

Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	10 ns
Voltage Supply - Internal	4.5V ~ 5.5V
Number of Logic Elements/Blocks	10
Number of Macrocells	160
Number of Gates	3200
Number of I/O	84
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm7160sti100-10

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. MAX	7000S Device I	Features -				
Feature	EPM7032S	EPM7064S	EPM7128S	EPM7160S	EPM7192S	EPM7256S
Usable gates	600	1,250	2,500	3,200	3,750	5,000
Macrocells	32	64	128	160	192	256
Logic array blocks	2	4	8	10	12	16
Maximum user I/O pins	36	68	100	104	124	164
t _{PD} (ns)	5	5	6	6	7.5	7.5
t _{SU} (ns)	2.9	2.9	3.4	3.4	4.1	3.9
t _{FSU} (ns)	2.5	2.5	2.5	2.5	3	3
t _{CO1} (ns)	3.2	3.2	4	3.9	4.7	4.7
f _{CNT} (MHz)	175.4	175.4	147.1	149.3	125.0	128.2

...and More Features

- Open-drain output option in MAX 7000S devices
- Programmable macrocell flipflops with individual clear, preset, clock, and clock enable controls
- Programmable power-saving mode for a reduction of over 50% in each macrocell
- Configurable expander product-term distribution, allowing up to 32 product terms per macrocell
- 44 to 208 pins available in plastic J-lead chip carrier (PLCC), ceramic pin-grid array (PGA), plastic quad flat pack (PQFP), power quad flat pack (RQFP), and 1.0-mm thin quad flat pack (TQFP) packages
- Programmable security bit for protection of proprietary designs
- 3.3-V or 5.0-V operation
 - MultiVoltTM I/O interface operation, allowing devices to interface with 3.3-V or 5.0-V devices (MultiVolt I/O operation is not available in 44-pin packages)
 - Pin compatible with low-voltage MAX 7000A and MAX 7000B devices
- Enhanced features available in MAX 7000E and MAX 7000S devices
 - Six pin- or logic-driven output enable signals
 - Two global clock signals with optional inversion
 - Enhanced interconnect resources for improved routability
 - Fast input setup times provided by a dedicated path from I/O pin to macrocell registers
 - Programmable output slew-rate control
- Software design support and automatic place-and-route provided by Altera's development system for Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 workstations

MAX 7000 devices contain from 32 to 256 macrocells that are combined into groups of 16 macrocells, called logic array blocks (LABs). Each macrocell has a programmable-AND/fixed-OR array and a configurable register with independently programmable clock, clock enable, clear, and preset functions. To build complex logic functions, each macrocell can be supplemented with both shareable expander product terms and high-speed parallel expander product terms to provide up to 32 product terms per macrocell.

The MAX 7000 family provides programmable speed/power optimization. Speed-critical portions of a design can run at high speed/full power, while the remaining portions run at reduced speed/low power. This speed/power optimization feature enables the designer to configure one or more macrocells to operate at 50% or lower power while adding only a nominal timing delay. MAX 7000E and MAX 7000S devices also provide an option that reduces the slew rate of the output buffers, minimizing noise transients when non-speed-critical signals are switching. The output drivers of all MAX 7000 devices (except 44-pin devices) can be set for either 3.3-V or 5.0-V operation, allowing MAX 7000 devices to be used in mixed-voltage systems.

The MAX 7000 family is supported by Altera development systems, which are integrated packages that offer schematic, text—including VHDL, Verilog HDL, and the Altera Hardware Description Language (AHDL)—and waveform design entry, compilation and logic synthesis, simulation and timing analysis, and device programming. The software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry-standard PC- and UNIX-workstation-based EDA tools. The software runs on Windows-based PCs, as well as Sun SPARCstation, and HP 9000 Series 700/800 workstations.

For more information on development tools, see the MAX+PLUS II Programmable Logic Development System & Software Data Sheet and the Quartus Programmable Logic Development System & Software Data Sheet.

