E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Product Status	Obsolete
Programmable Type	EE PLD
Delay Time tpd(1) Max	15 ns
Voltage Supply - Internal	4.75V ~ 5.25V
Number of Logic Elements/Blocks	10
Number of Macrocells	160
Number of Gates	3200
Number of I/O	84
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-PQFP (20x14)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm7160eqi100-15

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	 Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, and VeriBest Programming support Altera's Master Programming Unit (MPU) and programming hardware from third-party manufacturers program all MAX 7000 devices The BitBlasterTM serial download cable, ByteBlasterMVTM parallel port download cable, and MasterBlasterTM serial/universal serial bus (USB) download cable program MAX 7000S devices
General Description	The MAX 7000 family of high-density, high-performance PLDs is based on Altera's second-generation MAX architecture. Fabricated with advanced CMOS technology, the EEPROM-based MAX 7000 family provides 600 to 5,000 usable gates, ISP, pin-to-pin delays as fast as 5 ns, and counter speeds of up to 175.4 MHz. MAX 7000S devices in the -5, -6, -7, and -10 speed grades as well as MAX 7000 and MAX 7000E devices in -5, -6, -7, -10P, and -12P speed grades comply with the PCI Special Interest Group (PCI SIG) <i>PCI Local Bus Specification, Revision 2.2.</i> See Table 3 for available speed grades.

Table 3. MA	Table 3. MAX 7000 Speed Grades												
Device					Speed	Grade							
	-5	-6	-7	-10P	-10	-12P	-12	-15	-15T	-20			
EPM7032		~	~		\checkmark		~	>	\checkmark				
EPM7032S	~	~	~		~								
EPM7064		~	~		~		~	\checkmark					
EPM7064S	\checkmark	~	~		~								
EPM7096			~		\checkmark		~	\checkmark					
EPM7128E			~	 	~		~	\checkmark		~			
EPM7128S		~	~		~			\checkmark					
EPM7160E				 Image: A start of the start of	~		~	~		~			
EPM7160S		 Image: A start of the start of	~		~			~					
EPM7192E						 Image: A set of the set of the	~	~		~			
EPM7192S			~		~			~					
EPM7256E						 	\checkmark	\checkmark		\checkmark			
EPM7256S			\checkmark		\checkmark			\checkmark					

The MAX 7000E devices—including the EPM7128E, EPM7160E, EPM7192E, and EPM7256E devices—have several enhanced features: additional global clocking, additional output enable controls, enhanced interconnect resources, fast input registers, and a programmable slew rate.

In-system programmable MAX 7000 devices—called MAX 7000S devices—include the EPM7032S, EPM7064S, EPM7128S, EPM7160S, EPM7192S, and EPM7256S devices. MAX 7000S devices have the enhanced features of MAX 7000E devices as well as JTAG BST circuitry in devices with 128 or more macrocells, ISP, and an open-drain output option. See Table 4.

Table 4. MAX 7000 Device Feat	ures		
Feature	EPM7032 EPM7064 EPM7096	All MAX 7000E Devices	All MAX 7000S Devices
ISP via JTAG interface			\checkmark
JTAG BST circuitry			✓(1)
Open-drain output option			\checkmark
Fast input registers		~	
Six global output enables		~	\checkmark
Two global clocks		~	
Slew-rate control		~	
MultiVolt interface (2)	\checkmark	~	\checkmark
Programmable register	\checkmark	~	
Parallel expanders	\checkmark	~	
Shared expanders	\checkmark	~	\checkmark
Power-saving mode	\checkmark	 	\checkmark
Security bit	\checkmark	 	\checkmark
PCI-compliant devices available	\checkmark	 	

Notes:

(1) Available only in EPM7128S, EPM7160S, EPM7192S, and EPM7256S devices only.

(2) The MultiVolt I/O interface is not available in 44-pin packages.

Figure 2 shows the architecture of MAX 7000E and MAX 7000S devices.

Figure 2. MAX 7000E & MAX 7000S Device Block Diagram

Logic Array Blocks

The MAX 7000 device architecture is based on the linking of highperformance, flexible, logic array modules called logic array blocks (LABs). LABs consist of 16-macrocell arrays, as shown in Figures 1 and 2. Multiple LABs are linked together via the programmable interconnect array (PIA), a global bus that is fed by all dedicated inputs, I/O pins, and macrocells. The compiler can allocate up to three sets of up to five parallel expanders automatically to the macrocells that require additional product terms. Each set of five parallel expanders incurs a small, incremental timing delay (t_{PEXP}). For example, if a macrocell requires 14 product terms, the Compiler uses the five dedicated product terms within the macrocell and allocates two sets of parallel expanders; the first set includes five product terms and the second set includes four product terms, increasing the total delay by $2 \times t_{PEXP}$.

