Welcome to **E-XFL.COM** **Understanding Embedded - CPLDs (Complex Programmable Logic Devices)** Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware. ### **Applications of Embedded - CPLDs** | Details | | |---------------------------------|---| | Product Status | Obsolete | | Programmable Type | In System Programmable | | Delay Time tpd(1) Max | 7.5 ns | | Voltage Supply - Internal | 4.75V ~ 5.25V | | Number of Logic Elements/Blocks | 8 | | Number of Macrocells | 128 | | Number of Gates | 2500 | | Number of I/O | 84 | | Operating Temperature | 0°C ~ 70°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 100-TQFP | | Supplier Device Package | 100-TQFP (14x14) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epm7128stc100-7n | | | | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong - Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, and VeriBest - Programming support - Altera's Master Programming Unit (MPU) and programming hardware from third-party manufacturers program all MAX 7000 devices - The BitBlasterTM serial download cable, ByteBlasterMVTM parallel port download cable, and MasterBlasterTM serial/universal serial bus (USB) download cable program MAX 7000S devices # General Description The MAX 7000 family of high-density, high-performance PLDs is based on Altera's second-generation MAX architecture. Fabricated with advanced CMOS technology, the EEPROM-based MAX 7000 family provides 600 to 5,000 usable gates, ISP, pin-to-pin delays as fast as 5 ns, and counter speeds of up to 175.4 MHz. MAX 7000S devices in the -5, -6, -7, and -10 speed grades as well as MAX 7000 and MAX 7000E devices in -5, -6, -7, -10P, and -12P speed grades comply with the PCI Special Interest Group (PCI SIG) *PCI Local Bus Specification, Revision 2.2.* See Table 3 for available speed grades. | Device | Speed Grade | | | | | | | | | | | | |----------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|--| | | -5 | -6 | -7 | -10P | -10 | -12P | -12 | -15 | -15T | -20 | | | | EPM7032 | | ✓ | ✓ | | ✓ | | ✓ | ✓ | ✓ | | | | | EPM7032S | ✓ | ✓ | ✓ | | ✓ | | | | | | | | | EPM7064 | | ✓ | ✓ | | ~ | | ✓ | ✓ | | | | | | EPM7064S | ✓ | ✓ | ✓ | | ~ | | | | | | | | | EPM7096 | | | ✓ | | ~ | | ✓ | ✓ | | | | | | EPM7128E | | | ✓ | ✓ | ~ | | ✓ | ✓ | | ✓ | | | | EPM7128S | | ✓ | ✓ | | ~ | | | ✓ | | | | | | EPM7160E | | | | ✓ | ✓ | | ✓ | ✓ | | ✓ | | | | EPM7160S | | ✓ | ✓ | | ~ | | | ✓ | | | | | | EPM7192E | | | | | | ✓ | ✓ | ✓ | | ✓ | | | | EPM7192S | | | ✓ | | ✓ | | | ✓ | | | | | | EPM7256E | | | | | | ✓ | ✓ | ✓ | | ✓ | | | | EPM7256S | | | ✓ | | ✓ | | | ✓ | | | | | The MAX 7000 architecture includes four dedicated inputs that can be used as general-purpose inputs or as high-speed, global control signals (clock, clear, and two output enable signals) for each macrocell and I/O pin. Figure 1 shows the architecture of EPM7032, EPM7064, and EPM7096 devices. Figure 1. EPM7032, EPM7064 & EPM7096 Device Block Diagram Figure 2. MAX 7000E & MAX 7000S Device Block Diagram Figure 2 shows the architecture of MAX 7000E and MAX 7000S devices. **Logic Array Blocks** The MAX 7000 device architecture is based on the linking of high-performance, flexible, logic array modules called logic array blocks (LABs). LABs consist of 16-macrocell arrays, as shown in Figures 1 and 2. Multiple LABs are linked together via the programmable interconnect array (PIA), a global bus that is fed by all dedicated inputs, I/O pins, and macrocells. Each programmable register can be clocked in three different modes: - By a global clock signal. This mode achieves the fastest clock-tooutput performance. - By a global clock signal and enabled by an active-high clock enable. This mode provides an enable on each flipflop while still achieving the fast clock-to-output performance of the global clock. - By an array clock implemented with a product term. In this mode, the flipflop can be clocked by signals from buried macrocells or I/O pins. In EPM7032, EPM7064, and EPM7096 devices, the global clock signal is available from a dedicated clock pin, GCLK1, as shown in Figure 1. In MAX 7000E and MAX 7000S devices, two global clock signals are available. As shown in Figure 2, these global clock signals can be the true or the complement of either of the global clock pins, GCLK1 or GCLK2. Each register also supports asynchronous preset and clear functions. As shown in Figures 3 and 4, the product-term select matrix allocates product terms to control these operations. Although the product-term-driven preset and clear of the register are active high, active-low control can be obtained by inverting the signal within the logic array. In addition, each register clear function can be individually driven by the active-low dedicated global clear pin (GCLRn). Upon power-up, each register in the device will be set to a low state. All MAX 7000E and MAX 7000S I/O pins have a fast input path to a macrocell