

Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Obsolete
Programmable Type	EE PLD
Delay Time tpd(1) Max	20 ns
Voltage Supply - Internal	4.75V ~ 5.25V
Number of Logic Elements/Blocks	10
Number of Macrocells	160
Number of Gates	3200
Number of I/O	84
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-PQFP (20x14)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm7160eqc100-20mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The MAX 7000 architecture supports 100% TTL emulation and high-density integration of SSI, MSI, and LSI logic functions. The MAX 7000 architecture easily integrates multiple devices ranging from PALs, GALs, and 22V10s to MACH and pLSI devices. MAX 7000 devices are available in a wide range of packages, including PLCC, PGA, PQFP, RQFP, and TQFP packages. See Table 5.

Table 5. M.	AX 7000) Maxim	um Use	r I/O Pii	ıs N	ote (1)						
Device	44- Pin PLCC	44- Pin PQFP	44- Pin TQFP	68- Pin PLCC	84- Pin PLCC	100- Pin PQFP	100- Pin TQFP	160- Pin PQFP	160- Pin PGA	192- Pin PGA	208- Pin PQFP	208- Pin RQFP
EPM7032	36	36	36									
EPM7032S	36		36									
EPM7064	36		36	52	68	68						
EPM7064S	36		36		68		68					
EPM7096				52	64	76						
EPM7128E					68	84		100				
EPM7128S					68	84	84 (2)	100				
EPM7160E					64	84		104				
EPM7160S					64		84 (2)	104				
EPM7192E								124	124			
EPM7192S								124				
EPM7256E								132 (2)		164		164
EPM7256S											164 (2)	164

Notes:

- When the JTAG interface in MAX 7000S devices is used for either boundary-scan testing or for ISP, four I/O pins become JTAG pins.
- (2) Perform a complete thermal analysis before committing a design to this device package. For more information, see the Operating Requirements for Altera Devices Data Sheet.

MAX 7000 devices use CMOS EEPROM cells to implement logic functions. The user-configurable MAX 7000 architecture accommodates a variety of independent combinatorial and sequential logic functions. The devices can be reprogrammed for quick and efficient iterations during design development and debug cycles, and can be programmed and erased up to 100 times.

MAX 7000 devices contain from 32 to 256 macrocells that are combined into groups of 16 macrocells, called logic array blocks (LABs). Each macrocell has a programmable-AND/fixed-OR array and a configurable register with independently programmable clock, clock enable, clear, and preset functions. To build complex logic functions, each macrocell can be supplemented with both shareable expander product terms and high-speed parallel expander product terms to provide up to 32 product terms per macrocell.

The MAX 7000 family provides programmable speed/power optimization. Speed-critical portions of a design can run at high speed/full power, while the remaining portions run at reduced speed/low power. This speed/power optimization feature enables the designer to configure one or more macrocells to operate at 50% or lower power while adding only a nominal timing delay. MAX 7000E and MAX 7000S devices also provide an option that reduces the slew rate of the output buffers, minimizing noise transients when non-speed-critical signals are switching. The output drivers of all MAX 7000 devices (except 44-pin devices) can be set for either 3.3-V or 5.0-V operation, allowing MAX 7000 devices to be used in mixed-voltage systems.

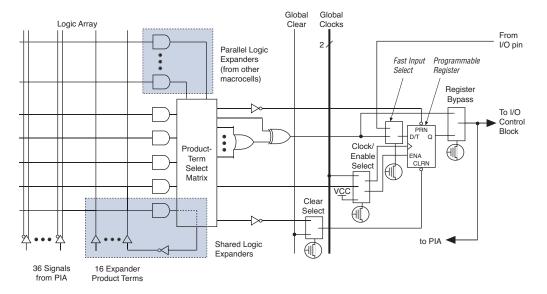
The MAX 7000 family is supported by Altera development systems, which are integrated packages that offer schematic, text—including VHDL, Verilog HDL, and the Altera Hardware Description Language (AHDL)—and waveform design entry, compilation and logic synthesis, simulation and timing analysis, and device programming. The software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry-standard PC- and UNIX-workstation-based EDA tools. The software runs on Windows-based PCs, as well as Sun SPARCstation, and HP 9000 Series 700/800 workstations.

For more information on development tools, see the MAX+PLUS II Programmable Logic Development System & Software Data Sheet and the Quartus Programmable Logic Development System & Software Data Sheet.