Two groups of 8 macrocells within each LAB (e.g., macrocells 1 through 8 and 9 through 16) form two chains to lend or borrow parallel expanders. A macrocell borrows parallel expanders from lowernumbered macrocells. For example, macrocell 8 can borrow parallel expanders from macrocell 7, from macrocells 7 and 6, or from macrocells 7, 6, and 5. Within each group of 8, the lowest-numbered macrocell can only lend parallel expanders and the highest-numbered macrocell can only borrow them. Figure 6 shows how parallel expanders can be borrowed from a neighboring macrocell.

Figure 6. Parallel Expanders

Unused product terms in a macrocell can be allocated to a neighboring macrocell.

Figure 8. I/O Control Block of MAX 7000 Devices

EPM7032, EPM7064 & EPM7096 Devices

Note:

(1) The open-drain output option is available only in MAX 7000S devices.

Programming Times

The time required to implement each of the six programming stages can be broken into the following two elements:

- A pulse time to erase, program, or read the EEPROM cells.
- A shifting time based on the test clock (TCK) frequency and the number of TCK cycles to shift instructions, address, and data into the device.

By combining the pulse and shift times for each of the programming stages, the program or verify time can be derived as a function of the TCK frequency, the number of devices, and specific target device(s). Because different ISP-capable devices have a different number of EEPROM cells, both the total fixed and total variable times are unique for a single device.

Programming a Single MAX 7000S Device

The time required to program a single MAX 7000S device in-system can be calculated from the following formula:

$$t_{PROG} = t_{PPULSE} + \frac{Cycle_{PTCK}}{f_{TCK}}$$
where: t_{PROG} = Programming time
 t_{PPULSE} = Sum of the fixed times to erase, program, and
verify the EEPROM cells
 $Cycle_{PTCK}$ = Number of TCK cycles to program a device
 f_{TCK} = TCK frequency

The ISP times for a stand-alone verification of a single MAX 7000S device can be calculated from the following formula:

$$t_{VER} = t_{VPULSE} + \frac{Cycle_{VTCK}}{f_{TCK}}$$
where: t_{VER} = Verify time
 t_{VPULSE} = Sum of the fixed times to verify the EEPROM cells
 $Cycle_{VTCK}$ = Number of TCK cycles to verify a device

By using an external 5.0-V pull-up resistor, output pins on MAX 7000S devices can be set to meet 5.0-V CMOS input voltages. When V_{CCIO} is 3.3 V, setting the open drain option will turn off the output pull-up transistor, allowing the external pull-up resistor to pull the output high enough to meet 5.0-V CMOS input voltages. When V_{CCIO} is 5.0 V, setting the output drain option is not necessary because the pull-up transistor will already turn off when the pin exceeds approximately 3.8 V, allowing the external pull-up resistor to pull the output high enough to meet 5.0-V CMOS input voltages.

Slew-Rate Control

The output buffer for each MAX 7000E and MAX 7000S I/O pin has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A faster slew rate provides high-speed transitions for high-performance systems. However, these fast transitions may introduce noise transients into the system. A slow slew rate reduces system noise, but adds a nominal delay of 4 to 5 ns. In MAX 7000E devices, when the Turbo Bit is turned off, the slew rate is set for low noise performance. For MAX 7000S devices, each I/O pin has an individual EEPROM bit that controls the slew rate, allowing designers to specify the slew rate on a pin-by-pin basis.

MAX 7000 devices can be programmed on Windows-based PCs with the Altera Logic Programmer card, the Master Programming Unit (MPU), and the appropriate device adapter. The MPU performs a continuity check to ensure adequate electrical contact between the adapter and the device.

For more information, see the *Altera Programming Hardware Data Sheet*.

The Altera development system can use text- or waveform-format test vectors created with the Text Editor or Waveform Editor to test the programmed device. For added design verification, designers can perform functional testing to compare the functional behavior of a MAX 7000 device with the results of simulation. Moreover, Data I/O, BP Microsystems, and other programming hardware manufacturers also provide programming support for Altera devices.

