} | Output buffer enable delay
Slow slew rate = off
V _{CCIO} = 3.3 V | C1 = 35 pF (7) | | 5.5 | | 5.5 | ns | | | | t _{ZX3} | Output buffer enable delay
Slow slew rate = on
V _{CCIO} = 5.0 V or 3.3 V | C1 = 35 pF (2) | | 9.0 | | 9.0 | ns | | | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 5.0 | | 5.0 | ns | | | | t_{SU} | Register setup time | | 2.0 | | 3.0 | | ns | | | | t_H | Register hold time | | 3.0 | | 3.0 | | ns | | | | t _{FSU} | Register setup time of fast input | (2) | 3.0 | | 3.0 | | ns | | | | t_{FH} | Register hold time of fast input | (2) | 0.5 | | 0.5 | | ns | | | | t _{RD} | Register delay | | | 2.0 | | 1.0 | ns | | | | t _{COMB} | Combinatorial delay | | | 2.0 | | 1.0 | ns | | | | t _{IC} | Array clock delay | | | 5.0 | | 5.0 | ns | | | | t_{EN} | Register enable time | | | 5.0 | | 5.0 | ns | | | | t _{GLOB} | Global control delay | | | 1.0 | | 1.0 | ns | | | | t _{PRE} | Register preset time | | | 3.0 | | 3.0 | ns | | | | t _{CLR} | Register clear time | | | 3.0 | | 3.0 | ns | | | | t_{PIA} | PIA delay | | | 1.0 | | 1.0 | ns | | | | t _{LPA} | Low-power adder | (8) | | 11.0 | | 11.0 | ns | | | | Table 23. MAX 7000 & MAX 7000E External Timing Parameters Note (1) | | | | | | | | | | | |--|--|----------------|-------------|-----------|--------|------|-----|--|--|--| | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | | | | | MAX 700 | 0E (-12P) | MAX 70 | = | | | | | | | | | Min | Max | Min | Max | | | | | | t _{PD1} | Input to non-registered output | C1 = 35 pF | | 12.0 | | 12.0 | ns | | | | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF | | 12.0 | | 12.0 | ns | | | | | t _{SU} | Global clock setup time | | 7.0 | | 10.0 | | ns | | | | | t _H | Global clock hold time | | 0.0 | | 0.0 | | ns | | | | | t _{FSU} | Global clock setup time of fast input | (2) | 3.0 | | 3.0 | | ns | | | | | t _{FH} | Global clock hold time of fast input | (2) | 0.0 | | 0.0 | | ns | | | | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 6.0 | | 6.0 | ns | | | | | t _{CH} | Global clock high time | | 4.0 | | 4.0 | | ns | | | | | t _{CL} | Global clock low time | | 4.0 | | 4.0 | | ns | | | | | t _{ASU} | Array clock setup time | | 3.0 | | 4.0 | | ns | | | | | t _{AH} | Array clock hold time | | 4.0 | | 4.0 | | ns | | | | | t _{ACO1} | Array clock to output delay | C1 = 35 pF | | 12.0 | | 12.0 | ns | | | | | t _{ACH} | Array clock high time | | 5.0 | | 5.0 | | ns | | | | | t _{ACL} | Array clock low time | | 5.0 | | 5.0 | | ns | | | | | t _{CPPW} | Minimum pulse width for clear and preset | (3) | 5.0 | | 5.0 | | ns | | | | | t _{ODH} | Output data hold time after clock | C1 = 35 pF (4) | 1.0 | | 1.0 | | ns | | | | | t _{CNT} | Minimum global clock period | | | 11.0 | | 11.0 | ns | | | | | f _{CNT} | Maximum internal global clock frequency | (5) | 90.9 | | 90.9 | | MHz | | | | | t _{ACNT} | Minimum array clock period | | | 11.0 | | 11.0 | ns | | | | | f _{ACNT} | Maximum internal array clock frequency | (5) | 90.9 | | 90.9 | | MHz | | | | | f _{MAX} | Maximum clock frequency | (6) | 125.0 | | 125.0 | | MHz | | | | | Table 2 | Table 25. MAX 7000 & MAX 7000E External Timing ParametersNote (1) | | | | | | | | | | | |-------------------|---|----------------|-------------|------|------|------|------|------|-----|--|--| | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | | | | | | -15 | | -15T | | -20 | | | | | | | | | Min | Max | Min | Max | Min | Max | | | | | t _{PD1} | Input to non-registered output | C1 = 35 pF | | 15.0 | | 15.0 | | 20.0 | ns | | | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF | | 15.0 | | 15.0 | | 20.0 | ns | | | | t _{SU} | Global clock setup time | | 11.0 | | 11.0 | | 12.0 | | ns | | | | t _H | Global clock hold time | | 0.0 | | 0.0 | | 0.0 | | ns | | | | t _{FSU} | Global clock setup time of fast input | (2) | 3.0 | | - | | 5.0 | | ns | | | | t _{FH} | Global clock hold time of fast input | (2) | 0.0 | | - | | 0.0 | | ns | | | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 8.0 | | 8.0 | | 12.0 | ns | | | | t _{CH} | Global clock high time | | 5.0 | | 6.0 | | 6.0 | | ns | | | | t _{CL} | Global clock low time | | 5.0 | | 6.0 | | 6.0 | | ns | | | | t _{ASU} | Array clock setup time | | 4.0 | | 4.0 | | 5.0 | | ns | | | | t _{AH} | Array clock hold time | | 4.0 | | 4.0 | | 5.0 | | ns | | | | t _{ACO1} | Array clock to output delay | C1 = 35 pF | | 15.0 | | 15.0 | | 20.0 | ns | | | | t _{ACH} | Array clock high time | | 6.0 | | 6.5 | | 8.0 | | ns | | | | t _{ACL} | Array clock low time | | 6.0 | | 6.5 | | 8.0 | | ns | | | | t _{CPPW} | Minimum pulse width for clear and preset | (3) | 6.0 | | 6.5 | | 8.0 | | ns | | | | t _{ODH} | Output data hold time after clock | C1 = 35 pF (4) | 1.0 | | 1.0 | | 1.0 | | ns | | | | t _{CNT} | Minimum global clock period | | | 13.0 | | 13.0 | | 16.0 | ns | | | | f _{CNT} | Maximum internal global clock frequency | (5) | 76.9 | | 76.9 | | 62.5 | | MHz | | | | t _{ACNT} | Minimum array clock period | | | 13.0 | | 13.0 | | 16.0 | ns | | | | f _{ACNT} | Maximum internal array clock frequency | (5) | 76.9 | | 76.9 | | 62.5 | | MHz | | | | f _{MAX} | Maximum clock frequency | (6) | 100 | | 83.3 | _ | 83.3 | _ | MHz | | | | Table 27. EPM7032S External Timing Parameters (Part 2 of 2) Note (1) | | | | | | | | | | | | |--|--|------------|-------------------------|--------------|-------|-----|-------|-----|-------|-----|-----| | Symbol | Parameter | Conditions | onditions Speed Grade I | | | | | | | | | | | | | - | -5 -6 -7 -10 | | | | | | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | f _{ACNT} | Maximum internal array clock frequency | (4) | 175.4 | | 142.9 | | 116.3 | | 100.0 | | MHz | | f _{MAX} | Maximum clock frequency | (5) | 250.0 | | 200.0 | | 166.7 | | 125.0 | | MHz | | Table 2 | Table 28. EPM7032S Internal Timing Parameters Note (1) | | | | | | | | | | | |-------------------|--|----------------|-------------|-----|-----|-----|-----|-----|-----|-----|----| | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | | | | | | -5 | | -6 | | -7 | | -10 | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | - | | t _{IN} | Input pad and buffer delay | | | 0.2 | | 0.2 | | 0.3 | | 0.5 | ns | | t _{IO} | I/O input pad and buffer delay | | | 0.2 | | 0.2 | | 0.3 | | 0.5 | ns | | t _{FIN} | Fast input delay | | | 2.2 | | 2.1 | | 2.5 | | 1.0 | ns | | t _{SEXP} | Shared expander delay | | | 3.1 | | 3.8 | | 4.6 | | 5.0 | ns | | t _{PEXP} | Parallel expander delay | | | 0.9 | | 1.1 | | 1.4 | | 0.8 | ns | | t _{LAD} | Logic array delay | | | 2.6 | | 3.3 | | 4.0 | | 5.0 | ns | | t _{LAC} | Logic control array delay | | | 2.5 | | 3.3 | | 4.0 | | 5.0 | ns | | t _{IOE} | Internal output enable delay | | | 0.7 | | 0.8 | | 1.0 | | 2.0 | ns | | t _{OD1} | Output buffer and pad delay | C1 = 35 pF | | 0.2 | | 0.3 | | 0.4 | | 1.5 | ns | | t _{OD2} | Output buffer and pad delay | C1 = 35 pF (6) | | 0.7 | | 0.8 | | 0.9 | | 2.0 | ns | | t _{OD3} | Output buffer and pad delay | C1 = 35 pF | | 5.2 | | 5.3 | | 5.4 | | 5.5 | ns | | t _{ZX1} | Output buffer enable delay | C1 = 35 pF | | 4.0 | | 4.0 | | 4.0 | | 5.0 | ns | | t _{ZX2} | Output buffer enable delay | C1 = 35 pF (6) | | 4.5 | | 4.5 | | 4.5 | | 5.5 | ns | | t _{ZX3} | Output buffer enable delay | C1 = 35 pF | | 9.0 | | 9.0 | | 9.0 | | 9.0 | ns | | t _{XZ} | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 4.0 | | 4.0 | | 5.0 | ns | | t _{SU} | Register setup time | | 0.8 | | 1.0 | | 1.3 | | 2.0 | | ns | | t _H | Register hold time | | 1.7 | | 2.0 | | 2.5 | | 3.0 | | ns | | t _{FSU} | Register setup time of fast input | | 1.9 | | 1.8 | | 1.7 | | 3.0 | | ns | | t _{FH} | Register hold time of fast input | | 0.6 | | 0.7 | | 0.8 | | 0.5 | | ns | | t _{RD} | Register delay | | | 1.2 | | 1.6 | | 1.9 | | 2.0 | ns | | t _{COMB} | Combinatorial delay | | | 0.9 | | 1.1 | | 1.4 | | 2.0 | ns | | t _{IC} | Array clock delay | | | 2.7 | | 3.4 | | 4.2 | | 5.0 | ns | | t _{EN} | Register enable time | | | 2.6 | | 3.3 | | 4.0 | | 5.0 | ns | | t _{GLOB} | Global control delay | | | 1.6 | | 1.4 | | 1.7 | | 1.0 | ns | | t _{PRE} | Register preset time | | | 2.0 | | 2.4 | | 3.0 | | 3.0 | ns | | t _{CLR} | Register clear time | | | 2.0 | | 2.4 | | 3.0 | | 3.0 | ns | #### Notes to tables: - These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms. - (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path. - (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking. - (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (5) The f_{MAX} values represent the highest frequency for pipelined data. - (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use. - (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value. - (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode. # Power Consumption Supply power (P) versus frequency (f_{MAX} in MHz) for MAX 7000 devices is calculated with the following equation: $$P = P_{INT} + P_{IO} = I_{CCINT} \times V_{CC} + P_{IO}$$ The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note* 74 (*Evaluating Power for Altera Devices*). The I_{CCINT} value, which depends on the switching frequency and the application logic, is calculated with the following equation: $$I_{CCINT} =$$ $$A \times MC_{TON} + B \times (MC_{DEV} - MC_{TON}) + C \times MC_{USED} \times f_{MAX} \times tog_{USED}$$ The parameters in this equation are shown below: MC_{TON} = Number of macrocells with the Turbo Bit option turned on, as reported in the MAX+PLUS II Report File (.rpt) MC_{DEV} = Number of macrocells in the device MC_{USED} = Total number of macrocells in the design, as reported in the MAX+PLUS II Report File (.rpt) f_{MAX} = Highest clock frequency to the device **tog**_{LC} = Average ratio of logic cells toggling at each clock (typically 0.125) A, B, C = Constants, shown in Table 39 Figures 16 through 22 show the package pin-out diagrams for MAX 7000 devices. Figure 16. 44-Pin Package Pin-Out Diagram Package outlines not drawn to scale. #### Notes: - (1) The pin functions shown in parenthesis are only available in MAX 7000E and MAX 7000S devices. - (2) JTAG ports are available in MAX 7000S devices only. # Figure 21. 192-Pin Package Pin-Out Diagram Package outline not drawn to scale. Figure 22. 208-Pin Package Pin-Out Diagram Package outline not drawn to scale. 101 Innovation Drive San Jose, CA 95134 (408) 544-7000 www.altera.com Applications Hotline: (800) 800-EPLD Literature Services: literature@altera.com Copyright © 2005 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. I.S. EN ISO 9001