Functional Description

The MAX 7000 architecture includes the following elements:

- Logic array blocks
- Macrocells
- Expander product terms (shareable and parallel)
- Programmable interconnect array
- I/O control blocks

The compiler can allocate up to three sets of up to five parallel expanders automatically to the macrocells that require additional product terms. Each set of five parallel expanders incurs a small, incremental timing delay (t_{PEXP}). For example, if a macrocell requires 14 product terms, the Compiler uses the five dedicated product terms within the macrocell and allocates two sets of parallel expanders; the first set includes five product terms and the second set includes four product terms, increasing the total delay by $2 \times t_{PEXP}$.

Two groups of 8 macrocells within each LAB (e.g., macrocells 1 through 8 and 9 through 16) form two chains to lend or borrow parallel expanders. A macrocell borrows parallel expanders from lower-numbered macrocells. For example, macrocell 8 can borrow parallel expanders from macrocell 7, from macrocells 7 and 6, or from macrocells 7, 6, and 5. Within each group of 8, the lowest-numbered macrocell can only lend parallel expanders and the highest-numbered macrocell can only borrow them. Figure 6 shows how parallel expanders can be borrowed from a neighboring macrocell.

Figure 6. Parallel Expanders

Unused product terms in a macrocell can be allocated to a neighboring macrocell.

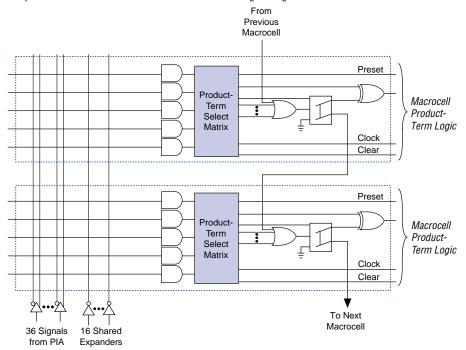
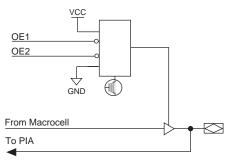
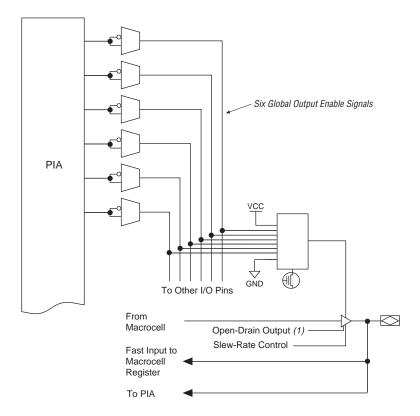




Figure 8. I/O Control Block of MAX 7000 Devices

EPM7032, EPM7064 & EPM7096 Devices

MAX 7000E & MAX 7000S Devices

Note:

(1) The open-drain output option is available only in MAX 7000S devices.

For more information on using the Jam language, refer to AN 122: Using Jam STAPL for ISP & ICR via an Embedded Processor.

The ISP circuitry in MAX 7000S devices is compatible with IEEE Std. 1532 specification. The IEEE Std. 1532 is a standard developed to allow concurrent ISP between multiple PLD vendors.

Programming Sequence

During in-system programming, instructions, addresses, and data are shifted into the MAX 7000S device through the TDI input pin. Data is shifted out through the TDO output pin and compared against the expected data.

Programming a pattern into the device requires the following six ISP stages. A stand-alone verification of a programmed pattern involves only stages 1, 2, 5, and 6.

