Welcome to **E-XFL.COM** Understanding <u>Embedded - CPLDs (Complex Programmable Logic Devices)</u> Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware. # **Applications of Embedded - CPLDs** | Details | | |---------------------------------|--| | Product Status | Obsolete | | Programmable Type | EE PLD | | Delay Time tpd(1) Max | 10 ns | | Voltage Supply - Internal | 4.75V ~ 5.25V | | Number of Logic Elements/Blocks | 10 | | Number of Macrocells | 160 | | Number of Gates | 3200 | | Number of I/O | 64 | | Operating Temperature | 0°C ~ 70°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 84-LCC (J-Lead) | | Supplier Device Package | 84-PLCC (29.31x29.31) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epm7160elc84-10yy | | | | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong | Table 2. MAX 7000S Device Features | | | | | | | | | |------------------------------------|----------|----------|----------|----------|----------|----------|--|--| | Feature | EPM7032S | EPM7064S | EPM7128S | EPM7160S | EPM7192S | EPM7256S | | | | Usable gates | 600 | 1,250 | 2,500 | 3,200 | 3,750 | 5,000 | | | | Macrocells | 32 | 64 | 128 | 160 | 192 | 256 | | | | Logic array blocks | 2 | 4 | 8 | 10 | 12 | 16 | | | | Maximum user I/O pins | 36 | 68 | 100 | 104 | 124 | 164 | | | | t _{PD} (ns) | 5 | 5 | 6 | 6 | 7.5 | 7.5 | | | | t _{SU} (ns) | 2.9 | 2.9 | 3.4 | 3.4 | 4.1 | 3.9 | | | | t _{FSU} (ns) | 2.5 | 2.5 | 2.5 | 2.5 | 3 | 3 | | | | t _{CO1} (ns) | 3.2 | 3.2 | 4 | 3.9 | 4.7 | 4.7 | | | | f _{CNT} (MHz) | 175.4 | 175.4 | 147.1 | 149.3 | 125.0 | 128.2 | | | # ...and More Features - Open-drain output option in MAX 7000S devices - Programmable macrocell flipflops with individual clear, preset, clock, and clock enable controls - Programmable power-saving mode for a reduction of over 50% in each macrocell - Configurable expander product-term distribution, allowing up to 32 product terms per macrocell - 44 to 208 pins available in plastic J-lead chip carrier (PLCC), ceramic pin-grid array (PGA), plastic quad flat pack (PQFP), power quad flat pack (RQFP), and 1.0-mm thin quad flat pack (TQFP) packages - Programmable security bit for protection of proprietary designs - 3.3-V or 5.0-V operation - MultiVoltTM I/O interface operation, allowing devices to interface with 3.3-V or 5.0-V devices (MultiVolt I/O operation is not available in 44-pin packages) - Pin compatible with low-voltage MAX 7000A and MAX 7000B devices - Enhanced features available in MAX 7000E and MAX 7000S devices - Six pin- or logic-driven output enable signals - Two global clock signals with optional inversion - Enhanced interconnect resources for improved routability - Fast input setup times provided by a dedicated path from I/O pin to macrocell registers - Programmable output slew-rate control - Software design support and automatic place-and-route provided by Altera's development system for Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 workstations - Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, and VeriBest - Programming support - Altera's Master Programming Unit (MPU) and programming hardware from third-party manufacturers program all MAX 7000 devices - The BitBlasterTM serial download cable, ByteBlasterMVTM parallel port download cable, and MasterBlasterTM serial/universal serial bus (USB) download cable program MAX 7000S devices # General Description The MAX 7000 family of high-density, high-performance PLDs is based on Altera's second-generation MAX architecture. Fabricated with advanced CMOS technology, the EEPROM-based MAX 7000 family provides 600 to 5,000 usable gates, ISP, pin-to-pin delays as fast as 5 ns, and counter speeds of up to 175.4 MHz. MAX 7000S devices in the -5, -6, -7, and -10 speed grades as well as MAX 7000 and MAX 7000E devices in -5, -6, -7, -10P, and -12P speed grades comply with the PCI Special Interest Group (PCI SIG) *PCI Local Bus Specification, Revision 2.2.