register. This dedicated path allows a signal to bypass the PIA and combinatorial logic and be driven to an input D flipflop with an extremely fast (2.5 ns) input setup time. ## **Expander Product Terms** Although most logic functions can be implemented with the five product terms available in each macrocell, the more complex logic functions require additional product terms. Another macrocell can be used to supply the required logic resources; however, the MAX 7000 architecture also allows both shareable and parallel expander product terms ("expanders") that provide additional product terms directly to any macrocell in the same LAB. These expanders help ensure that logic is synthesized with the fewest possible logic resources to obtain the fastest possible speed. #### Shareable Expanders Each LAB has 16 shareable expanders that can be viewed as a pool of uncommitted single product terms (one from each macrocell) with inverted outputs that feed back into the logic array. Each shareable expander can be used and shared by any or all macrocells in the LAB to build complex logic functions. A small delay (t_{SEXP}) is incurred when shareable expanders are used. Figure 5 shows how shareable expanders can feed multiple macrocells. Figure 5. Shareable Expanders Shareable expanders can be shared by any or all macrocells in an LAB. #### Parallel Expanders Parallel expanders are unused product terms that can be allocated to a neighboring macrocell to implement fast, complex logic functions. Parallel expanders allow up to 20 product terms to directly feed the macrocell OR logic, with five product terms provided by the macrocell and 15 parallel expanders provided by neighboring macrocells in the LAB. The compiler can allocate up to three sets of up to five parallel expanders automatically to the macrocells that require additional product terms. Each set of five parallel expanders incurs a small, incremental timing delay (t_{PEXP}). For example, if a macrocell requires 14 product terms, the Compiler uses the five dedicated product terms within the macrocell and allocates two sets of parallel expanders; the first set includes five product terms and the second set includes four product terms, increasing the total delay by $2 \times t_{PEXP}$. Two groups of 8 macrocells within each LAB (e.g., macrocells 1 through 8 and 9 through 16) form two chains to lend or borrow parallel expanders. A macrocell borrows parallel expanders from lower-numbered macrocells. For example, macrocell 8 can borrow parallel expanders from macrocell 7, from macrocells 7 and 6, or from macrocells 7, 6, and 5. Within each group of 8, the lowest-numbered macrocell can only lend parallel expanders and the highest-numbered macrocell can only borrow them. Figure 6 shows how parallel expanders can be borrowed from a neighboring macrocell. Figure 6. Parallel Expanders Unused product terms in a macrocell can be allocated to a neighboring macrocell. #### Programmable Interconnect Array Logic is routed between LABs via the programmable interconnect array (PIA). This global bus is a programmable path that connects any signal source to any destination on the device. All MAX 7000 dedicated inputs, I/O pins, and macrocell outputs feed the PIA, which makes the signals available throughout the entire device. Only the signals required by each LAB are actually routed from the PIA into the LAB. Figure 7 shows how the PIA signals are routed into the LAB. An EEPROM cell controls one input to a 2-input AND gate, which selects a PIA signal to drive into the LAB. Figure 7. PIA Routing While the routing delays of channel-based routing schemes in masked or FPGAs are cumulative, variable, and path-dependent, the MAX 7000 PIA has a fixed delay. The PIA thus eliminates skew between signals and makes timing performance easy to predict. #### I/O Control Blocks The I/O control block allows each I/O pin to be individually configured for input, output, or bidirectional operation. All I/O pins have a tri-state buffer that is individually controlled by one of the global output enable signals or directly connected to ground or V_{CC}. Figure 8 shows the I/O control block for the MAX 7000 family. The I/O control block of EPM7032, EPM7064, and EPM7096 devices has two global output enable signals that are driven by two dedicated active-low output enable pins (OE1 and OE2). The I/O control block of MAX 7000E and MAX 7000S devices has six global output enable signals that are driven by the true or complement of two output enable signals, a subset of the I/O pins, or a subset of the I/O macrocells. The instruction register length of MAX 7000S devices is 10 bits. Tables 10 and 11 show the boundary-scan register length and device IDCODE information for MAX 7000S devices. | Table 10. MAX 7000S Boundary-Scan Register Length | | | | | | | | | |---|-------------------------------|--|--|--|--|--|--|--| | Device | Boundary-Scan Register Length | | | | | | | | | EPM7032S | 1 (1) | | | | | | | | | EPM7064S | 1 (1) | | | | | | | | | EPM7128S | 288 | | | | | | | | | EPM7160S | 312 | | | | | | | | | EPM7192S | 360 | | | | | | | | | EPM7256S | 480 | | | | | | | | #### Note: (1) This device does not support JTAG boundary-scan testing. Selecting either the EXTEST or SAMPLE/PRELOAD instruction will select the one-bit bypass register. | Table 11. 32 | Table 11. 32-Bit MAX 7000 Device IDCODE Note (1) | | | | | | | | | | | | |--------------|--|-----------------------|--------------------------------------|------------------|--|--|--|--|--|--|--|--| | Device | | IDCODE (32 B | Bits) | | | | | | | | | | | | Version