For more information, see the Programming Hardware Manufacturers.

Programming with External Hardware

IEEE Std. 1149.1 (JTAG) Boundary-Scan Support

MAX 7000 devices support JTAG BST circuitry as specified by IEEE Std. 1149.1-1990. Table 9 describes the JTAG instructions supported by the MAX 7000 family. The pin-out tables (see the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information) show the location of the JTAG control pins for each device. If the JTAG interface is not required, the JTAG pins are available as user I/O pins.

Table 9. MAX 7000 J	ITAG Instructions	3
JTAG Instruction	Devices	Description
SAMPLE/PRELOAD	EPM7128S EPM7160S EPM7192S EPM7256S	Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern output at the device pins.
EXTEST	EPM7128S EPM7160S EPM7192S EPM7256S	Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins.
BYPASS	EPM7032S EPM7064S EPM7128S EPM7160S EPM7192S EPM7256S	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through a selected device to adjacent devices during normal device operation.
IDCODE	EPM7032S EPM7064S EPM7128S EPM7160S EPM7192S EPM7256S	Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be serially shifted out of TDO.
ISP Instructions	EPM7032S EPM7064S EPM7128S EPM7160S EPM7192S EPM7256S	These instructions are used when programming MAX 7000S devices via the JTAG ports with the MasterBlaster, ByteBlasterMV, BitBlaster download cable, or using a Jam File (.jam), Jam Byte-Code file (.jbc), or Serial Vector Format file (.svf) via an embedded processor or test equipment.

Figure 12. MAX 7000 Timing Model

Notes:

- (1) Only available in MAX 7000E and MAX 7000S devices.
- (2) Not available in 44-pin devices.

The timing characteristics of any signal path can be derived from the timing model and parameters of a particular device. External timing parameters, which represent pin-to-pin timing delays, can be calculated as the sum of internal parameters. Figure 13 shows the internal timing relationship of internal and external delay parameters.

For more infomration, see *Application Note 94* (Understanding MAX 7000 *Timing*).

Tables 19 through 26 show the MAX 7000 and MAX 7000E AC $\,$ operating conditions.

Table 19	Table 19. MAX 7000 & MAX 7000E External Timing Parameters Note (1)												
Symbol	Parameter	Conditions	-6 Spee	d Grade	-7 Spee	d Grade	Unit						
			Min	Max	Min	Max							
t _{PD1}	Input to non-registered output	C1 = 35 pF		6.0		7.5	ns						
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		6.0		7.5	ns						
t _{SU}	Global clock setup time		5.0		6.0		ns						
t _H	Global clock hold time		0.0		0.0		ns						
t _{FSU}	Global clock setup time of fast input	(2)	2.5		3.0		ns						
t _{FH}	Global clock hold time of fast input	(2)	0.5		0.5		ns						
t _{CO1}	Global clock to output delay	C1 = 35 pF		4.0		4.5	ns						
t _{CH}	Global clock high time		2.5		3.0		ns						
t _{CL}	Global clock low time		2.5		3.0		ns						
t _{ASU}	Array clock setup time		2.5		3.0		ns						
t _{AH}	Array clock hold time		2.0		2.0		ns						
t _{ACO1}	Array clock to output delay	C1 = 35 pF		6.5		7.5	ns						
t _{ACH}	Array clock high time		3.0		3.0		ns						
t _{ACL}	Array clock low time		3.0		3.0		ns						
t _{CPPW}	Minimum pulse width for clear and preset	(3)	3.0		3.0		ns						
t _{ODH}	Output data hold time after clock	C1 = 35 pF (4)	1.0		1.0		ns						
t _{CNT}	Minimum global clock period			6.6		8.0	ns						
f _{CNT}	Maximum internal global clock frequency	(5)	151.5		125.0		MHz						
t _{ACNT}	Minimum array clock period			6.6		8.0	ns						
f _{ACNT}	Maximum internal array clock frequency	(5)	151.5		125.0		MHz						
f _{MAX}	Maximum clock frequency	(6)	200		166.7		MHz						