* See Table 3 for available speed grades. | Device | | | | | Speed | l Grade | | | | | |----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | | -5 | -6 | -7 | -10P | -10 | -12P | -12 | -15 | -15T | -20 | | EPM7032 | | ✓ | ✓ | | ✓ | | ✓ | ✓ | ✓ | | | EPM7032S | ✓ | ✓ | ✓ | | ✓ | | | | | | | EPM7064 | | ✓ | ✓ | | ~ | | ✓ | ✓ | | | | EPM7064S | ✓ | ✓ | ✓ | | ~ | | | | | | | EPM7096 | | | ✓ | | ~ | | ✓ | ✓ | | | | EPM7128E | | | ✓ | ✓ | ~ | | ✓ | ✓ | | ✓ | | EPM7128S | | ✓ | ✓ | | ✓ | | | ✓ | | | | EPM7160E | | | | ✓ | ✓ | | ✓ | ✓ | | ✓ | | EPM7160S | | ✓ | ✓ | | ~ | | | ✓ | | | | EPM7192E | | | | | | ✓ | ✓ | ✓ | | ✓ | | EPM7192S | | | ✓ | | ✓ | | | ✓ | | | | EPM7256E | | | | | | ✓ | ✓ | ✓ | | ✓ | | EPM7256S | | | ✓ | | ✓ | | | ✓ | | | The MAX 7000E devices—including the EPM7128E, EPM7160E, EPM7192E, and EPM7256E devices—have several enhanced features: additional global clocking, additional output enable controls, enhanced interconnect resources, fast input registers, and a programmable slew rate. In-system programmable MAX 7000 devices—called MAX 7000S devices—include the EPM7032S, EPM7064S, EPM7128S, EPM7160S, EPM7192S, and EPM7256S devices. MAX 7000S devices have the enhanced features of MAX 7000E devices as well as JTAG BST circuitry in devices with 128 or more macrocells, ISP, and an open-drain output option. See Table 4. | Table 4. MAX 7000 Device Features | | | | | | | |-----------------------------------|-------------------------------|-----------------------------|-----------------------------|--|--|--| | Feature | EPM7032
EPM7064
EPM7096 | All
MAX 7000E
Devices | All
MAX 7000S
Devices | | | | | ISP via JTAG interface | | | ✓ | | | | | JTAG BST circuitry | | | √ (1) | | | | | Open-drain output option | | | ✓ | | | | | Fast input registers | | ✓ | ✓ | | | | | Six global output enables | | ✓ | ✓ | | | | | Two global clocks | | ✓ | ✓ | | | | | Slew-rate control | | ✓ | ✓ | | | | | MultiVolt interface (2) | ✓ | ✓ | ✓ | | | | | Programmable register | ✓ | ✓ | ✓ | | | | | Parallel expanders | ✓ | ✓ | ✓ | | | | | Shared expanders | ✓ | ✓ | ✓ | | | | | Power-saving mode | ✓ | ✓ | ✓ | | | | | Security bit | ✓ | ✓ | ✓ | | | | | PCI-compliant devices available | ✓ | ✓ | ✓ | | | | #### Notes: - (1) Available only in EPM7128S, EPM7160S, EPM7192S, and EPM7256S devices only. - (2) The MultiVolt I/O interface is not available in 44-pin packages. Each LAB is fed by the following signals: - 36 signals from the PIA that are used for general logic inputs - Global controls that are used for secondary register functions - Direct input paths from I/O pins to the registers that are used for fast setup times for MAX 7000E and MAX 7000S devices # **Macrocells** The MAX 7000 macrocell can be individually configured for either sequential or combinatorial logic operation. The macrocell consists of three functional blocks: the logic array, the product-term select matrix, and the programmable register. The macrocell of EPM7032, EPM7064, and EPM7096 devices is shown in Figure 3. Figure 3. EPM7032, EPM7064 & EPM7096 Device Macrocell Figure 8. I/O Control Block of MAX 7000 Devices # EPM7032, EPM7064 & EPM7096 Devices ## MAX 7000E & MAX 7000S Devices ### Note: (1) The open-drain output option is available only in MAX 7000S devices. When the tri-state buffer control is connected to ground, the output is tri-stated (high impedance) and the I/O pin can be used as a dedicated input. When the tri-state buffer control is connected to V_{CC} , the output is enabled. The MAX 7000 architecture provides dual I/O feedback, in which macrocell and pin feedbacks are independent. When an I/O pin is configured as an input, the associated macrocell can be used for buried logic. # In-System