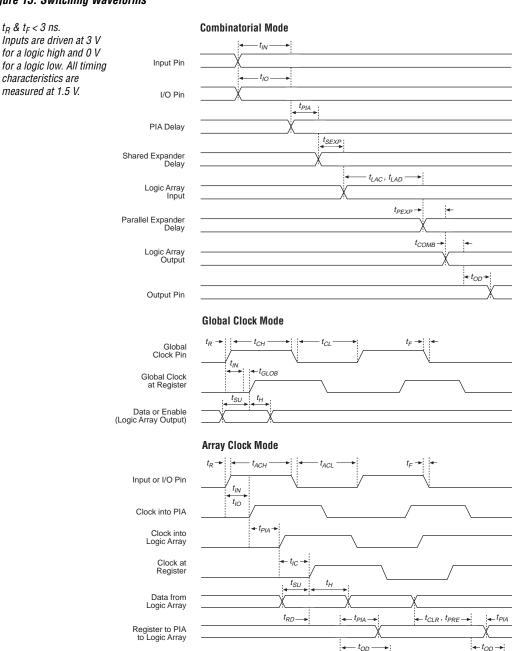
- Enter ISP. The enter ISP stage ensures that the I/O pins transition smoothly from user mode to ISP mode. The enter ISP stage requires 1 ms.
- 2. *Check ID*. Before any program or verify process, the silicon ID is checked. The time required to read this silicon ID is relatively small compared to the overall programming time.
- 3. *Bulk Erase*. Erasing the device in-system involves shifting in the instructions to erase the device and applying one erase pulse of 100 ms.
- Program. Programming the device in-system involves shifting in the address and data and then applying the programming pulse to program the EEPROM cells. This process is repeated for each EEPROM address.
- Verify. Verifying an Altera device in-system involves shifting in addresses, applying the read pulse to verify the EEPROM cells, and shifting out the data for comparison. This process is repeated for each EEPROM address.
- 6. Exit ISP. An exit ISP stage ensures that the I/O pins transition smoothly from ISP mode to user mode. The exit ISP stage requires 1 ms.

The programming times described in Tables 6 through 8 are associated with the worst-case method using the enhanced ISP algorithm.

Table 6. MAX 7000S t _{PU}	_{LSE} & Cycle _{TCK} Values	3					
Device	Progra	ımming	Stand-Alone Verification				
	t _{PPULSE} (s)	Cycle _{PTCK}	t _{VPULSE} (s)	Cycle _{VTCK}			
EPM7032S	4.02	342,000	0.03	200,000			
EPM7064S	4.50	504,000	0.03	308,000			
EPM7128S	5.11	832,000	0.03	528,000			
EPM7160S	5.35	1,001,000	0.03	640,000			
EPM7192S	5.71	1,192,000	0.03	764,000			
EPM7256S	6.43	1,603,000	0.03	1,024,000			

Tables 7 and 8 show the in-system programming and stand alone verification times for several common test clock frequencies.

Table 7. MAX 7000S In-System Programming Times for Different Test Clock Frequencies												
Device		f _{TCK}										
	10 MHz	Hz 5 MHz 2 MHz 1 MHz 500 kHz 200 kHz 100 kHz 50 kHz										
EPM7032S	4.06	4.09	4.19	4.36	4.71	5.73	7.44	10.86	s			
EPM7064S	4.55	4.60	4.76	5.01	5.51	7.02	9.54	14.58	S			
EPM7128S	5.19	5.27	5.52	5.94	6.77	9.27	13.43	21.75	S			
EPM7160S	5.45	5.55	5.85	6.35	7.35	10.35	15.36	25.37	S			
EPM7192S	5.83	5.95	6.30	6.90	8.09	11.67	17.63	29.55	S			
EPM7256S	6.59	6.75	7.23	8.03	9.64	14.45	22.46	38.49	S			


Table 8. MAX	7000S Star	nd-Alone V	erification/	Times for	Different T	est Clock F	requencies	S					
Device		f _{TCK}											
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz					
EPM7032S	0.05	0.07	0.13	0.23	0.43	1.03	2.03	4.03	s				
EPM7064S	0.06	0.09	0.18	0.34	0.64	1.57	3.11	6.19	S				
EPM7128S	0.08	0.14	0.29	0.56	1.09	2.67	5.31	10.59	S				
EPM7160S	0.09	0.16	0.35	0.67	1.31	3.23	6.43	12.83	S				
EPM7192S	0.11	0.18	0.41	0.79	1.56	3.85	7.67	15.31	S				
EPM7256S	0.13	0.24	0.54	1.06	2.08	5.15	10.27	20.51	S				

IEEE Std. 1149.1 (JTAG) Boundary-Scan Support

MAX 7000 devices support JTAG BST circuitry as specified by IEEE Std. 1149.1-1990. Table 9 describes the JTAG instructions supported by the MAX 7000 family. The pin-out tables (see the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information) show the location of the JTAG control pins for each device. If the JTAG interface is not required, the JTAG pins are available as user I/O pins.