(4 Bits) | Part Number (16 Bits) | Manufacturer's
Identity (11 Bits) | 1 (1 Bit)
(2) | | | | | | | | | | EPM7032S | 0000 | 0111 0000 0011 0010 | 00001101110 | 1 | | | | | | | | | | EPM7064S | 0000 | 0111 0000 0110 0100 | 00001101110 | 1 | | | | | | | | | | EPM7128S | 0000 | 0111 0001 0010 1000 | 00001101110 | 1 | | | | | | | | | | EPM7160S | 0000 | 0111 0001 0110 0000 | 00001101110 | 1 | | | | | | | | | | EPM7192S | 0000 | 0111 0001 1001 0010 | 00001101110 | 1 | | | | | | | | | | EPM7256S | 0000 | 0111 0010 0101 0110 | 00001101110 | 1 | | | | | | | | | #### Notes: - (1) The most significant bit (MSB) is on the left. - (2) The least significant bit (LSB) for all JTAG IDCODEs is 1. | Symbol | Parameter | Conditions | Min | Max | Unit | |-----------------|--|--|-------------------------|--------------------------|------| | V _{IH} | High-level input voltage | | 2.0 | V _{CCINT} + 0.5 | V | | V _{IL} | Low-level input voltage | | -0.5 (8) | 0.8 | V | | V _{OH} | 5.0-V high-level TTL output voltage | I _{OH} = -4 mA DC, V _{CCIO} = 4.75 V (10) | 2.4 | | V | | | 3.3-V high-level TTL output voltage | I _{OH} = -4 mA DC, V _{CCIO} = 3.00 V (10) | 2.4 | | V | | • | 3.3-V high-level CMOS output voltage | $I_{OH} = -0.1 \text{ mA DC}, V_{CCIO} = 3.0 \text{ V} (10)$ | V _{CCIO} - 0.2 | | V | | V _{OL} | 5.0-V low-level TTL output voltage | I _{OL} = 12 mA DC, V _{CCIO} = 4.75 V (11) | | 0.45 | V | | | 3.3-V low-level TTL output voltage | I _{OL} = 12 mA DC, V _{CCIO} = 3.00 V (11) | | 0.45 | V | | | 3.3-V low-level CMOS output voltage | $I_{OL} = 0.1 \text{ mA DC}, V_{CCIO} = 3.0 \text{ V}(11)$ | | 0.2 | V | | lı | Leakage current of dedicated input pins | $V_I = -0.5 \text{ to } 5.5 \text{ V } (11)$ | -10 | 10 | μА | | l _{OZ} | I/O pin tri-state output off-state current | $V_I = -0.5 \text{ to } 5.5 \text{ V } (11), (12)$ | -40 | 40 | μА | | Table 1 | Table 16. MAX 7000 5.0-V Device Capacitance: EPM7032, EPM7064 & EPM7096 Devices A | | | | | | | | | |------------------|---|-------------------------------------|-----|-----|------|--|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | | C _{IN} | Input pin capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 12 | pF | | | | | | C _{I/O} | I/O pin capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 12 | pF | | | | | | Table 1 | 7. MAX 7000 5.0-V Device Capa | acitance: MAX 7000E Devices Note | (13) | | | |------------------|-------------------------------|-------------------------------------|------|-----|------| | Symbol | Parameter | Conditions | Min | Max | Unit | | C _{IN} | Input pin capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 15 | pF | | C _{I/O} | I/O pin capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 15 | pF | | Table 1 | Table 18. MAX 7000 5.0-V Device Capacitance: MAX 7000S Devices Note (13) | | | | | | | | | | |------------------|--|-------------------------------------|-----|-----|------|--|--|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | | | C _{IN} | Dedicated input pin capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 10 | pF | | | | | | | C _{I/O} | I/O pin capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 10 | pF | | | | | | #### Notes to tables: - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) Minimum DC input voltage on I/O pins is –0.5 V and on 4 dedicated input pins is –0.3 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 7.0 V for input currents less than 100 mA and periods shorter than 20 ns. - (3) Numbers in parentheses are for industrial-temperature-range devices. - (4) V_{CC} must rise monotonically. - (5) The POR time for all 7000S devices does not exceed 300 μs. The sufficient V_{CCINT} voltage level for POR is 4.5 V. The device is fully initialized within the POR time after V_{CCINT} reaches the sufficient POR voltage level. - (6) 3.3-V I/O operation is not available for 44-pin packages. - (7) The V_{CCISP} parameter applies only to MAX 7000S devices. - (8) During in-system programming, the minimum DC input voltage is –0.3 V. - (9) These values are specified under the MAX 7000 recommended operating conditions in Table 14 on page 26. - (10) The parameter is measured with 50% of the outputs each sourcing the