Programmability (ISP) MAX 7000S devices are in-system programmable via an industry-standard 4-pin Joint Test Action Group (JTAG) interface (IEEE Std. 1149.1-1990). ISP allows quick, efficient iterations during design development and debugging cycles. The MAX 7000S architecture internally generates the high programming voltage required to program EEPROM cells, allowing in-system programming with only a single 5.0 V power supply. During in-system programming, the I/O pins are tri-stated and pulled-up to eliminate board conflicts. The pull-up value is nominally 50 k%. ISP simplifies the manufacturing flow by allowing devices to be mounted on a printed circuit board with standard in-circuit test equipment before they are programmed. MAX 7000S devices can be programmed by downloading the information via in-circuit testers (ICT), embedded processors, or the Altera MasterBlaster, ByteBlasterMV, ByteBlaster, BitBlaster download cables. (The ByteBlaster cable is obsolete and is replaced by the ByteBlasterMV cable, which can program and configure 2.5-V, 3.3-V, and 5.0-V devices.) Programming the devices after they are placed on the board eliminates lead damage on high-pin-count packages (e.g., QFP packages) due to device handling and allows devices to be reprogrammed after a system has already shipped to the field. For example, product upgrades can be performed in the field via software or modem. In-system programming can be accomplished with either an adaptive or constant algorithm. An adaptive algorithm reads information from the unit and adapts subsequent programming steps to achieve the fastest possible programming time for that unit. Because some in-circuit testers cannot support an adaptive algorithm, Altera offers devices tested with a constant algorithm. Devices tested to the constant algorithm have an "F" suffix in the ordering code. The JamTM Standard Test and Programming Language (STAPL) can be used to program MAX 7000S devices with in-circuit testers, PCs, or embedded processor. # Programmable Speed/Power Control MAX 7000 devices offer a power-saving mode that supports low-power operation across user-defined signal paths or the entire device. This feature allows total power dissipation to be reduced by 50% or more, because most logic applications require only a small fraction of all gates to operate at maximum frequency. The designer can program each individual macrocell in a MAX 7000 device for either high-speed (i.e., with the Turbo BitTM option turned on) or low-power (i.e., with the Turbo Bit option turned off) operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths can operate at reduced power. Macrocells that run at low power incur a nominal timing delay adder (t_{LPA}) for the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , and t_{SEXP} , t_{ACL} , and t_{CPPW} parameters. # Output Configuration MAX 7000 device outputs can be programmed to meet a variety of system-level requirements. # MultiVolt I/O Interface MAX 7000 devices—except 44-pin devices—support the MultiVolt I/O interface feature, which allows MAX 7000 devices to interface with systems that have differing supply voltages. The 5.0-V devices in all packages can be set for 3.3-V or 5.0-V I/O pin operation. These devices have one set of VCC pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO). The VCCINT pins must always be connected to a 5.0-V power supply. With a 5.0-V $V_{\rm CCINT}$ level, input voltage thresholds are at TTL levels, and are therefore compatible with both 3.3-V and 5.0-V inputs. The VCCIO pins can be connected to either a 3.3-V or a 5.0-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 5.0-V supply, the output levels are compatible with 5.0-V systems. When $V_{\rm CCIO}$ is connected to a 3.3-V supply, the output high is 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with $V_{\rm CCIO}$ levels lower than 4.75 V incur a nominally greater timing delay of $t_{\rm OD2}$ instead of $t_{\rm OD1}$. # Open-Drain Output Option (MAX 7000S Devices Only) MAX 7000S devices provide an optional open-drain (functionally equivalent to open-collector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. It can also provide an additional wired-OR plane. The instruction register length of MAX 7000S devices is 10 bits. Tables 10 and 11 show the boundary-scan register length and device IDCODE information for MAX 7000S devices. | Table 10. MAX 7000S Boundary-Scan Register Length | | | | | | |---|-------|--|--|--|--| | Device Boundary-Scan Register Leng | | | | | | | EPM7032S | 1 (1) | | | | | | EPM7064S | 1 (1) | | | | | | EPM7128S | 288 | | | | | | EPM7160S | 312 | | | | | | EPM7192S | 360 | | | | | | EPM7256S | 480 | | | | | ### Note: (1) This device does not support JTAG boundary-scan testing. Selecting either the EXTEST or SAMPLE/PRELOAD instruction will select the one-bit bypass register. | Table 11. 32-Bit MAX 7000 Device IDCODE Note (1) | | | | | | | | | |--|------------------|---------------------|--------------------------------------|------------------|--|--|--|--| | Device | | IDCODE (32 Bits) | | | | | | | | | Version (4 Bits) | | Manufacturer's
Identity (11 Bits) | 1 (1 Bit)
(2) | | | | | | EPM7032S | 0000 | 0111 0000 0011 0010 | 00001101110 | 1 | | | | | | EPM7064S | 0000 | 0111 0000 0110 0100 | 00001101110 | 1 | | | | | | EPM7128S | 0000 | 0111 0001 0010 1000 | 00001101110 | 1 | | | | | | EPM7160S | 0000 | 0111 0001 0110 0000 | 00001101110 | 1 | | | | | | EPM7192S | 0000 | 0111 0001 1001 0010 | 00001101110 | 1 | | | | | | EPM7256S | 0000 | 0111 0010 0101 0110 | 00001101110 | 1 | | | | | #### Notes: - (1) The most significant bit (MSB) is on the left. - (2) The least significant bit (LSB) for all JTAG IDCODEs is 1. Figure 9 shows the timing requirements for the JTAG signals. Table 12 shows the JTAG timing parameters and values for MAX 7000S devices. | Table 12. JTAG Timing Parameters & Values for MAX 7000S Devices | | | | | | | | |---|--|-----|-----|------|--|--|--| | Symbol | Parameter | Min | Max | Unit | | | | | t _{JCP} | TCK clock period | 100 | | ns | | | | | t _{JCH} | TCK clock high time | 50 | | ns | | | | | t _{JCL} | TCK clock low time | 50 | | ns | | | | | t _{JPSU} | JTAG port setup time | 20 | | ns | | | | | t _{JPH} | JTAG port hold time | 45 | | ns | | | | | t _{JPCO} | JTAG port clock to output | | 25 | ns | | | | | t _{JPZX} | JTAG port high impedance to valid output | | 25 | ns | | | | | t _{JPXZ} | JTAG port valid output to high impedance | | 25 | ns | | | | | t _{JSSU} | Capture register setup time | 20 | | ns | | | | | t _{JSH} | Capture register hold time | 45 | | ns | | | | | t _{JSCO} | Update register clock to output | | 25 | ns | | | | | t _{JSZX} | Update register high impedance to valid output | | 25 | ns | | | | | t _{JSXZ} | Update register valid output to high impedance | | 25 | ns | | | | For more information, see *Application Note* 39 (*IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices*). | Symbol | Parameter | Conditions | Min | Max | Unit | |-----------------|--|--|-------------------------|--------------------------|------| | V _{IH} | High-level input voltage | | 2.0 | V _{CCINT} + 0.5 | V | | V _{IL} | Low-level input voltage | | -0.5 (8) | 0.8 | V | | V _{OH} | 5.0-V high-level TTL output voltage | I _{OH} = -4 mA DC, V _{CCIO} = 4.75 V (10) | 2.4 | | V | | | 3.3-V high-level TTL output voltage | I _{OH} = -4 mA DC, V _{CCIO} = 3.00 V (10) | 2.4 | | V | | | 3.3-V high-level CMOS output voltage | $I_{OH} = -0.1 \text{ mA DC}, V_{CCIO} = 3.0 \text{ V} (10)$ | V _{CCIO} - 0.2 | | V | | V _{OL} | 5.0-V low-level TTL output voltage | I _{OL} = 12 mA DC, V _{CCIO} = 