Γ

Symbol	Parameter	Conditions	Speed Grade						
			MAX 700	OE (-10P)	MAX 70 Max 70				
			Min	Max	Min	Max			
t _{PD1}	Input to non-registered output	C1 = 35 pF		10.0		10.0	ns		
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		10.0		10.0	ns		
t _{SU}	Global clock setup time		7.0		8.0		ns		
t _H	Global clock hold time		0.0		0.0		ns		
t _{FSU}	Global clock setup time of fast input	(2)	3.0		3.0		ns		
t _{FH}	Global clock hold time of fast input	(2)	0.5		0.5		ns		
t _{CO1}	Global clock to output delay	C1 = 35 pF		5.0		5	ns		
t _{CH}	Global clock high time		4.0		4.0		ns		
t _{CL}	Global clock low time		4.0		4.0		ns		
t _{ASU}	Array clock setup time		2.0		3.0		ns		
t _{AH}	Array clock hold time		3.0		3.0		ns		
t _{ACO1}	Array clock to output delay	C1 = 35 pF		10.0		10.0	ns		
t _{ACH}	Array clock high time		4.0		4.0		ns		
t _{ACL}	Array clock low time		4.0		4.0		ns		
t _{CPPW}	Minimum pulse width for clear and preset	(3)	4.0		4.0		ns		
t _{ODH}	Output data hold time after clock	C1 = 35 pF (4)	1.0		1.0		ns		
t _{CNT}	Minimum global clock period			10.0		10.0	ns		
f _{CNT}	Maximum internal global clock frequency	(5)	100.0		100.0		MHz		
tACNT	Minimum array clock period			10.0		10.0	ns		
f _{acnt}	Maximum internal array clock frequency	(5)	100.0		100.0		MHz		
f _{MAX}	Maximum clock frequency	(6)	125.0		125.0		MHz		

Symbol	Parameter	Conditions		Speed	Grade		Unit
			MAX 700	0E (-12P)	MAX 70 Max 70		
			Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF		12.0		12.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		12.0		12.0	ns
t _{SU}	Global clock setup time		7.0		10.0		ns
t _H	Global clock hold time		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input	(2)	3.0		3.0		ns
t _{FH}	Global clock hold time of fast input	(2)	0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		6.0		6.0	ns
t _{CH}	Global clock high time		4.0		4.0		ns
t _{CL}	Global clock low time		4.0		4.0		ns
t _{ASU}	Array clock setup time		3.0		4.0		ns
t _{AH}	Array clock hold time		4.0		4.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		12.0		12.0	ns
t _{ACH}	Array clock high time		5.0		5.0		ns
t _{ACL}	Array clock low time		5.0		5.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	5.0		5.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF (4)	1.0		1.0		ns
t _{CNT}	Minimum global clock period			11.0		11.0	ns
f _{CNT}	Maximum internal global clock frequency	(5)	90.9		90.9		MHz
t _{ACNT}	Minimum array clock period			11.0		11.0	ns
f _{ACNT}	Maximum internal array clock frequency	(5)	90.9		90.9		MHz
f _{MAX}	Maximum clock frequency	(6)	125.0		125.0		MHz

Symbol	Parameter	Conditions			Speed	Grade			Unit
			-	15	-1	5T	-1	20	
			Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			2.0		2.0		3.0	ns
t _{IO}	I/O input pad and buffer delay			2.0		2.0		3.0	ns
t _{FIN}	Fast input delay	(2)		2.0		-		4.0	ns
t _{SEXP}	Shared expander delay			8.0		10.0		9.0	ns
t _{PEXP}	Parallel expander delay			1.0		1.0		2.0	ns
t _{LAD}	Logic array delay			6.0		6.0		8.0	ns
t _{LAC}	Logic control array delay			6.0		6.0		8.0	ns
t _{IOE}	Internal output enable delay	(2)		3.0		-		4.0	ns
t _{OD1}	Output buffer and pad delay Slow slew rate = off V _{CCIO} = 5.0 V	C1 = 35 pF		4.0		4.0		5.0	ns
t _{OD2}	Output buffer and pad delay Slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF (7)		5.0		-		6.0	ns
t _{OD3}	Output buffer and pad delay Slow slew rate = on $V_{CCIO} = 5.0 V \text{ or } 3.3 V$	C1 = 35 pF (2)		8.0		-		9.0	ns
t _{ZX1}	Output buffer enable delay Slow slew rate = off $V_{CCIO} = 5.0 V$	C1 = 35 pF		6.0		6.0		10.0	ns
t _{ZX2}	Output buffer enable delay Slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF (7)		7.0		-		11.0	ns
t _{ZX3}	Output buffer enable delay Slow slew rate = on $V_{CCIO} = 5.0 V \text{ or } 3.3 V$	C1 = 35 pF (2)		10.0		-		14.0	ns
t _{XZ}	Output buffer disable delay	C1 = 5 pF		6.0		6.0		10.0	ns
t _{SU}	Register setup time		4.0		4.0		4.0		ns
t _H	Register hold time		4.0		4.0		5.0		ns
t _{FSU}	Register setup time of fast input	(2)	2.0		-		4.0		ns
t _{FH}	Register hold time of fast input	(2)	2.0		-		3.0		ns
t _{RD}	Register delay			1.0		1.0		1.0	ns
t _{COMB}	Combinatorial delay			1.0		1.0		1.0	ns
t _{IC}	Array clock delay			6.0		6.0		8.0	ns
t _{EN}	Register enable time			6.0		6.0		8.0	ns
t _{GLOB}	Global control delay			1.0		1.0		3.0	ns
t _{PRE}	Register preset time			4.0		4.0		4.0	ns
t _{CLR}	Register clear time			4.0		4.0		4.0	ns
t _{PIA}	PIA delay			2.0		2.0		3.0	ns
t _{LPA}	Low-power adder	(8)		13.0		15.0		15.0	ns