specified current. The I_{OH} parameter refers to high-level TTL or CMOS output current. - (11) The parameter is measured with 50% of the outputs each sinking the specified current. The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. - (12) When the JTAG interface is enabled in MAX 7000S devices, the input leakage current on the JTAG pins is typically -60 uA. - (13) Capacitance is measured at 25° C and is sample-tested only. The OE1 pin has a maximum capacitance of 20 pF. Figure 11 shows the typical output drive characteristics of MAX 7000 devices. Figure 11. Output Drive Characteristics of 5.0-V MAX 7000 Devices # **Timing Model** MAX 7000 device timing can be analyzed with the Altera software, with a variety of popular industry-standard EDA simulators and timing analyzers, or with the timing model shown in Figure 12. MAX 7000 devices have fixed internal delays that enable the designer to determine the worst-case timing of any design. The Altera software provides timing simulation, point-to-point delay prediction, and detailed timing analysis for a device-wide performance evaluation. | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | |-------------------|--|----------------|-----|------|-------|-------|-----|------|------| | | | | - | 15 | -1 | 5T | -2 | 20 | | | | | | Min | Max | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 2.0 | | 2.0 | | 3.0 | ns | | t _{IO} | I/O input pad and buffer delay | | | 2.0 | | 2.0 | | 3.0 | ns | | t _{FIN} | Fast input delay | (2) | | 2.0 | | _ | | 4.0 | ns | | t _{SEXP} | Shared expander delay | | | 8.0 | | 10.0 | | 9.0 | ns | | t _{PEXP} | Parallel expander delay | | | 1.0 | | 1.0 | | 2.0 | ns | | t _{LAD} | Logic array delay | | | 6.0 | | 6.0 | | 8.0 | ns | | t _{LAC} | Logic control array delay | | | 6.0 | | 6.0 | | 8.0 | ns | | t _{IOE} | Internal output enable delay | (2) | | 3.0 | | _ | | 4.0 | ns | | t _{OD1} | Output buffer and pad delay
Slow slew rate = off
V _{CCIO} = 5.0 V | C1 = 35 pF | | 4.0 | | 4.0 | | 5.0 | ns | | t _{OD2} | Output buffer and pad delay
Slow slew rate = off
V _{CCIO} = 3.3 V | C1 = 35 pF (7) | | 5.0 | | - | | 6.0 | ns | | t _{OD3} | Output buffer and pad delay
Slow slew rate = on
V _{CCIO} = 5.0 V or 3.3 V | C1 = 35 pF (2) | | 8.0 | | - | | 9.0 | ns | | t _{ZX1} | Output buffer enable delay
Slow slew rate = off
V _{CCIO} = 5.0 V | C1 = 35 pF | | 6.0 | | 6.0 | | 10.0 | ns | | t _{ZX2} | Output buffer enable delay
Slow slew rate = off
V _{CCIO} = 3.3 V | C1 = 35 pF (7) | | 7.0 | | - | | 11.0 | ns | | t _{ZX3} | Output buffer enable delay
Slow slew rate = on
V _{CCIO} = 5.0 V or 3.3 V | C1 = 35 pF (2) | | 10.0 | | - | | 14.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 6.0 | | 6.0 | | 10.0 | ns | | t _{SU} | Register setup time | | 4.0 | | 4.0 | | 4.0 | | ns | | t _H | Register hold time | | 4.0 | | 4.0 | | 5.0 | | ns | | t _{FSU} | Register setup time of fast input | (2) | 2.0 | | - | | 4.0 | | ns | | t _{FH} | Register hold time of fast input | (2) | 2.0 | | - | | 3.0 | | ns | | t _{RD} | Register delay | | | 1.0 | | 1.0 | | 1.0 | ns | | t _{COMB} | Combinatorial delay | | | 1.0 | | 1.0 | | 1.0 | ns | | t _{IC} | Array clock delay | | | 6.0 | | 6.0 | | 8.0 | ns | | t _{EN} | Register enable time | | | 6.0 | | 6.0 | | 8.0 | ns | | t _{GLOB} | Global control delay | | | 1.0 | | 1.0 | | 3.0 | ns | | t _{PRE} | Register preset time | | | 4.0 | | 4.0 | | 4.0 | ns | | t _{CLR} | Register clear time | | | 4.0 | | 4.0 | | 4.0 | ns | | t _{PIA} | PIA delay | | | 2.0 | | 2.0 | | 3.0 | ns | | t _{LPA} | Low-power adder | (8) | | 13.0 | | 15.0 | | 15.0 | ns | | Table 28. EPM7032S Internal Timing Parameters Note (1) | | | | | | | | | | | | |--------------------------------------------------------|-----------------|------------|-----|-------|-----|-------|-------|------|-----|------|------| | Symbol | Parameter | Conditions | | | | Speed | Grade | | | | Unit | | | | | - | -5 -6 | | | - | 7 | -10 | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{PIA} | PIA delay | (7) | | 1.1 | | 1.1 | | 1.4 | | 1.0 | ns | | t_{LPA} | Low-power adder | (8) | | 12.0 | | 10.0 | | 10.0 | | 11.0 | ns | #### Notes to tables: - These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms. - (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path. - (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking. - (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (5) The f_{MAX} values represent the highest frequency for pipelined data. - (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use. - (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value. - (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode. Tables 29 and 30 show the EPM7064S AC operating conditions. | Table 2 | 9. EPM7064S External Timi | ing Parameters | (Part | 1 of 2) | No | nte (1) | | | | | | |------------------|---------------------------------------|----------------|-------------|---------|-----|---------|-----|-----|-----|------|----| | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | | | | | | - | 5 | - | 6 | -7 | | -10 | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{PD1} | Input to non-registered output | C1 = 35 pF | | 5.0 | | 6.0 | | 7.5 | | 10.0 | ns | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF | | 5.0 | | 6.0 | | 7.5 | | 10.0 | ns | | t _{SU} | Global clock setup time | | 2.9 | | 3.6 | | 6.0 | | 7.0 | | ns | | t _H | Global clock hold time | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{FSU} | Global clock setup time of fast input | | 2.5 | | 2.5 | | 3.0 | | 3.0 | | ns | | t _{FH} | Global clock hold time of fast input | | 0.0 | | 0.0 | | 0.5 | | 0.5 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 3.2 | | 4.0 | | 4.5 | | 5.0 | ns | | t _{CH} | Global clock high time | | 2.0 | | 2.5 | | 3.0 | | 4.0 | | ns | | t _{CL} | Global clock low time | | 2.0 | | 2.5 | | 3.0 | | 4.0 | | ns | | t _{ASU} | Array clock setup time | | 0.7 | | 0.9 | | 3.0 | | 2.0 | | ns | | t _{AH} | Array clock hold time | | 1.8 | | 2.1 | | 2.0 | | 3.0 | | ns | | Table 2 | 9. EPM7064\$ External Timi | ing Parameters | (Part 2 | 2 of 2) | No | te (1) | | | | | | |-------------------|------------------------------------------|----------------|-------------|---------|-------|--------|-------|-----|-------|------|-----| | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | | | | | | - | 5 | - | 6 | -7 | | -10 | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{ACO1} | Array clock to output delay | C1 = 35 pF | | 5.4 | | 6.7 | | 7.5 | | 10.0 | ns | | t _{ACH} | Array clock high time | | 2.5 | | 2.5 | | 3.0 | | 4.0 | | ns | | t _{ACL} | Array clock low time | | 2.5 | | 2.5 | | 3.0 | | 4.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | (2) | 2.5 | | 2.5 | | 3.0 | | 4.0 | | ns | | t _{ODH} | Output data hold time after clock | C1 = 35 pF (3) | 1.0 | | 1.0 | | 1.0 | | 1.0 | | ns | | t _{CNT} | Minimum global clock period | | | 5.7 | | 7.1 | | 8.0 | | 10.0 | ns | | f _{CNT} | Maximum internal global clock frequency | (4) | 175.4 | | 140.8 | | 125.0 | | 100.0 | | MHz | | t _{ACNT} | Minimum array clock period | | | 5.7 | | 7.1 | | 8.0 | | 10.0 | ns | | f _{ACNT} | Maximum internal array clock frequency | (4) | 175.4 | | 140.8 | | 125.0 | | 100.0 | | MHz | | f _{MAX} | Maximum clock frequency | (5) | 250.0 | | 200.0 | | 166.7 | | 125.0 | | MHz | | Table 3 | Table 30. EPM7064S Internal Timing Parameters (Part 1 of 2) Note (1) | | | | | | | | | | | | |-------------------|----------------------------------------------------------------------|----------------|-------------|-----|-----|-----|-----|-----|-----|-----|----|--| | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | | | | | | | -5 | | -6 | | -7 | | -10 | | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | | t _{IN} | Input pad and buffer delay | | | 0.2 | | 0.2 | | 0.5 | | 0.5 | ns | | | t _{IO} | I/O input pad and buffer delay | | | 0.2 | | 0.2 | | 0.5 | | 0.5 | ns | | | t _{FIN} | Fast input delay | | | 2.2 | | 2.6 | | 1.0 | | 1.0 | ns | | | t _{SEXP} | Shared expander delay | | | 3.1 | | 3.8 | | 4.0 | | 5.0 | ns | | | t_{PEXP} | Parallel expander delay | | | 0.9 | | 1.1 | | 0.8 | | 0.8 | ns | | | t_{LAD} | Logic array delay | | | 2.6 | | 3.2 | | 3.0 | | 5.0 | ns | | | t _{LAC} | Logic control array delay | | | 2.5 | | 3.2 | | 3.0 | | 5.0 | ns | | | t _{IOE} | Internal output enable delay | | | 0.7 | | 0.8 | | 2.0 | | 2.0 | ns | | | t _{OD1} | Output buffer and pad delay | C1 = 35 pF | | 0.2 | | 0.3 | | 2.0 | | 1.5 | ns | | | t _{OD2} | Output buffer and pad delay | C1 = 35 pF (6) | | 0.7 | | 0.8 | | 2.5 | | 2.0 | ns | | | t _{OD3} | Output buffer and pad delay | C1 = 35 pF | | 5.2 | | 5.3 | | 7.0 | | 5.5 | ns | | | t_{ZX1} | Output buffer enable delay | C1 = 35 pF | | 4.0 | | 4.0 | | 4.0 | | 5.0 | ns | | | t _{ZX2} | Output buffer enable delay | C1 = 35 pF (6) | | 4.5 | | 4.5 | | 4.5 | | 5.5 | ns | | | t _{ZX3} | Output buffer enable delay | C1 = 35 pF | | 9.0 | | 9.0 | | 9.0 | | 9.0 | ns | | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 4.0 | | 4.0 | | 5.0 | ns | | | t _{SU} | Register setup time | | 0.8 | | 1.0 | | 3.0 | | 2.0 | | ns | | | t _H | Register hold time | | 1.7 | | 2.0 | | 2.0 | | 3.0 | | ns | | Tables 31 and 32 show the EPM7128S AC operating conditions. | Table 3 | 11. EPM7128\$ External Time | ing Parameters | : No | te (1) | | | | | | | | |-------------------|------------------------------------------|----------------|-------------|--------|-------|-----|-------|------|-------|------|-----| | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | | | | | | -6 | | -7 | | -10 | | -15 | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{PD1} | Input to non-registered output | C1 = 35 pF | | 6.0 | | 7.5 | | 10.0 | | 15.0 | ns | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF | | 6.0 | | 7.5 | | 10.0 | | 