4.75 V (11) | | 0.45 | V | | | 3.3-V low-level TTL output voltage | I _{OL} = 12 mA DC, V _{CCIO} = 3.00 V (11) | | 0.45 | V | | | 3.3-V low-level CMOS output voltage | $I_{OL} = 0.1 \text{ mA DC}, V_{CCIO} = 3.0 \text{ V}(11)$ | | 0.2 | V | | lı | Leakage current of dedicated input pins | $V_I = -0.5 \text{ to } 5.5 \text{ V } (11)$ | -10 | 10 | μА | | l _{OZ} | I/O pin tri-state output off-state current | $V_I = -0.5 \text{ to } 5.5 \text{ V } (11), (12)$ | -40 | 40 | μА | | Table 16. MAX 7000 5.0-V Device Capacitance: EPM7032, EPM7064 & EPM7096 Devices Note (1) | | | | | | | |--|-----------------------|-------------------------------------|-----|-----|------|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | C _{IN} | Input pin capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 12 | pF | | | C _{I/O} | I/O pin capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 12 | pF | | | Table 1 | Table 17. MAX 7000 5.0-V Device Capacitance: MAX 7000E DevicesNote (13) | | | | | | | | | |------------------|---|-------------------------------------|-----|-----|------|--|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | | C _{IN} | Input pin capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 15 | pF | | | | | | C _{I/O} | I/O pin capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 15 | pF | | | | | | Table 18. MAX 7000 5.0-V Device Capacitance: MAX 7000S DevicesNote (13) | | | | | | | | |---|---------------------------------|-------------------------------------|-----|-----|------|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | C _{IN} | Dedicated input pin capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 10 | pF | | | | C _{I/O} | I/O pin capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 10 | pF | | | Figure 12. MAX 7000 Timing Model #### Notes: - (1) Only available in MAX 7000E and MAX 7000S devices. - (2) Not available in 44-pin devices. The timing characteristics of any signal path can be derived from the timing model and parameters of a particular device. External timing parameters, which represent pin-to-pin timing delays, can be calculated as the sum of internal parameters. Figure 13 shows the internal timing relationship of internal and external delay parameters. For more infomration, see *Application Note* 94 (Understanding MAX 7000 *Timing*). | Table 2 | 5. MAX 7000 & MAX 7000E | External Timing I | Paramete | ers / | lote (1) | | | | | |-------------------|--|-------------------|-------------|-------|----------|------|------|------|-----| | Symbol | Parameter | Conditions | Speed Grade | | | | | Unit | | | | | | - | 15 | -1 | 5T | -2 | 20 | | | | | | Min | Max | Min | Max | Min | Max | | | t _{PD1} | Input to non-registered output | C1 = 35 pF | | 15.0 | | 15.0 | | 20.0 | ns | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF | | 15.0 | | 15.0 | | 20.0 | ns | | t _{SU} | Global clock setup time | | 11.0 | | 11.0 | | 12.0 | | ns | | t _H | Global clock hold time | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{FSU} | Global clock setup time of fast input | (2) | 3.0 | | - | | 5.0 | | ns | | t _{FH} | Global clock hold time of fast input | (2) | 0.0 | | - | | 0.0 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 8.0 | | 8.0 | | 12.0 | ns | | t _{CH} | Global clock high time | | 5.0 | | 6.0 | | 6.0 | | ns | | t _{CL} | Global clock low time | | 5.0 | | 6.0 | | 6.0 | | ns | | t _{ASU} | Array clock setup time | | 4.0 | | 4.0 | | 5.0 | | ns | | t _{AH} | Array clock hold time | | 4.0 | | 4.0 | | 5.0 | | ns | | t _{ACO1} | Array clock to output delay | C1 = 35 pF | | 15.0 | | 15.0 | | 20.0 | ns | | t _{ACH} | Array clock high time | | 6.0 | | 6.5 | | 8.0 | | ns | | t _{ACL} | Array clock low time | | 6.0 | | 6.5 | | 8.