- (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This parameter applies to MAX 7000E devices only.
- (3) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (4) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (5) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (6) The f_{MAX} values represent the highest frequency for pipelined data.
- (7) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells running in the low-power mode.

Tables 27 and 28 show the EPM7032S AC operating conditions.

Symbol	Parameter	Conditions	Speed Grade								
			-	-5		-6		-7		-10	
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF		5.0		6.0		7.5		10.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		5.0		6.0		7.5		10.0	ns
t _{SU}	Global clock setup time		2.9		4.0		5.0		7.0		ns
t _H	Global clock hold time		0.0		0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		2.5		2.5		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.0		0.5		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		3.2		3.5		4.3		5.0	ns
t _{CH}	Global clock high time		2.0		2.5		3.0		4.0		ns
t _{CL}	Global clock low time		2.0		2.5		3.0		4.0		ns
t _{ASU}	Array clock setup time		0.7		0.9		1.1		2.0		ns
t _{AH}	Array clock hold time		1.8		2.1		2.7		3.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		5.4		6.6		8.2		10.0	ns
t _{ACH}	Array clock high time		2.5		2.5		3.0		4.0		ns
t _{ACL}	Array clock low time		2.5		2.5		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(2)	2.5		2.5		3.0		4.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		1.0		ns
t _{CNT}	Minimum global clock period			5.7		7.0		8.6		10.0	ns
f _{CNT}	Maximum internal global clock frequency	(4)	175.4		142.9		116.3		100.0		MHz
t ACNT	Minimum array clock period			5.7		7.0		8.6		10.0	ns

Table 30. EPM7064S Internal Timing Parameters (Part 2 of 2)Note (1)												
Symbol	Parameter	Conditions				Speed	Grade				Unit	
			-	5	-6		-7		-10			
			Min	Max	Min	Max	Min	Max	Min	Max		
t _{FSU}	Register setup time of fast input		1.9		1.8		3.0		3.0		ns	
t _{FH}	Register hold time of fast input		0.6		0.7		0.5		0.5		ns	
t _{RD}	Register delay			1.2		1.6		1.0		2.0	ns	
t _{COMB}	Combinatorial delay			0.9		1.0		1.0		2.0	ns	
t _{IC}	Array clock delay			2.7		3.3		3.0		5.0	ns	
t _{EN}	Register enable time			2.6		3.2		3.0		5.0	ns	
t _{GLOB}	Global control delay			1.6		1.9		1.0		1.0	ns	
t _{PRE}	Register preset time			2.0		2.4		2.0		3.0	ns	
t _{CLR}	Register clear time			2.0		2.4		2.0		3.0	ns	
t _{PIA}	PIA delay	(7)		1.1		1.3		1.0		1.0	ns	
t _{LPA}	Low-power adder	(8)		12.0		11.0		10.0		11.0	ns	

- (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter (2) must be added to this minimum width if the clear or reset signal incorporates the t_{IAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- The f_{MAX} values represent the highest frequency for pipelined data. (5)
- Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use. (6)
- For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, (7) these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells (8) running in the low-power mode.