15.0 | ns | | t _{SU} | Global clock setup time | | 3.4 | | 6.0 | | 7.0 | | 11.0 | | ns | | t _H | Global clock hold time | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{FSU} | Global clock setup time of fast input | | 2.5 | | 3.0 | | 3.0 | | 3.0 | | ns | | t _{FH} | Global clock hold time of fast input | | 0.0 | | 0.5 | | 0.5 | | 0.0 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 4.0 | | 4.5 | | 5.0 | | 8.0 | ns | | t _{CH} | Global clock high time | | 3.0 | | 3.0 | | 4.0 | | 5.0 | | ns | | t _{CL} | Global clock low time | | 3.0 | | 3.0 | | 4.0 | | 5.0 | | ns | | t _{ASU} | Array clock setup time | | 0.9 | | 3.0 | | 2.0 | | 4.0 | | ns | | t _{AH} | Array clock hold time | | 1.8 | | 2.0 | | 5.0 | | 4.0 | | ns | | t _{ACO1} | Array clock to output delay | C1 = 35 pF | | 6.5 | | 7.5 | | 10.0 | | 15.0 | ns | | t _{ACH} | Array clock high time | | 3.0 | | 3.0 | | 4.0 | | 6.0 | | ns | | t _{ACL} | Array clock low time | | 3.0 | | 3.0 | | 4.0 | | 6.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | (2) | 3.0 | | 3.0 | | 4.0 | | 6.0 | | ns | | t _{ODH} | Output data hold time after clock | C1 = 35 pF (3) | 1.0 | | 1.0 | | 1.0 | | 1.0 | | ns | | t _{CNT} | Minimum global clock period | | | 6.8 | | 8.0 | | 10.0 | | 13.0 | ns | | f _{CNT} | Maximum internal global clock frequency | (4) | 147.1 | | 125.0 | | 100.0 | | 76.9 | | MHz | | t _{ACNT} | Minimum array clock period | | | 6.8 | | 8.0 | | 10.0 | | 13.0 | ns | | f _{ACNT} | Maximum internal array clock frequency | (4) | 147.1 | | 125.0 | | 100.0 | | 76.9 | | MHz | | f _{MAX} | Maximum clock frequency | (5) | 166.7 | | 166.7 | | 125.0 | | 100.0 | | MHz | | Symbol | Parameter | Conditions | | | | Speed | Grade | | | | Unit | |-------------------|-----------------------------------|----------------|-----|------|-----|-------|-------|------|-----|------|------| | | | | - | 6 | -7 | | -10 | | -15 | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | - | | t _{IN} | Input pad and buffer delay | | | 0.2 | | 0.5 | | 0.5 | | 2.0 | ns | | t _{IO} | I/O input pad and buffer delay | | | 0.2 | | 0.5 | | 0.5 | | 2.0 | ns | | t _{FIN} | Fast input delay | | | 2.6 | | 1.0 | | 1.0 | | 2.0 | ns | | t _{SEXP} | Shared expander delay | | | 3.7 | | 4.0 | | 5.0 | | 8.0 | ns | | t _{PEXP} | Parallel expander delay | | | 1.1 | | 0.8 | | 0.8 | | 1.0 | ns | | t_{LAD} | Logic array delay | | | 3.0 | | 3.0 | | 5.0 | | 6.0 | ns | | t_{LAC} | Logic control array delay | | | 3.0 | | 3.0 | | 5.0 | | 6.0 | ns | | t _{IOE} | Internal output enable delay | | | 0.7 | | 2.0 | | 2.0 | | 3.0 | ns | | t _{OD1} | Output buffer and pad delay | C1 = 35 pF | | 0.4 | | 2.0 | | 1.5 | | 4.0 | ns | | t _{OD2} | Output buffer and pad delay | C1 = 35 pF (6) | | 0.9 | | 2.5 | | 2.0 | | 5.0 | ns | | t _{OD3} | Output buffer and pad delay | C1 = 35 pF | | 5.4 | | 7.0 | | 5.5 | | 8.0 | ns | | t _{ZX1} | Output buffer enable delay | C1 = 35 pF | | 4.0 | | 4.0 | | 5.0 | | 6.0 | ns | | t _{ZX2} | Output buffer enable delay | C1 = 35 pF (6) | | 4.5 | | 4.5 | | 5.5 | | 7.0 | ns | | t_{ZX3} | Output buffer enable delay | C1 = 35 pF | | 9.0 | | 9.0 | | 9.0 | | 10.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 4.0 | | 5.0 | | 6.0 | ns | | t _{SU} | Register setup time | | 1.0 | | 3.0 | | 2.0 | | 4.0 | | ns | | t _H | Register hold time | | 1.7 | | 2.0 | | 5.0 | | 4.0 | | ns | | t _{FSU} | Register setup time of fast input | | 1.9 | | 3.0 | | 3.0 | | 2.0 | | ns | | t _{FH} | Register hold time of fast input | | 0.6 | | 0.5 | | 0.5 | | 1.0 | | ns | | t_{RD} | Register delay | | | 1.4 | | 1.0 | | 2.0 | | 1.0 | ns | | t _{COMB} | Combinatorial delay | | | 1.0 | | 1.0 | | 2.0 | | 1.0 | ns | | t _{IC} | Array clock delay | | | 3.1 | | 3.0 | | 5.0 | | 6.0 | ns | | t _{EN} | Register enable time | | | 3.0 | | 3.0 | | 5.0 | | 6.0 | ns | | t_{GLOB} | Global control delay | | | 2.0 | | 1.0 | | 1.0 | | 1.0 | ns | | t _{PRE} | Register preset time | | | 2.4 | | 2.0 | | 3.0 | | 4.0 | ns | | t _{CLR} | Register clear time | | | 2.4 | | 2.0 | | 3.0 | | 4.0 | ns | | t_{PIA} | PIA delay | (7) | | 1.4 | | 1.0 | | 1.0 | | 2.0 | ns | | t_{LPA} | Low-power adder | (8) | | 11.0 | | 10.0 | | 11.0 | | 13.0 | ns | | Table 33. EPM7160S External Timing Parameters (Part 2 of 2) Note (1) | | | | | | | | | | | | |----------------------------------------------------------------------|----------------------------------------|------------|-------|---------------|-------|-------|-------|------|-------|------|------| | Symbol | Parameter | Conditions | | | | Speed | Grade | } | | | Unit | | | | | - | -6 -7 -10 -15 | | | | | | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{ACNT} | Minimum array clock period | | | 6.7 | | 8.2 | | 10.0 | | 13.0 | ns | | f _{ACNT} | Maximum internal array clock frequency | (4) | 149.3 | | 122.0 | | 100.0 | | 76.9 | | MHz | | f _{MAX} | Maximum clock frequency | (5) | 166.7 | | 166.7 | | 125.0 | | 100.0 | | MHz | | Table 3 | 4. EPM7160\$ Internal Tim | ing Parameters | (Part | 1 of 2) | No | te (1) | | | | | | |-------------------|-----------------------------------|----------------|-------|---------|-----|--------|-------|-----|-----|------|------| | Symbol | Parameter | Conditions | | | | Speed | Grade | | | | Unit | | | | | - | 6 | -7 | | -10 | | -15 | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.2 | | 0.3 | | 0.5 | | 2.0 | ns | | t _{IO} | I/O input pad and buffer delay | | | 0.2 | | 0.3 | | 0.5 | | 2.0 | ns | | t _{FIN} | Fast input delay | | | 2.6 | | 3.2 | | 1.0 | | 2.0 | ns | | t _{SEXP} | Shared expander delay | | | 3.6 | | 4.3 | | 5.0 | | 8.0 | ns | | t _{PEXP} | Parallel expander delay | | | 1.0 | | 1.3 | | 0.8 | | 1.0 | ns | | t_{LAD} | Logic array delay | | | 2.8 | | 3.4 | | 5.0 | | 6.0 | ns | | t _{LAC} | Logic control array delay | | | 2.8 | | 3.4 | | 5.0 | | 6.0 | ns | | t _{IOE} | Internal output enable delay | | | 0.7 | | 0.9 | | 2.0 | | 3.0 | ns | | t _{OD1} | Output buffer and pad delay | C1 = 35 pF | | 0.4 | | 0.5 | | 1.5 | | 4.0 | ns | | t _{OD2} | Output buffer and pad delay | C1 = 35 pF (6) | | 0.9 | | 1.0 | | 2.0 | | 5.0 | ns | | t _{OD3} | Output buffer and pad delay | C1 = 35 pF | | 5.4 | | 5.5 | | 5.5 | | 8.0 | ns | | t_{ZX1} | Output buffer enable delay | C1 = 35 pF | | 4.0 | | 4.0 | | 5.0 | | 6.0 | ns | | t _{ZX2} | Output buffer enable delay | C1 = 35 pF (6) | | 4.5 | | 4.5 | | 5.5 | | 7.0 | ns | | t _{ZX3} | Output buffer enable delay | C1 = 35 pF | | 9.0 | | 9.0 | | 9.0 | | 10.0 | ns | | t _{XZ} | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 4.0 | | 5.0 | | 6.0 | ns | | t _{SU} | Register setup time | | 1.0 | | 1.2 | | 2.0 | | 4.0 | | ns | | t _H | Register hold time | | 1.6 | | 2.0 | | 3.0 | | 4.0 | | ns | | t _{FSU} | Register setup time of fast input | | 1.9 | | 2.2 | | 3.0 | | 2.0 | | ns | | t _{FH} | Register hold time of fast input | | 0.6 | | 0.8 | | 0.5 | | 1.0 | | ns | | t_{RD} | Register delay | | | 1.3 | | 1.6 | | 2.0 | | 1.0 | ns | | t _{COMB} | Combinatorial delay | | | 1.0 | | 1.3 | | 2.0 | | 1.0 | ns | | t _{IC} | Array clock delay | | | 2.9 | | 3.5 | | 5.0 | | 6.0 | ns | | t _{EN} | Register enable time | | | 2.8 | | 3.4 | | 5.0 | | 6.0 | ns | | t _{GLOB} | Global control delay | | | 2.0 | | 2.4 | | 1.0 | | 1.0 | ns | | t _{PRE} | Register preset time | | | 2.4 | | 3.0 | | 3.0 | | 4.0 | ns | | Table 3 | Table 34. EPM7160S Internal Timing Parameters (Part 2 of 2)Note (1) | | | | | | | | | | | | |------------------|---------------------------------------------------------------------|------------|-----|-------------|-----|------|-----|-------|-----|------|----|--| | Symbol | Parameter | Conditions | | Speed Grade | | | | | | | | | | | | | - | -6 -7 | | | -1 | -10 - | | 15 | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | | t _{CLR} | Register clear time | | | 2.4 | | 3.0 | | 3.0 | | 4.0 | ns | | | t _{PIA} | PIA delay | (7) | | 1.6 | | 2.0 | | 1.0 | | 2.0 | ns | | | t _{LPA} | Low-power adder | (8) | | 11.0 | | 10.0 | | 11.0 | | 13.0 | ns | | #### Notes to tables: - These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms. - (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path. - (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking. - (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (5) The f_{MAX} values represent the highest frequency for pipelined data. - (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use. - (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value. - (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells running in the low-power mode. Tables 35 and 36 show the EPM7192S AC operating conditions. | Table 35. EPM7192S External Timing Parameters (Part 1 of 2) Note (1) | | | | | | | | | | | | |----------------------------------------------------------------------|---------------------------------------|------------|-------------|-----|-----|------|------|------|----|--|--| | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | | | | | | -7 | | -10 | | -15 | | | | | | | | | Min | Max | Min | Max | Min | Max | | | | | t _{PD1} | Input to non-registered output | C1 = 35 pF | | 7.5 | | 10.0 | | 15.0 | ns | | | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF | | 7.5 | | 10.0 | | 15.0 | ns | | | | t _{SU} | Global clock setup time | | 4.1 | | 7.0 | | 11.0 | | ns | | | | t _H | Global clock hold time | | 0.0 | | 0.0 | | 0.0 | | ns | | | | t _{FSU} | Global clock setup time of fast input | | 3.0 | | 3.0 | | 3.0 | | ns | | | | t _{FH} | Global clock hold time of fast input | | 0.0 | | 0.5 | | 0.0 | | ns | | | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 4.7 | | 5.0 | | 8.0 | ns | | | | t _{CH} | Global clock high time | | 3.0 | | 4.0 | | 5.0 | | ns | | | | t _{CL} | Global clock low time | | 3.0 | | 4.0 | | 5.0 | | ns | | | | t _{ASU} | Array clock setup time | | 1.0 | | 2.0 | | 4.0 | | ns | | | | Table 3 | 