Functional Description

The MAX 7000 architecture includes the following elements:

- Logic array blocks
- Macrocells
- Expander product terms (shareable and parallel)
- Programmable interconnect array
- I/O control blocks


Each LAB is fed by the following signals:

- 36 signals from the PIA that are used for general logic inputs
- Global controls that are used for secondary register functions
- Direct input paths from I/O pins to the registers that are used for fast setup times for MAX 7000E and MAX 7000S devices

Macrocells

The MAX 7000 macrocell can be individually configured for either sequential or combinatorial logic operation. The macrocell consists of three functional blocks: the logic array, the product-term select matrix, and the programmable register. The macrocell of EPM7032, EPM7064, and EPM7096 devices is shown in Figure 3.

Figure 3. EPM7032, EPM7064 & EPM7096 Device Macrocell

Each programmable register can be clocked in three different modes:

- By a global clock signal. This mode achieves the fastest clock-tooutput performance.
- By a global clock signal and enabled by an active-high clock enable. This mode provides an enable on each flipflop while still achieving the fast clock-to-output performance of the global clock.
- By an array clock implemented with a product term. In this mode, the flipflop can be clocked by signals from buried macrocells or I/O pins.

In EPM7032, EPM7064, and EPM7096 devices, the global clock signal is available from a dedicated clock pin, GCLK1, as shown in Figure 1. In MAX 7000E and MAX 7000S devices, two global clock signals are available. As shown in Figure 2, these global clock signals can be the true or the complement of either of the global clock pins, GCLK1 or GCLK2.

Each register also supports asynchronous preset and clear functions. As shown in Figures 3 and 4, the product-term select matrix allocates product terms to control these operations. Although the product-term-driven preset and clear of the register are active high, active-low control can be obtained by inverting the signal within the logic array. In addition, each register clear function can be individually driven by the active-low dedicated global clear pin (GCLRn). Upon power-up, each register in the device will be set to a low state.

All MAX 7000E and MAX 7000S I/O pins have a fast input path to a macrocell register. This dedicated path allows a signal to bypass the PIA and combinatorial logic and be driven to an input D flipflop with an extremely fast (2.5 ns) input setup time.

Expander Product Terms

Although most logic functions can be implemented with the five product terms available in each macrocell, the more complex logic functions require additional product terms. Another macrocell can be used to supply the required logic resources; however, the MAX 7000 architecture also allows both shareable and parallel expander product terms ("expanders") that provide additional product terms directly to any macrocell in the same LAB. These expanders help ensure that logic is synthesized with the fewest possible logic resources to obtain the fastest possible speed.

Programmable Speed/Power Control

MAX 7000 devices offer a power-saving mode that supports low-power operation across user-defined signal paths or the entire device. This feature allows total power dissipation to be reduced by 50% or more, because most logic applications require only a small fraction of all gates to operate at maximum frequency.

The designer can program each individual macrocell in a MAX 7000 device for either high-speed (i.e., with the Turbo BitTM option turned on) or low-power (i.e., with the Turbo Bit option turned off) operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths can operate at reduced power. Macrocells that run at low power incur a nominal timing delay adder (t_{LPA}) for the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , and t_{SEXP} , t_{ACL} , and t_{CPPW} parameters.

Output Configuration

MAX 7000 device outputs can be programmed to meet a variety of system-level requirements.

MultiVolt I/O Interface

MAX 7000 devices—except 44-pin devices—support the MultiVolt I/O interface feature, which allows MAX 7000 devices to interface with systems that have differing supply voltages. The 5.0-V devices in all packages can be set for 3.3-V or 5.0-V I/O pin operation. These devices have one set of VCC pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

The VCCINT pins must always be connected to a 5.0-V power supply. With a 5.0-V $V_{\rm CCINT}$ level, input voltage thresholds are at TTL levels, and are therefore compatible with both 3.3-V and 5.0-V inputs.

The VCCIO pins can be connected to either a 3.3-V or a 5.0-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 5.0-V supply, the output levels are compatible with 5.0-V systems. When $V_{\rm CCIO}$ is connected to a 3.3-V supply, the output high is 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with $V_{\rm CCIO}$ levels lower than 4.75 V incur a nominally greater timing delay of $t_{\rm OD2}$ instead of $t_{\rm OD1}$.

Open-Drain Output Option (MAX 7000S Devices Only)

MAX 7000S devices provide an optional open-drain (functionally equivalent to open-collector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. It can also provide an additional wired-OR plane.