Table 9. MAX 7000 J	ITAG Instruction	s
JTAG Instruction	Devices	Description
SAMPLE/PRELOAD	EPM7128S EPM7160S EPM7192S	Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern output at the device pins.
	EPM7256S	pattern output at the device pins.
EXTEST	EPM7128S EPM7160S EPM7192S EPM7256S	Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins.
BYPASS	EPM7032S EPM7064S EPM7128S EPM7160S EPM7192S EPM7256S	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through a selected device to adjacent devices during normal device operation.
IDCODE	EPM7032S EPM7064S EPM7128S EPM7160S EPM7192S EPM7256S	Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be serially shifted out of TDO.
ISP Instructions	EPM7032S EPM7064S EPM7128S EPM7160S EPM7192S EPM7256S	These instructions are used when programming MAX 7000S devices via the JTAG ports with the MasterBlaster, ByteBlasterMV, BitBlaster download cable, or using a Jam File (.jam), Jam Byte-Code file (.jbc), or Serial Vector Format file (.svf) via an embedded processor or test equipment.

Figure 13. Switching Waveforms

30 Altera Corporation

Register Output to Pin

Table 2	21. MAX 7000 & MAX 7000E Ext	ernal Timing Param	eters Note	(1)			
Symbol	Parameter	Conditions		Speed (Grade		Unit
			MAX 700	0E (-10P)		000 (-10) 00E (-10)	
			Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF		10.0		10.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		10.0		10.0	ns
t _{SU}	Global clock setup time		7.0		8.0		ns
t _H	Global clock hold time		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input	(2)	3.0		3.0		ns
t _{FH}	Global clock hold time of fast input	(2)	0.5		0.5		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		5.0		5	ns
t _{CH}	Global clock high time		4.0		4.0		ns
t _{CL}	Global clock low time		4.0		4.0		ns
t _{ASU}	Array clock setup time		2.0		3.0		ns
t _{AH}	Array clock hold time		3.0		3.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		10.0		10.0	ns
t _{ACH}	Array clock high time		4.0		4.0		ns
t _{ACL}	Array clock low time		4.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	4.0		4.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF (4)	1.0		1.0		ns
t _{CNT}	Minimum global clock period			10.0		10.0	ns
f _{CNT}	Maximum internal global clock frequency	(5)	100.0		100.0		MHz
t _{ACNT}	Minimum array clock period			10.0		10.0	ns
f _{ACNT}	Maximum internal array clock frequency	(5)	100.0		100.0		MHz
f _{MAX}	Maximum clock frequency	(6)	125.0		125.0		MHz

Table 2	23. MAX 7000 & MAX 7000E Ext	ernal Timing Param	eters Note	e (1)			
Symbol	Parameter	Conditions		Speed	Grade		Unit
			MAX 700	0E (-12P)		00 (-12) DOE (-12)	-
			Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF		12.0		12.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		12.0		12.0	ns
t _{SU}	Global clock setup time		7.0		10.0		ns
t _H	Global clock hold time		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input	(2)	3.0		3.0		ns
t _{FH}	Global clock hold time of fast input	(2)	0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		6.0		6.0	ns
t _{CH}	Global clock high time		4.0		4.0		ns
t _{CL}	Global clock low time		4.0		4.0		ns
t _{ASU}	Array clock setup time		3.0		4.0		ns
t _{AH}	Array clock hold time		4.0		4.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		12.0		12.0	ns
t _{ACH}	Array clock high time		5.0		5.0		ns
t _{ACL}	Array clock low time		5.0		5.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	5.0		5.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF (4)	1.0		1.0		ns
t _{CNT}	Minimum global clock period			11.0		11.0	ns
f _{CNT}	Maximum internal global clock frequency	(5)	90.9		90.9		MHz
t _{ACNT}	Minimum array clock period			11.0		11.0	ns
f _{ACNT}	Maximum internal array clock frequency	(5)	90.9		90.9		MHz
f _{MAX}	Maximum clock frequency	(6)	125.0		125.0		MHz