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | (3) | 6.0 | | 6.5 | | 8.0 | | ns | | t _{ODH} | Output data hold time after clock | C1 = 35 pF (4) | 1.0 | | 1.0 | | 1.0 | | ns | | t _{CNT} | Minimum global clock period | | | 13.0 | | 13.0 | | 16.0 | ns | | f _{CNT} | Maximum internal global clock frequency | (5) | 76.9 | | 76.9 | | 62.5 | | MHz | | t _{ACNT} | Minimum array clock period | | | 13.0 | | 13.0 | | 16.0 | ns | | f _{ACNT} | Maximum internal array clock frequency | (5) | 76.9 | | 76.9 | | 62.5 | | MHz | | f _{MAX} | Maximum clock frequency | (6) | 100 | | 83.3 | _ | 83.3 | _ | MHz | | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | |-------------------|--|----------------|-------------|------|------|------|-----|------|----|--| | | | | -15 | | -15T | | -20 | | | | | | | | Min | Max | Min | Max | Min | Max | | | | t _{IN} | Input pad and buffer delay | | | 2.0 | | 2.0 | | 3.0 | ns | | | t _{IO} | I/O input pad and buffer delay | | | 2.0 | | 2.0 | | 3.0 | ns | | | t _{FIN} | Fast input delay | (2) | | 2.0 | | _ | | 4.0 | ns | | | t _{SEXP} | Shared expander delay | | | 8.0 | | 10.0 | | 9.0 | ns | | | t _{PEXP} | Parallel expander delay | | | 1.0 | | 1.0 | | 2.0 | ns | | | t _{LAD} | Logic array delay | | | 6.0 | | 6.0 | | 8.0 | ns | | | t _{LAC} | Logic control array delay | | | 6.0 | | 6.0 | | 8.0 | ns | | | t _{IOE} | Internal output enable delay | (2) | | 3.0 | | _ | | 4.0 | ns | | | t _{OD1} | Output buffer and pad delay
Slow slew rate = off
V _{CCIO} = 5.0 V | C1 = 35 pF | | 4.0 | | 4.0 | | 5.0 | ns | | | t _{OD2} | Output buffer and pad delay
Slow slew rate = off
V _{CCIO} = 3.3 V | C1 = 35 pF (7) | | 5.0 | | - | | 6.0 | ns | | | t _{OD3} | Output buffer and pad delay
Slow slew rate = on
V _{CCIO} = 5.0 V or 3.3 V | C1 = 35 pF (2) | | 8.0 | | - | | 9.0 | ns | | | t _{ZX1} | Output buffer enable delay
Slow slew rate = off
V _{CCIO} = 5.0 V | C1 = 35 pF | | 6.0 | | 6.0 | | 10.0 | ns | | | t _{ZX2} | Output buffer enable delay
Slow slew rate = off
V _{CCIO} = 3.3 V | C1 = 35 pF (7) | | 7.0 | | - | | 11.0 | ns | | | t _{ZX3} | Output buffer enable delay
Slow slew rate = on
V _{CCIO} = 5.0 V or 3.3 V | C1 = 35 pF (2) | | 10.0 | | - | | 14.0 | ns | | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 6.0 | | 6.0 | | 10.0 | ns | | | t _{SU} | Register setup time | | 4.0 | | 4.0 | | 4.0 | | ns | | | t _H | Register hold time | | 4.0 | | 4.0 | | 5.0 | | ns | | | t _{FSU} | Register setup time of fast input | (2) | 2.0 | | - | | 4.0 | | ns | | | t _{FH} | Register hold time of fast input | (2) | 2.0 | | - | | 3.0 | | ns | | | t _{RD} | Register delay | | | 1.0 | | 1.0 | | 1.0 | ns | | | t _{COMB} | Combinatorial delay | | | 1.0 | | 1.0 | | 1.0 | ns | | | t _{IC} | Array clock delay | | | 6.0 | | 6.0 | | 8.0 | ns | | | t _{EN} | Register enable time | | | 6.0 | | 6.0 | | 8.0 | ns | | | t _{GLOB} | Global control delay | | | 1.0 | | 1.0 | | 3.0 | ns | | | t _{PRE} | Register preset time | | | 4.0 | | 4.0 | | 4.0 | ns | | | t _{CLR} | Register clear time | | | 4.0 | | 4.0 | | 4.0 | ns | | | t _{PIA} | PIA delay | | | 2.0 | | 2.0 | | 3.0 | ns | | | t _{LPA} | Low-power adder | (8) | | 13.0 | | 15.0 | | 15.0 | ns | | | Table 28. EPM7032S Internal Timing Parameters Note (1) | | | | | | | | | | | | |--|-----------------|------------|-------------|------|-----|------|-----|------|-----|------|----| | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | | | | | | - | 5 | -6 | | -7 | | -10 | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{PIA} | PIA delay | (7) | | 1.1 | | 1.1 | | 1.4 | | 1.0 | ns | | t_{LPA} | Low-power adder | (8) | | 12.0 | | 10.0 | | 10.0 | | 11.0 | ns | #### Notes to tables: - These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms. - (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path. - (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking. - (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (5) The