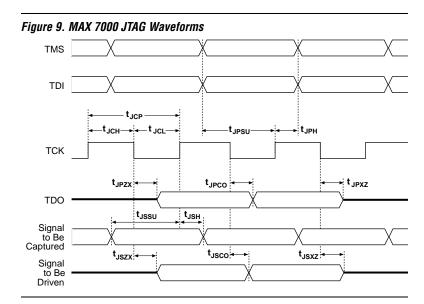
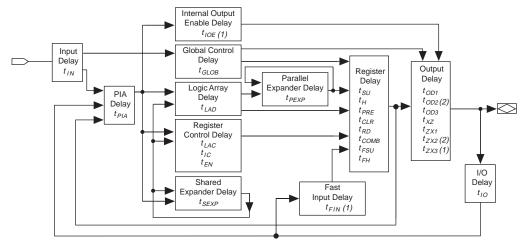


Figure 9 shows the timing requirements for the JTAG signals.

Table 12 shows the JTAG timing parameters and values for MAX 7000S devices.

Table 1	2. JTAG Timing Parameters & Values for MAX 70	000S De	vices	
Symbol	Parameter	Min	Max	Unit
t _{JCP}	TCK clock period	100		ns
t _{JCH}	TCK clock high time	50		ns
t _{JCL}	TCK clock low time	50		ns
t _{JPSU}	JTAG port setup time	20		ns
t _{JPH}	JTAG port hold time	45		ns
t _{JPCO}	JTAG port clock to output		25	ns
t _{JPZX}	JTAG port high impedance to valid output		25	ns
t _{JPXZ}	JTAG port valid output to high impedance		25	ns
t _{JSSU}	Capture register setup time	20		ns
t _{JSH}	Capture register hold time	45		ns
t _{JSCO}	Update register clock to output		25	ns
t _{JSZX}	Update register high impedance to valid output		25	ns
t _{JSXZ}	Update register valid output to high impedance		25	ns

For more information, see *Application Note* 39 (*IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices*).


Operating Conditions

Tables 13 through 18 provide information about absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for 5.0-V MAX 7000 devices.

Table 1	3. MAX 7000 5.0-V Device Abso	plute Maximum Ratings Note (1)			
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	Supply voltage	With respect to ground (2)	-2.0	7.0	V
VI	DC input voltage		-2.0	7.0	V
I _{OUT}	DC output current, per pin		-25	25	mA
T _{STG}	Storage temperature	No bias	-65	150	° C
T _{AMB}	Ambient temperature	Under bias	-65	135	° C
TJ	Junction temperature	Ceramic packages, under bias		150	°C
		PQFP and RQFP packages, under bias		135	°C

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4), (5)	4.75 (4.50)	5.25 (5.50)	V
V _{CCIO}	Supply voltage for output drivers, 5.0-V operation	(3), (4)	4.75 (4.50)	5.25 (5.50)	V
	Supply voltage for output drivers, 3.3-V operation	(3), (4), (6)	3.00 (3.00)	3.60 (3.60)	V
V _{CCISP}	Supply voltage during ISP	(7)	4.75	5.25	V
V _I	Input voltage		-0.5 (8)	V _{CCINT} + 0.5	V
Vo	Output voltage		0	V _{CCIO}	V
T _A	Ambient temperature	For commercial use	0	70	°C
		For industrial use	-40	85	°C
TJ	Junction temperature	For commercial use	0	90	°C
		For industrial use	-40	105	° C
t _R	Input rise time			40	ns
t _F	Input fall time			40	ns

Figure 12. MAX 7000 Timing Model

Notes:

- (1) Only available in MAX 7000E and MAX 7000S devices.
- (2) Not available in 44-pin devices.

The timing characteristics of any signal path can be derived from the timing model and parameters of a particular device. External timing parameters, which represent pin-to-pin timing delays, can be calculated as the sum of internal parameters. Figure 13 shows the internal timing relationship of internal and external delay parameters.

For more infomration, see *Application Note* 94 (Understanding MAX 7000 *Timing*).