Table 2	9. EPM7064\$ External Timi	ing Parameters	(Part 2	2 of 2)	No	te (1)					
Symbol	Parameter	Conditions				Speed	Grade				Unit
			-	5	-	6	-	7	-1	10	
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{ACO1}	Array clock to output delay	C1 = 35 pF		5.4		6.7		7.5		10.0	ns
t _{ACH}	Array clock high time		2.5		2.5		3.0		4.0		ns
t _{ACL}	Array clock low time		2.5		2.5		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(2)	2.5		2.5		3.0		4.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		1.0		ns
t _{CNT}	Minimum global clock period			5.7		7.1		8.0		10.0	ns
f _{CNT}	Maximum internal global clock frequency	(4)	175.4		140.8		125.0		100.0		MHz
t _{ACNT}	Minimum array clock period			5.7		7.1		8.0		10.0	ns
f _{ACNT}	Maximum internal array clock frequency	(4)	175.4		140.8		125.0		100.0		MHz
f _{MAX}	Maximum clock frequency	(5)	250.0		200.0		166.7		125.0		MHz

Table 3	O. EPM7064\$ Internal Tim	ing Parameters	(Part	1 of 2)	No	te (1)					
Symbol	Parameter	Conditions				Speed	Grade				Unit
			-	5	-	6	-	7	-1	10	
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.2		0.2		0.5		0.5	ns
t _{IO}	I/O input pad and buffer delay			0.2		0.2		0.5		0.5	ns
t _{FIN}	Fast input delay			2.2		2.6		1.0		1.0	ns
t _{SEXP}	Shared expander delay			3.1		3.8		4.0		5.0	ns
t _{PEXP}	Parallel expander delay			0.9		1.1		0.8		0.8	ns
t_{LAD}	Logic array delay			2.6		3.2		3.0		5.0	ns
t _{LAC}	Logic control array delay			2.5		3.2		3.0		5.0	ns
t _{IOE}	Internal output enable delay			0.7		0.8		2.0		2.0	ns
t _{OD1}	Output buffer and pad delay	C1 = 35 pF		0.2		0.3		2.0		1.5	ns
t _{OD2}	Output buffer and pad delay	C1 = 35 pF (6)		0.7		0.8		2.5		2.0	ns
t _{OD3}	Output buffer and pad delay	C1 = 35 pF		5.2		5.3		7.0		5.5	ns
t _{ZX1}	Output buffer enable delay	C1 = 35 pF		4.0		4.0		4.0		5.0	ns
t _{ZX2}	Output buffer enable delay	C1 = 35 pF (6)		4.5		4.5		4.5		5.5	ns
t_{ZX3}	Output buffer enable delay	C1 = 35 pF		9.0		9.0		9.0		9.0	ns
t_{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		4.0		5.0	ns
t _{SU}	Register setup time		0.8		1.0		3.0		2.0		ns
t _H	Register hold time		1.7		2.0		2.0		3.0		ns

Symbol	Parameter	Conditions				Speed	Grade				Unit
			-	5	-	6	-	7	-1	10	-
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{FSU}	Register setup time of fast input		1.9		1.8		3.0		3.0		ns
t _{FH}	Register hold time of fast input		0.6		0.7		0.5		0.5		ns
t _{RD}	Register delay			1.2		1.6		1.0		2.0	ns
t _{COMB}	Combinatorial delay			0.9		1.0		1.0		2.0	ns
t _{IC}	Array clock delay			2.7		3.3		3.0		5.0	ns
t _{EN}	Register enable time			2.6		3.2		3.0		5.0	ns
t_{GLOB}	Global control delay			1.6		1.9		1.0		1.0	ns
t_{PRE}	Register preset time			2.0		2.4		2.0		3.0	ns
t _{CLR}	Register clear time			2.0		2.4		2.0		3.0	ns
t _{PIA}	PIA delay	(7)		1.1		1.3		1.0		1.0	ns
t_{LPA}	Low-power adder	(8)		12.0		11.0		10.0		11.0	ns

Notes to tables:

- (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode.