f_{MAX} values represent the highest frequency for pipelined data. - (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use. - (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value. - (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode. Tables 29 and 30 show the EPM7064S AC operating conditions. | Table 29. EPM7064S External Timing Parameters (Part 1 of 2) Note (1) | | | | | | | | | | | | | |--|---------------------------------------|------------|-------------|-----|-----|-----|-----|-----|-----|------|----|--| | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | | | | | | | - | 5 | -6 | | -7 | | -10 | | 1 | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | | t _{PD1} | Input to non-registered output | C1 = 35 pF | | 5.0 | | 6.0 | | 7.5 | | 10.0 | ns | | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF | | 5.0 | | 6.0 | | 7.5 | | 10.0 | ns | | | t _{SU} | Global clock setup time | | 2.9 | | 3.6 | | 6.0 | | 7.0 | | ns | | | t _H | Global clock hold time | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{FSU} | Global clock setup time of fast input | | 2.5 | | 2.5 | | 3.0 | | 3.0 | | ns | | | t _{FH} | Global clock hold time of fast input | | 0.0 | | 0.0 | | 0.5 | | 0.5 | | ns | | | t _{CO1} | Global clock to output delay | C1 = 35 pF | | 3.2 | | 4.0 | | 4.5 | | 5.0 | ns | | | t _{CH} | Global clock high time | | 2.0 | | 2.5 | | 3.0 | | 4.0 | | ns | | | t _{CL} | Global clock low time | | 2.0 | | 2.5 | | 3.0 | | 4.0 | | ns | | | t _{ASU} | Array clock setup time | | 0.7 | | 0.9 | | 3.0 | | 2.0 | | ns | | | t _{AH} | Array clock hold time | | 1.8 | | 2.1 | | 2.0 | | 3.0 | | ns | | | Table 35. EPM7192S External Timing Parameters (Part 2 of 2) Note (1) | | | | | | | | | | | | |--|--|----------------|-------------|-----|-------|------|-------|------|-----|--|--| | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | | | | | | -7 | | -10 | | -15 | | | | | | | | | Min | Max | Min | Max | Min | Max | | | | | t _{AH} | Array clock hold time | | 1.8 | | 3.0 | | 4.0 | | ns | | | | t _{ACO1} | Array clock to output delay | C1 = 35 pF | | 7.8 | | 10.0 | | 15.0 | ns | | | | t _{ACH} | Array clock high time | | 3.0 | | 4.0 | | 6.0 | | ns | | | | t _{ACL} | Array clock low time | | 3.0 | | 4.0 | | 6.0 | | ns | | | | t _{CPPW} | Minimum pulse width for clear and preset | (2) | 3.0 | | 4.0 | | 6.0 | | ns | | | | t _{ODH} | Output data hold time after clock | C1 = 35 pF (3) | 1.0 | | 1.0 | | 1.0 | | ns | | | | t _{CNT} | Minimum global clock period | | | 8.0 | | 10.0 | | 13.0 | ns | | | | f _{CNT} | Maximum internal global clock frequency | (4) | 125.0 | | 100.0 | | 76.9 | | MHz | | | | t _{ACNT} | Minimum array clock period | | | 8.0 | | 10.0 | | 13.0 | ns | | | | f _{ACNT} | Maximum internal array clock frequency | (4) | 125.0 | | 100.0 | | 76.9 | | MHz | | | | f _{MAX} | Maximum clock frequency | (5) | 166.7 | | 125.0 | | 100.0 | | MHz | | | | Table 36. EPM7192S Internal Timing Parameters (Part 1 of 2) Note (1) | | | | | | | | | | | | |--|--------------------------------|----------------|-------------|-----|-----|-----|-----|------|----|--|--| | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | | | | | | -7 | | -10 | | -15 | | | | | | | | | Min | Max | Min | Max | Min | Max | | | | | t _{IN} | Input pad and buffer delay | | | 0.3 | | 0.5 | | 2.0 | ns | | | | t _{IO} | I/O input pad and buffer delay | | | 0.3 | | 0.5 | | 2.0 | ns | | | | t _{FIN} | Fast input delay | | | 3.2 | | 1.0 | | 2.0 | ns | | | | t _{SEXP} | Shared expander delay | | | 4.2 | | 5.0 | | 8.0 | ns | | | | t _{PEXP} | Parallel expander delay | | | 1.2 | | 0.8 | | 1.0 | ns | | | | t_{LAD} | Logic array delay | | | 3.1 | | 5.0 | | 6.0 | ns | | | | t _{LAC} | Logic control array delay | | | 3.1 | | 5.0 | | 6.0 | ns | | | | t _{IOE} | Internal