Table 2	21. MAX 7000 & MAX 7000E Ext	ernal Timing Param	eters Note	(1)						
Symbol	Parameter	Conditions		Speed Grade						
			MAX 700	0E (-10P)		000 (-10) 00E (-10)				
			Min	Max	Min	Max				
t _{PD1}	Input to non-registered output	C1 = 35 pF		10.0		10.0	ns			
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		10.0		10.0	ns			
t _{SU}	Global clock setup time		7.0		8.0		ns			
t _H	Global clock hold time		0.0		0.0		ns			
t _{FSU}	Global clock setup time of fast input	(2)	3.0		3.0		ns			
t _{FH}	Global clock hold time of fast input	(2)	0.5		0.5		ns			
t _{CO1}	Global clock to output delay	C1 = 35 pF		5.0		5	ns			
t _{CH}	Global clock high time		4.0		4.0		ns			
t _{CL}	Global clock low time		4.0		4.0		ns			
t _{ASU}	Array clock setup time		2.0		3.0		ns			
t _{AH}	Array clock hold time		3.0		3.0		ns			
t _{ACO1}	Array clock to output delay	C1 = 35 pF		10.0		10.0	ns			
t _{ACH}	Array clock high time		4.0		4.0		ns			
t _{ACL}	Array clock low time		4.0		4.0		ns			
t _{CPPW}	Minimum pulse width for clear and preset	(3)	4.0		4.0		ns			
t _{ODH}	Output data hold time after clock	C1 = 35 pF (4)	1.0		1.0		ns			
t _{CNT}	Minimum global clock period			10.0		10.0	ns			
f _{CNT}	Maximum internal global clock frequency	(5)	100.0		100.0		MHz			
t _{ACNT}	Minimum array clock period			10.0		10.0	ns			
f _{ACNT}	Maximum internal array clock frequency	(5)	100.0		100.0		MHz			
f _{MAX}	Maximum clock frequency	(6)	125.0		125.0		MHz			

Table 2	23. MAX 7000 & MAX 7000E Ext	ernal Timing Param	eters Note	e (1)					
Symbol	Parameter	Conditions	Speed Grade						
			MAX 700	0E (-12P)		00 (-12) DOE (-12)	-		
			Min	Max	Min	Max			
t _{PD1}	Input to non-registered output	C1 = 35 pF		12.0		12.0	ns		
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		12.0		12.0	ns		
t _{SU}	Global clock setup time		7.0		10.0		ns		
t _H	Global clock hold time		0.0		0.0		ns		
t _{FSU}	Global clock setup time of fast input	(2)	3.0		3.0		ns		
t _{FH}	Global clock hold time of fast input	(2)	0.0		0.0		ns		
t _{CO1}	Global clock to output delay	C1 = 35 pF		6.0		6.0	ns		
t _{CH}	Global clock high time		4.0		4.0		ns		
t _{CL}	Global clock low time		4.0		4.0		ns		
t _{ASU}	Array clock setup time		3.0		4.0		ns		
t _{AH}	Array clock hold time		4.0		4.0		ns		
t _{ACO1}	Array clock to output delay	C1 = 35 pF		12.0		12.0	ns		
t _{ACH}	Array clock high time		5.0		5.0		ns		
t _{ACL}	Array clock low time		5.0		5.0		ns		
t _{CPPW}	Minimum pulse width for clear and preset	(3)	5.0		5.0		ns		
t _{ODH}	Output data hold time after clock	C1 = 35 pF (4)	1.0		1.0		ns		
t _{CNT}	Minimum global clock period			11.0		11.0	ns		
f _{CNT}	Maximum internal global clock frequency	(5)	90.9		90.9		MHz		
t _{ACNT}	Minimum array clock period			11.0		11.0	ns		
f _{ACNT}	Maximum internal array clock frequency	(5)	90.9		90.9		MHz		
f _{MAX}	Maximum clock frequency	(6)	125.0		125.0		MHz		

Table 28. EPM7032S Internal Timing Parameters Note (1)											
Symbol	Parameter	Conditions	ns Speed Grade								
			-	-5 -6 -7 -10							
			Min	Max	Min	Max	Min	Max	Min	Max	
t_{PIA}	PIA delay	(7)		1.1 1.1 1.4 1.0							
t_{LPA}	Low-power adder	(8)		12.0		10.0		10.0		11.0	ns

Notes to tables:

- (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode.

Tables 29 and 30 show the EPM7064S AC operating conditions.