35. EPM71928 External Timi | ing Parameters (F | art 2 of 2 | ?) No | ote (1) | | | | | | |-------------------|------------------------------------------|-------------------|-------------|-------|---------|------|-------|------|-----|--| | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | | | | | -7 | | -10 | | -15 | | | | | | | | Min | Max | Min | Max | Min | Max | | | | t _{AH} | Array clock hold time | | 1.8 | | 3.0 | | 4.0 | | ns | | | t _{ACO1} | Array clock to output delay | C1 = 35 pF | | 7.8 | | 10.0 | | 15.0 | ns | | | t _{ACH} | Array clock high time | | 3.0 | | 4.0 | | 6.0 | | ns | | | t _{ACL} | Array clock low time | | 3.0 | | 4.0 | | 6.0 | | ns | | | t _{CPPW} | Minimum pulse width for clear and preset | (2) | 3.0 | | 4.0 | | 6.0 | | ns | | | t _{ODH} | Output data hold time after clock | C1 = 35 pF (3) | 1.0 | | 1.0 | | 1.0 | | ns | | | t _{CNT} | Minimum global clock period | | | 8.0 | | 10.0 | | 13.0 | ns | | | f _{CNT} | Maximum internal global clock frequency | (4) | 125.0 | | 100.0 | | 76.9 | | MHz | | | t _{ACNT} | Minimum array clock period | | | 8.0 | | 10.0 | | 13.0 | ns | | | f _{ACNT} | Maximum internal array clock frequency | (4) | 125.0 | | 100.0 | | 76.9 | | MHz | | | f _{MAX} | Maximum clock frequency | (5) | 166.7 | | 125.0 | | 100.0 | | MHz | | | Table 3 | Table 36. EPM7192S Internal Timing Parameters (Part 1 of 2) Note (1) | | | | | | | | | | | | |-------------------|----------------------------------------------------------------------|----------------|-------------|-----|-----|-----|-----|------|----|--|--|--| | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | | | | | | | - | 7 | -1 | 10 | -1 | 15 | | | | | | | | | Min | Max | Min | Max | Min | Max | | | | | | t _{IN} | Input pad and buffer delay | | | 0.3 | | 0.5 | | 2.0 | ns | | | | | t _{IO} | I/O input pad and buffer delay | | | 0.3 | | 0.5 | | 2.0 | ns | | | | | t _{FIN} | Fast input delay | | | 3.2 | | 1.0 | | 2.0 | ns | | | | | t _{SEXP} | Shared expander delay | | | 4.2 | | 5.0 | | 8.0 | ns | | | | | t _{PEXP} | Parallel expander delay | | | 1.2 | | 0.8 | | 1.0 | ns | | | | | t_{LAD} | Logic array delay | | | 3.1 | | 5.0 | | 6.0 | ns | | | | | t _{LAC} | Logic control array delay | | | 3.1 | | 5.0 | | 6.0 | ns | | | | | t _{IOE} | Internal output enable delay | | | 0.9 | | 2.0 | | 3.0 | ns | | | | | t _{OD1} | Output buffer and pad delay | C1 = 35 pF | | 0.5 | | 1.5 | | 4.0 | ns | | | | | t _{OD2} | Output buffer and pad delay | C1 = 35 pF (6) | | 1.0 | | 2.0 | | 5.0 | ns | | | | | t _{OD3} | Output buffer and pad delay | C1 = 35 pF | | 5.5 | | 5.5 | | 7.0 | ns | | | | | t_{ZX1} | Output buffer enable delay | C1 = 35 pF | | 4.0 | | 5.0 | | 6.0 | ns | | | | | t _{ZX2} | Output buffer enable delay | C1 = 35 pF (6) | | 4.5 | | 5.5 | | 7.0 | ns | | | | | t _{ZX3} | Output buffer enable delay | C1 = 35 pF | | 9.0 | | 9.0 | | 10.0 | ns | | | | | t _{XZ} | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 5.0 | | 6.0 | ns | | | | | t _{SU} | Register setup time | | 1.1 | | 2.0 | | 4.0 | | ns | | | | | Table 36. EPM7192S Internal Timing Parameters (Part 2 of 2) Note (1) | | | | | | | | | | | | |----------------------------------------------------------------------|-----------------------------------|------------|-------------|------|-----|------|-----|------|----|--|--| | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | | | | | | | -7 | | -10 | | 15 | 1 | | | | | | | Min | Max | Min | Max | Min | Max | | | | | t _H | Register hold time | | 1.7 | | 3.0 | | 4.0 | | ns | | | | t _{FSU} | Register setup time of fast input | | 2.3 | | 3.0 | | 2.0 | | ns | | | | t _{FH} | Register hold time of fast input | | 0.7 | | 0.5 | | 1.0 | | ns | | | | t _{RD} | Register delay | | | 1.4 | | 2.0 | | 1.0 | ns | | | | t _{COMB} | Combinatorial delay | | | 1.2 | | 2.0 | | 1.0 | ns | | | | t_{IC} | Array clock delay | | | 3.2 | | 5.0 | | 6.0 | ns | | | | t _{EN} | Register enable time | | | 3.1 | | 5.0 | | 6.0 | ns | | | | t_{GLOB} | Global control delay | | | 2.5 | | 1.0 | | 1.0 | ns | | | | t _{PRE} | Register preset time | | | 2.7 | | 3.0 | | 4.0 | ns | | | | t _{CLR} | Register clear time | | | 2.7 | | 3.0 | | 4.0 | ns | | | | t _{PIA} | PIA delay | (7) | | 2.4 | | 1.0 | | 2.0 | ns | | | | t_{LPA} | Low-power adder | (8) | | 10.0 | | 11.0 | | 13.0 | ns | | | #### Notes to tables: - These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms. - (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path. - (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking. - (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (5) The f_{MAX} values represent the highest frequency for pipelined data. - (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use. - (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value. - (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode. Figure 14. I_{CC} vs. Frequency for MAX 7000 Devices (Part 2 of 2)