Symbol	Parameter	Conditions	Speed Grade									
			-	-6		-7		0	-1	15		
			Min	Max	Min	Max	Min	Max	Min	Max		
t _{PD1}	Input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns	
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns	
t _{SU}	Global clock setup time		3.4		6.0		7.0		11.0		ns	
t _H	Global clock hold time		0.0		0.0		0.0		0.0		ns	
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		3.0		ns	
t _{FH}	Global clock hold time of fast input		0.0		0.5		0.5		0.0		ns	
t _{CO1}	Global clock to output delay	C1 = 35 pF		4.0		4.5		5.0		8.0	ns	
t _{CH}	Global clock high time		3.0		3.0		4.0		5.0		ns	
t _{CL}	Global clock low time		3.0		3.0		4.0		5.0		ns	
t _{ASU}	Array clock setup time		0.9		3.0		2.0		4.0		ns	
t _{AH}	Array clock hold time		1.8		2.0		5.0		4.0		ns	
t _{ACO1}	Array clock to output delay	C1 = 35 pF		6.5		7.5		10.0		15.0	ns	
t _{ACH}	Array clock high time		3.0		3.0		4.0		6.0		ns	
t _{ACL}	Array clock low time		3.0		3.0		4.0		6.0		ns	
t _{CPPW}	Minimum pulse width for clear and preset	(2)	3.0		3.0		4.0		6.0		ns	
t _{odh}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		1.0		ns	
t _{CNT}	Minimum global clock period			6.8		8.0		10.0		13.0	ns	
f _{CNT}	Maximum internal global clock frequency	(4)	147.1		125.0		100.0		76.9		MHz	
t _{ACNT}	Minimum array clock period			6.8		8.0		10.0		13.0	ns	
f _{acnt}	Maximum internal array clock frequency	(4)	147.1		125.0		100.0		76.9		MHz	
f _{MAX}	Maximum clock frequency	(5)	166.7		166.7		125.0		100.0		MHz	

Tables 31 and 32 show the EPM7128S AC operating conditions.

٦

Г

Table 36. EPM7192S Internal Timing Parameters (Part 2 of 2)Note (1)											
Symbol	Parameter	Conditions	Speed Grade						Unit		
			-7		-10		-15				
			Min	Max	Min	Max	Min	Max			
t _H	Register hold time		1.7		3.0		4.0		ns		
t _{FSU}	Register setup time of fast input		2.3		3.0		2.0		ns		
t _{FH}	Register hold time of fast input		0.7		0.5		1.0		ns		
t _{RD}	Register delay			1.4		2.0		1.0	ns		
t _{COMB}	Combinatorial delay			1.2		2.0		1.0	ns		
t _{IC}	Array clock delay			3.2		5.0		6.0	ns		
t _{EN}	Register enable time			3.1		5.0		6.0	ns		
t _{GLOB}	Global control delay			2.5		1.0		1.0	ns		
t _{PRE}	Register preset time			2.7		3.0		4.0	ns		
t _{CLR}	Register clear time			2.7		3.0		4.0	ns		
t _{PIA}	PIA delay	(7)		2.4		1.0		2.0	ns		
t _{LPA}	Low-power adder	(8)		10.0		11.0		13.0	ns		

- (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells running in the low-power mode.

- (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells running in the low-power mode.

Power Consumption

Supply power (P) versus frequency (f_{MAX} in MHz) for MAX 7000 devices is calculated with the following equation:

$$P = P_{INT} + P_{IO} = I_{CCINT} \times V_{CC} + P_{IO}$$

The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note* 74 (*Evaluating Power for Altera Devices*).

The I_{CCINT} value, which depends on the switching frequency and the application logic, is calculated with the following equation:

 $I_{CCINT} =$

 $A \times MC_{TON} + B \times (MC_{DEV} - MC_{TON}) + C \times MC_{USED} \times f_{MAX} \times tog_{LC}$

The parameters in this equation are shown below:

MC _{TON}	=	Number of macrocells with the Turbo Bit option turned on,
		as reported in the MAX+PLUS II Report File (.rpt)
MC _{DEV}	=	Number of macrocells in the device
MC _{USED}	=	Total number of macrocells in the design, as reported
		in the MAX+PLUS II Report File (.rpt)
f _{MAX}	=	Highest clock frequency to the device
tog _{LC}	=	Average ratio of logic cells toggling at each clock
		(typically 0.125)
A, B, C	=	Constants, shown in Table 39

Figure 15. I_{CC} vs. Frequency for MAX 7000S Devices (Part 2 of 2)

Device Pin-Outs

See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information.

Figure 19. 100-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

Figure 20. 160-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