Table 2	9. EPM7064\$ External Time	ing Parameters	(Part	1 of 2)	No	nte (1)					
Symbol	Parameter	Conditions	Speed Grade								
			-5		-6		-7		-10		
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF		5.0		6.0		7.5		10.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		5.0		6.0		7.5		10.0	ns
t _{SU}	Global clock setup time		2.9		3.6		6.0		7.0		ns
t _H	Global clock hold time		0.0		0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		2.5		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.5		0.5		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		3.2		4.0		4.5		5.0	ns
t _{CH}	Global clock high time		2.0		2.5		3.0		4.0		ns
t _{CL}	Global clock low time		2.0		2.5		3.0		4.0		ns
t _{ASU}	Array clock setup time		0.7		0.9		3.0		2.0		ns
t _{AH}	Array clock hold time		1.8		2.1		2.0		3.0		ns

Table 2	9. EPM7064\$ External Timi	ing Parameters	(Part 2	2 of 2)	No	te (1)					
Symbol	Parameter	Conditions	Speed Grade								
			-	5	-	6	-	7	-1	10	
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{ACO1}	Array clock to output delay	C1 = 35 pF		5.4		6.7		7.5		10.0	ns
t _{ACH}	Array clock high time		2.5		2.5		3.0		4.0		ns
t _{ACL}	Array clock low time		2.5		2.5		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(2)	2.5		2.5		3.0		4.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		1.0		ns
t _{CNT}	Minimum global clock period			5.7		7.1		8.0		10.0	ns
f _{CNT}	Maximum internal global clock frequency	(4)	175.4		140.8		125.0		100.0		MHz
t _{ACNT}	Minimum array clock period			5.7		7.1		8.0		10.0	ns
f _{ACNT}	Maximum internal array clock frequency	(4)	175.4		140.8		125.0		100.0		MHz
f _{MAX}	Maximum clock frequency	(5)	250.0		200.0		166.7		125.0		MHz

Table 3	O. EPM7064\$ Internal Tim	ing Parameters	(Part	1 of 2)	No	te (1)					
Symbol	Parameter	Conditions				Speed	Grade				Unit
			-5		-6		-7		-10		
			Min	Max	Min	Max	Min	Max	Min	Max	
t_{IN}	Input pad and buffer delay			0.2		0.2		0.5		0.5	ns
t _{IO}	I/O input pad and buffer delay			0.2		0.2		0.5		0.5	ns
t _{FIN}	Fast input delay			2.2		2.6		1.0		1.0	ns
t _{SEXP}	Shared expander delay			3.1		3.8		4.0		5.0	ns
t _{PEXP}	Parallel expander delay			0.9		1.1		0.8		0.8	ns
t_{LAD}	Logic array delay			2.6		3.2		3.0		5.0	ns
t _{LAC}	Logic control array delay			2.5		3.2		3.0		5.0	ns
t _{IOE}	Internal output enable delay			0.7		0.8		2.0		2.0	ns
t _{OD1}	Output buffer and pad delay	C1 = 35 pF		0.2		0.3		2.0		1.5	ns
t _{OD2}	Output buffer and pad delay	C1 = 35 pF (6)		0.7		0.8		2.5		2.0	ns
t _{OD3}	Output buffer and pad delay	C1 = 35 pF		5.2		5.3		7.0		5.5	ns
t_{ZX1}	Output buffer enable delay	C1 = 35 pF		4.0		4.0		4.0		5.0	ns
t_{ZX2}	Output buffer enable delay	C1 = 35 pF (6)		4.5		4.5		4.5		5.5	ns
t _{ZX3}	Output buffer enable delay	C1 = 35 pF		9.0		9.0		9.0		9.0	ns
t_{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		4.0		5.0	ns
t _{SU}	Register setup time		0.8		1.0		3.0		2.0		ns
t _H	Register hold time		1.7		2.0		2.0		3.0		ns

Symbol	Parameter	Conditions	Speed Grade								
			-5		-6		-7		-10		1
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{FSU}	Register setup time of fast input		1.9		1.8		3.0		3.0		ns
t _{FH}	Register hold time of fast input		0.6		0.7		0.5		0.5		ns
t _{RD}	Register delay			1.2		1.6		1.0		2.0	ns
t _{COMB}	Combinatorial delay			0.9		1.0		1.0		2.0	ns
t _{IC}	Array clock delay			2.7		3.3		3.0		5.0	ns
t _{EN}	Register enable time			2.6		3.2		3.0		5.0	ns
t_{GLOB}	Global control delay			1.6		1.9		1.0		1.0	ns
t_{PRE}	Register preset time			2.0		2.4		2.0		3.0	ns
t _{CLR}	Register clear time			2.0		2.4		2.0		3.0	ns
t _{PIA}	PIA delay	(7)		1.1		1.3		1.0		1.0	ns
t_{LPA}	Low-power adder	(8)		12.0		11.0		10.0		11.0	ns