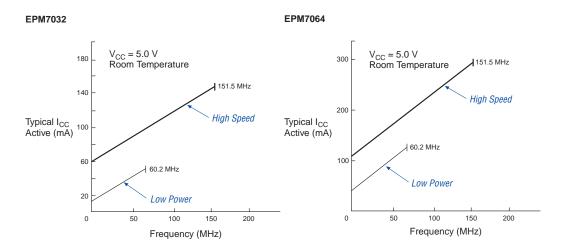
Tables 31 and 32 show the EPM7128S AC operating conditions.

Table 3	11. EPM7128\$ External Time	ing Parameters	: No	te (1)							
Symbol	Parameter	Conditions				Speed	Grade)			Unit
			-	6	-	7	-1	10	-1	15	
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns
t _{SU}	Global clock setup time		3.4		6.0		7.0		11.0		ns
t _H	Global clock hold time		0.0		0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.5		0.5		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		4.0		4.5		5.0		8.0	ns
t _{CH}	Global clock high time		3.0		3.0		4.0		5.0		ns
t _{CL}	Global clock low time		3.0		3.0		4.0		5.0		ns
t _{ASU}	Array clock setup time		0.9		3.0		2.0		4.0		ns
t _{AH}	Array clock hold time		1.8		2.0		5.0		4.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		6.5		7.5		10.0		15.0	ns
t _{ACH}	Array clock high time		3.0		3.0		4.0		6.0		ns
t _{ACL}	Array clock low time		3.0		3.0		4.0		6.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(2)	3.0		3.0		4.0		6.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		1.0		ns
t _{CNT}	Minimum global clock period			6.8		8.0		10.0		13.0	ns
f _{CNT}	Maximum internal global clock frequency	(4)	147.1		125.0		100.0		76.9		MHz
t _{ACNT}	Minimum array clock period			6.8		8.0		10.0		13.0	ns
f _{ACNT}	Maximum internal array clock frequency	(4)	147.1		125.0		100.0		76.9		MHz
f _{MAX}	Maximum clock frequency	(5)	166.7		166.7		125.0		100.0		MHz

Table 33. EPM7160S External Timing Parameters (Part 2 of 2) Note (1)													
Symbol	Parameter	Conditions		Speed Grade U									
			-	-6 -7 -10 -15									
			Min	Max	Min	Max	Min	Max	Min	Max			
t _{ACNT}	Minimum array clock period			6.7		8.2		10.0		13.0	ns		
f _{ACNT}	Maximum internal array clock frequency	(4)	149.3		122.0		100.0		76.9		MHz		
f _{MAX}	Maximum clock frequency	(5)	166.7		166.7		125.0		100.0		MHz		

Table 3	Table 34. EPM7160S Internal Timing Parameters (Part 1 of 2) Note (1) Symbol Parameter Conditions Speed Grade Unit											
Symbol	Parameter	Conditions	Speed Grade									
			-6		-7		-10		-15			
			Min	Max	Min	Max	Min	Max	Min	Max		
t _{IN}	Input pad and buffer delay			0.2		0.3		0.5		2.0	ns	
t_{IO}	I/O input pad and buffer delay			0.2		0.3		0.5		2.0	ns	
t _{FIN}	Fast input delay			2.6		3.2		1.0		2.0	ns	
t _{SEXP}	Shared expander delay			3.6		4.3		5.0		8.0	ns	
t _{PEXP}	Parallel expander delay			1.0		1.3		0.8		1.0	ns	
t_{LAD}	Logic array delay			2.8		3.4		5.0		6.0	ns	
t _{LAC}	Logic control array delay			2.8		3.4		5.0		6.0	ns	
t _{IOE}	Internal output enable delay			0.7		0.9		2.0		3.0	ns	
t _{OD1}	Output buffer and pad delay	C1 = 35 pF		0.4		0.5		1.5		4.0	ns	
t _{OD2}	Output buffer and pad delay	C1 = 35 pF (6)		0.9		1.0		2.0		5.0	ns	
t _{OD3}	Output buffer and pad delay	C1 = 35 pF		5.4		5.5		5.5		8.0	ns	
t_{ZX1}	Output buffer enable delay	C1 = 35 pF		4.0		4.0		5.0		6.0	ns	
t _{ZX2}	Output buffer enable delay	C1 = 35 pF (6)		4.5		4.5		5.5		7.0	ns	
t _{ZX3}	Output buffer enable delay	C1 = 35 pF		9.0		9.0		9.0		10.0	ns	
t _{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		5.0		6.0	ns	
t _{SU}	Register setup time		1.0		1.2		2.0		4.0		ns	
t _H	Register hold time		1.6		2.0		3.0		4.0		ns	
t _{FSU}	Register setup time of fast input		1.9		2.2		3.0		2.0		ns	
t _{FH}	Register hold time of fast input		0.6		0.8		0.5		1.0		ns	
t_{RD}	Register delay			1.3		1.6		2.0		1.0	ns	
t _{COMB}	Combinatorial delay			1.0		1.3		2.0		1.0	ns	
t _{IC}	Array clock delay			2.9		3.5		5.0		6.0	ns	
t _{EN}	Register enable time			2.8		3.4		5.0		6.0	ns	
t _{GLOB}	Global control delay			2.0		2.4		1.0		1.0	ns	
t _{PRE}	Register preset time			2.4		3.0		3.0		4.0	ns	