output enable delay | | | 0.9 | | 2.0 | | 3.0 | ns | | | | t _{OD1} | Output buffer and pad delay | C1 = 35 pF | | 0.5 | | 1.5 | | 4.0 | ns | | | | t _{OD2} | Output buffer and pad delay | C1 = 35 pF (6) | | 1.0 | | 2.0 | | 5.0 | ns | | | | t _{OD3} | Output buffer and pad delay | C1 = 35 pF | | 5.5 | | 5.5 | | 7.0 | ns | | | | t_{ZX1} | Output buffer enable delay | C1 = 35 pF | | 4.0 | | 5.0 | | 6.0 | ns | | | | t _{ZX2} | Output buffer enable delay | C1 = 35 pF (6) | | 4.5 | | 5.5 | | 7.0 | ns | | | | t _{ZX3} | Output buffer enable delay | C1 = 35 pF | | 9.0 | | 9.0 | | 10.0 | ns | | | | t _{XZ} | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 5.0 | | 6.0 | ns | | | | t _{SU} | Register setup time | | 1.1 | | 2.0 | | 4.0 | | ns | | | #### Notes to tables: - These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms. - (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path. - (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking. - (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (5) The f_{MAX} values represent the highest frequency for pipelined data. - (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use. - (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value. - (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode. # Power Consumption Supply power (P) versus frequency (f_{MAX} in MHz) for MAX 7000 devices is calculated with the following equation: $$P = P_{INT} + P_{IO} = I_{CCINT} \times V_{CC} + P_{IO}$$ The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note* 74 (*Evaluating Power for Altera Devices*). The I_{CCINT} value, which depends on the switching frequency and the application logic, is calculated with the following equation: $$I_{CCINT} =$$ $$A \times MC_{TON} + B \times (MC_{DEV} - MC_{TON}) + C \times MC_{USED} \times f_{MAX} \times tog_{USED}$$ The parameters in this equation are shown below: MC_{TON} = Number of macrocells with the Turbo Bit option turned on, as reported in the MAX+PLUS II Report File (.rpt) MC_{DEV} = Number of macrocells in the device MC_{USED} = Total number of macrocells in the design, as reported in the MAX+PLUS II Report File (.rpt) f_{MAX} = Highest clock frequency to the device tog_{LC} = Average ratio of logic cells toggling at each clock (typically 0.125) A, B, C = Constants, shown in Table 39 Figure 15 shows typical supply current versus frequency for MAX 7000S devices. ## EPM7128S EPM7160S Figure 19. 100-Pin Package Pin-Out Diagram Package outline not drawn to scale. Figure 20. 160-Pin Package Pin-Out Diagram Package outline not drawn to scale. # Figure 21. 192-Pin Package Pin-Out Diagram Package outline not drawn to scale. Figure 22. 208-Pin Package Pin-Out Diagram Package outline not drawn to scale. # Revision History The information contained in the *MAX 7000 Programmable Logic Device Family Data Sheet* version 6.7 supersedes information published in previous versions. The following changes were made in the *MAX 7000 Programmable Logic Device Family Data Sheet* version 6.7: ## Version 6.7 The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.7: Reference to AN 88: Using the Jam Language for ISP & ICR via an Embedded Processor has been replaced by AN 122: Using Jam STAPL for ISP & ICR via an Embedded Processor. # Version 6.6 The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.6: - Added Tables 6 through 8. - Added "Programming Sequence" section on page 17 and "Programming Times" section on page 18. # Version 6.5 The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.5: Updated text on page 16. ## Version 6.4 The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.4: Added Note (5) on page 28. ## Version 6.3 The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.3: ■ Updated the "Open-Drain Output Option (MAX 7000S Devices Only)" section on page 20.