Notes to tables:

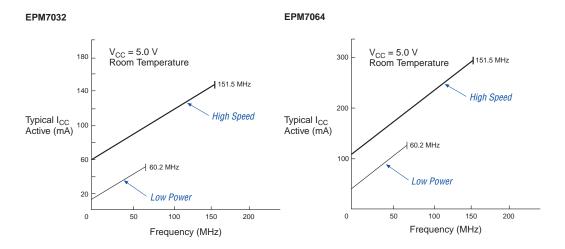
- (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode.

Symbol	Parameter	Conditions				Speed	Grade	!			Unit
			-6		-7		-10		-15		
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.2		0.5		0.5		2.0	ns
t _{IO}	I/O input pad and buffer delay			0.2		0.5		0.5		2.0	ns
t _{FIN}	Fast input delay			2.6		1.0		1.0		2.0	ns
t _{SEXP}	Shared expander delay			3.7		4.0		5.0		8.0	ns
t _{PEXP}	Parallel expander delay			1.1		0.8		0.8		1.0	ns
t_{LAD}	Logic array delay			3.0		3.0		5.0		6.0	ns
t_{LAC}	Logic control array delay			3.0		3.0		5.0		6.0	ns
t _{IOE}	Internal output enable delay			0.7		2.0		2.0		3.0	ns
t _{OD1}	Output buffer and pad delay	C1 = 35 pF		0.4		2.0		1.5		4.0	ns
t _{OD2}	Output buffer and pad delay	C1 = 35 pF (6)		0.9		2.5		2.0		5.0	ns
t _{OD3}	Output buffer and pad delay	C1 = 35 pF		5.4		7.0		5.5		8.0	ns
t _{ZX1}	Output buffer enable delay	C1 = 35 pF		4.0		4.0		5.0		6.0	ns
t _{ZX2}	Output buffer enable delay	C1 = 35 pF (6)		4.5		4.5		5.5		7.0	ns
t_{ZX3}	Output buffer enable delay	C1 = 35 pF		9.0		9.0		9.0		10.0	ns
t_{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		5.0		6.0	ns
t _{SU}	Register setup time		1.0		3.0		2.0		4.0		ns
t _H	Register hold time		1.7		2.0		5.0		4.0		ns
t _{FSU}	Register setup time of fast input		1.9		3.0		3.0		2.0		ns
t _{FH}	Register hold time of fast input		0.6		0.5		0.5		1.0		ns
t_{RD}	Register delay			1.4		1.0		2.0		1.0	ns
t _{COMB}	Combinatorial delay			1.0		1.0		2.0		1.0	ns
t _{IC}	Array clock delay			3.1		3.0		5.0		6.0	ns
t _{EN}	Register enable time			3.0		3.0		5.0		6.0	ns
t_{GLOB}	Global control delay			2.0		1.0		1.0		1.0	ns
t _{PRE}	Register preset time			2.4		2.0		3.0		4.0	ns
t _{CLR}	Register clear time			2.4		2.0		3.0		4.0	ns
t_{PIA}	PIA delay	(7)		1.4		1.0		1.0		2.0	ns
t_{LPA}	Low-power adder	(8)		11.0		10.0		11.0		13.0	ns

Notes to tables:

- These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode.

Tables 33 and 34 show the EPM7160S AC operating conditions.


Table 3	Table 33. EPM7160S External Timing Parameters (Part 1 of 2) Note (1)										
Symbol	Parameter	Conditions				Speed	Grade)			Unit
			-	6	-7		-10		-15		1
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns
t _{SU}	Global clock setup time		3.4		4.2		7.0		11.0		ns
t _H	Global clock hold time		0.0		0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.5		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		3.9		4.8		5		8	ns
t _{CH}	Global clock high time		3.0		3.0		4.0		5.0		ns
t _{CL}	Global clock low time		3.0		3.0		4.0		5.0		ns
t _{ASU}	Array clock setup time		0.9		1.1		2.0		4.0		ns
t _{AH}	Array clock hold time		1.7		2.1		3.0		4.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		6.4		7.9		10.0		15.0	ns
t _{ACH}	Array clock high time		3.0		3.0		4.0		6.0		ns
t _{ACL}	Array clock low time		3.0		3.0		4.0		6.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(2)	2.5		3.0		4.0		6.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		1.0		ns
t _{CNT}	Minimum global clock period			6.7		8.2		10.0		13.0	ns
f _{CNT}	Maximum internal global clock frequency	(4)	149.3		122.0		100.0		76.9		MHz

Tables 37 and 38 show the EPM7256S AC operating conditions.