Table 3	Table 35. EPM7192S External Timing Parameters (Part 2 of 2) Note (1)											
Symbol	Parameter	Conditions	Speed Grade									
			-7		-10		-15					
			Min	Max	Min	Max	Min	Max				
t _{AH}	Array clock hold time		1.8		3.0		4.0		ns			
t _{ACO1}	Array clock to output delay	C1 = 35 pF		7.8		10.0		15.0	ns			
t _{ACH}	Array clock high time		3.0		4.0		6.0		ns			
t _{ACL}	Array clock low time		3.0		4.0		6.0		ns			
t _{CPPW}	Minimum pulse width for clear and preset	(2)	3.0		4.0		6.0		ns			
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		ns			
t _{CNT}	Minimum global clock period			8.0		10.0		13.0	ns			
f _{CNT}	Maximum internal global clock frequency	(4)	125.0		100.0		76.9		MHz			
t _{ACNT}	Minimum array clock period			8.0		10.0		13.0	ns			
f _{ACNT}	Maximum internal array clock frequency	(4)	125.0		100.0		76.9		MHz			
f _{MAX}	Maximum clock frequency	(5)	166.7		125.0		100.0		MHz			


Table 3	Table 36. EPM7192S Internal Timing Parameters (Part 1 of 2) Note (1)										
Symbol	Parameter	Conditions			Speed	Grade			Unit		
			-	-7		-10		-15			
			Min	Max	Min	Max	Min	Max			
t _{IN}	Input pad and buffer delay			0.3		0.5		2.0	ns		
t _{IO}	I/O input pad and buffer delay			0.3		0.5		2.0	ns		
t _{FIN}	Fast input delay			3.2		1.0		2.0	ns		
t _{SEXP}	Shared expander delay			4.2		5.0		8.0	ns		
t _{PEXP}	Parallel expander delay			1.2		0.8		1.0	ns		
t_{LAD}	Logic array delay			3.1		5.0		6.0	ns		
t _{LAC}	Logic control array delay			3.1		5.0		6.0	ns		
t _{IOE}	Internal output enable delay			0.9		2.0		3.0	ns		
t _{OD1}	Output buffer and pad delay	C1 = 35 pF		0.5		1.5		4.0	ns		
t _{OD2}	Output buffer and pad delay	C1 = 35 pF (6)		1.0		2.0		5.0	ns		
t _{OD3}	Output buffer and pad delay	C1 = 35 pF		5.5		5.5		7.0	ns		
t_{ZX1}	Output buffer enable delay	C1 = 35 pF		4.0		5.0		6.0	ns		
t _{ZX2}	Output buffer enable delay	C1 = 35 pF (6)		4.5		5.5		7.0	ns		
t _{ZX3}	Output buffer enable delay	C1 = 35 pF		9.0		9.0		10.0	ns		
t _{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		5.0		6.0	ns		
t _{SU}	Register setup time		1.1		2.0		4.0		ns		

Tables 37 and 38 show the EPM7256S AC operating conditions.