Symbol		Conditions	Speed Grade						
			-7 -10				-1	Unit	
			Min	Max	Min	Max	Min	Max	1
			IVIIII	7.5	IVIIII	10.0	IVIIII	15.0	
t _{PD1}	Input to non-registered output I/O input to non-registered output	C1 = 35 pF C1 = 35 pF		7.5		10.0		15.0	ns ns
t _{SU}	Global clock setup time		3.9		7.0		11.0		ns
t _H	Global clock hold time		0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		3.0		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.5		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		4.7		5.0		8.0	ns
t _{CH}	Global clock high time		3.0		4.0		5.0		ns
t _{CL}	Global clock low time		3.0		4.0		5.0		ns
t _{ASU}	Array clock setup time		0.8		2.0		4.0		ns
t _{AH}	Array clock hold time		1.9		3.0		4.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		7.8		10.0		15.0	ns
t _{ACH}	Array clock high time		3.0		4.0		6.0		ns
t _{ACL}	Array clock low time		3.0		4.0		6.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(2)	3.0		4.0		6.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		ns
t _{CNT}	Minimum global clock period			7.8		10.0		13.0	ns
f _{CNT}	Maximum internal global clock frequency	(4)	128.2		100.0		76.9		MHz
t _{ACNT}	Minimum array clock period			7.8		10.0		13.0	ns
f _{ACNT}	Maximum internal array clock frequency	(4)	128.2		100.0		76.9		MHz
f _{MAX}	Maximum clock frequency	(5)	166.7		125.0		100.0		MHz

Figure 14 shows typical supply current versus frequency for MAX 7000 devices.

Figure 14. I_{CC} vs. Frequency for MAX 7000 Devices (Part 1 of 2)

EPM7096

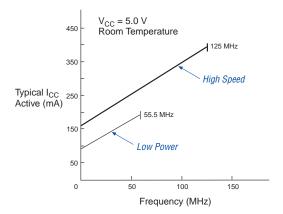
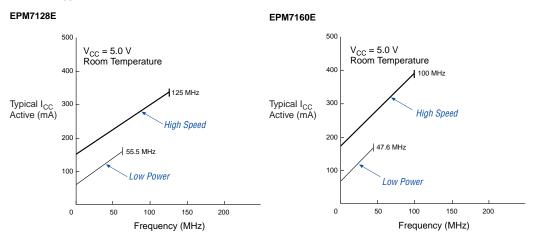
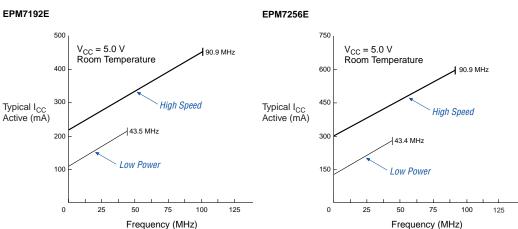




Figure 14. I_{CC} vs. Frequency for MAX 7000 Devices (Part 2 of 2)

Revision History

The information contained in the *MAX 7000 Programmable Logic Device Family Data Sheet* version 6.7 supersedes information published in previous versions. The following changes were made in the *MAX 7000 Programmable Logic Device Family Data Sheet* version 6.7:

Version 6.7

The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.7:

Reference to AN 88: Using the Jam Language for ISP & ICR via an Embedded Processor has been replaced by AN 122: Using Jam STAPL for ISP & ICR via an Embedded Processor.

Version 6.6

The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.6:

- Added Tables 6 through 8.
- Added "Programming Sequence" section on page 17 and "Programming Times" section on page 18.

Version 6.5

The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.5:

Updated text on page 16.

Version 6.4

The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.4:

Added Note (5) on page 28.

Version 6.3

The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.3:

■ Updated the "Open-Drain Output Option (MAX 7000S Devices Only)" section on page 20.