Symbol	Parameter	Conditions	Speed Grade							
				7		15	Unit			
			Min	Max	Min	IO Max	Min	Max		
	Innut to non variatored output	C4 25 pF	IVIIII	7.5	IVIIII	10.0	IVIIII	15.0		
t _{PD1}	Input to non-registered output I/O input to non-registered output	C1 = 35 pF C1 = 35 pF		7.5		10.0		15.0	ns ns	
t _{SU}	Global clock setup time		3.9		7.0		11.0		ns	
t _H	Global clock hold time		0.0		0.0		0.0		ns	
t _{FSU}	Global clock setup time of fast input		3.0		3.0		3.0		ns	
t _{FH}	Global clock hold time of fast input		0.0		0.5		0.0		ns	
t _{CO1}	Global clock to output delay	C1 = 35 pF		4.7		5.0		8.0	ns	
t _{CH}	Global clock high time		3.0		4.0		5.0		ns	
t _{CL}	Global clock low time		3.0		4.0		5.0		ns	
t _{ASU}	Array clock setup time		0.8		2.0		4.0		ns	
t _{AH}	Array clock hold time		1.9		3.0		4.0		ns	
t _{ACO1}	Array clock to output delay	C1 = 35 pF		7.8		10.0		15.0	ns	
t _{ACH}	Array clock high time		3.0		4.0		6.0		ns	
t _{ACL}	Array clock low time		3.0		4.0		6.0		ns	
t _{CPPW}	Minimum pulse width for clear and preset	(2)	3.0		4.0		6.0		ns	
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		ns	
t _{CNT}	Minimum global clock period			7.8		10.0		13.0	ns	
f _{CNT}	Maximum internal global clock frequency	(4)	128.2		100.0		76.9		MHz	
t _{ACNT}	Minimum array clock period			7.8		10.0		13.0	ns	
f _{ACNT}	Maximum internal array clock frequency	(4)	128.2		100.0		76.9		MHz	
f _{MAX}	Maximum clock frequency	(5)	166.7		125.0		100.0		MHz	

Figure 14 shows typical supply current versus frequency for MAX 7000 devices.

Figure 14. I_{CC} vs. Frequency for MAX 7000 Devices (Part 1 of 2)

EPM7096

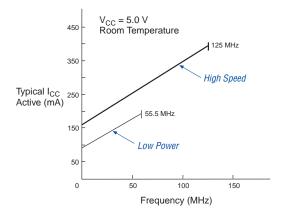
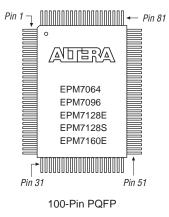



Figure 19. 100-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

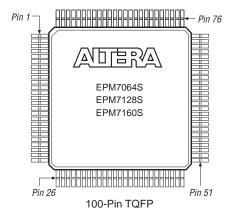
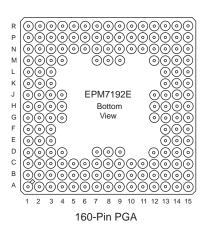
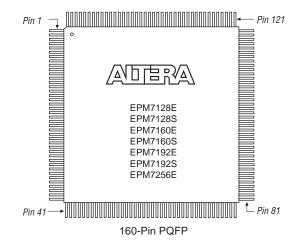




Figure 20. 160-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

Figure 21. 192-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

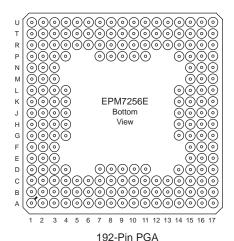
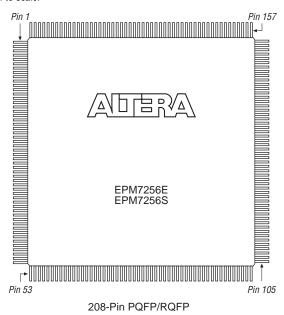



Figure 22. 208-Pin Package Pin-Out Diagram

Package outline not drawn to scale.

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 www.altera.com Applications Hotline: (800) 800-EPLD Literature Services: literature@altera.com Copyright © 2005 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

I.S. EN ISO 9001