Welcome to **E-XFL.COM** **Understanding Embedded - CPLDs (Complex Programmable Logic Devices)** Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware. # **Applications of Embedded - CPLDs** | Details | | |---------------------------------|---| | Product Status | Obsolete | | Programmable Type | EE PLD | | Delay Time tpd(1) Max | 15 ns | | Voltage Supply - Internal | 4.5V ~ 5.5V | | Number of Logic Elements/Blocks | 16 | | Number of Macrocells | 256 | | Number of Gates | 5000 | | Number of I/O | 164 | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 192-BPGA | | Supplier Device Package | 192-PGA (44.7x44.7) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epm7256egi192-15 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong - Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, and VeriBest - Programming support - Altera's Master Programming Unit (MPU) and programming hardware from third-party manufacturers program all MAX 7000 devices - The BitBlasterTM serial download cable, ByteBlasterMVTM parallel port download cable, and MasterBlasterTM serial/universal serial bus (USB) download cable program MAX 7000S devices # General Description The MAX 7000 family of high-density, high-performance PLDs is based on Altera's second-generation MAX architecture. Fabricated with advanced CMOS technology, the EEPROM-based MAX 7000 family provides 600 to 5,000 usable gates, ISP, pin-to-pin delays as fast as 5 ns, and counter speeds of up to 175.4 MHz. MAX 7000S devices in the -5, -6, -7, and -10 speed grades as well as MAX 7000 and MAX 7000E devices in -5, -6, -7, -10P, and -12P speed grades comply with the PCI Special Interest Group (PCI SIG) *PCI Local Bus Specification, Revision 2.2.* See Table 3 for available speed grades. | Device | | Speed Grade | | | | | | | | | | | | |----------|----------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|--|--|--| | | -5 | -6 | -7 | -10P | -10 | -12P | -12 | -15 | -15T | -20 | | | | | EPM7032 | | ✓ | ✓ | | ✓ | | ✓ | ✓ | ✓ | | | | | | EPM7032S | ✓ | ✓ | ✓ | | ✓ | | | | | | | | | | EPM7064 | | ✓ | ✓ | | ✓ | | ✓ | ~ | | | | | | | EPM7064S | ✓ | ✓ | ✓ | | ✓ | | | | | | | | | | EPM7096 | | | ✓ | | ✓ | | ✓ | ✓ | | | | | | | EPM7128E | | | ✓ | ✓ | ✓ | | ✓ | ✓ | | ✓ | | | | | EPM7128S | | ✓ | ✓ | | ✓ | | | ✓ | | | | | | | EPM7160E | | | | ✓ | ✓ | | ✓ | ✓ | | ✓ | | | | | EPM7160S | | ✓ | ✓ | | ✓ | | | ~ | | | | | | | EPM7192E | | | | | | ✓ | ✓ | ✓ | | ✓ | | | | | EPM7192S | | | ✓ | | ✓ | | | ✓ | | | | | | | EPM7256E | | | | | | ✓ | ✓ | ~ | | ✓ | | | | | EPM7256S | | | ✓ | | ✓ | | | ✓ | | | | | | The MAX 7000E devices—including the EPM7128E, EPM7160E, EPM7192E, and EPM7256E devices—have several enhanced features: additional global clocking, additional output enable controls, enhanced interconnect resources, fast input registers, and a programmable slew rate. In-system programmable MAX 7000 devices—called MAX 7000S devices—include the EPM7032S, EPM7064S, EPM7128S, EPM7160S, EPM7192S, and EPM7256S devices. MAX 7000S devices have the enhanced features of MAX 7000E devices as well as JTAG BST circuitry in devices with 128 or more macrocells, ISP, and an open-drain output option. See Table 4. | Table 4. MAX 7000 Device Features | | | | | | | | | | |-----------------------------------|-------------------------------|-----------------------------|-----------------------------|--|--|--|--|--|--| | Feature | EPM7032
EPM7064
EPM7096 | All
MAX 7000E
Devices | All
MAX 7000S
Devices | | | | | | | | ISP via JTAG interface | | | ✓ | | | | | | | | JTAG BST circuitry | | | √ (1) | | | | | | | | Open-drain output option | | | ✓ | | | | | | | | Fast input registers | | ✓ | ✓ | | | | | | | | Six global output enables | | ✓ | ✓ | | | | | | | | Two global clocks | | ✓ | ✓ | | | | | | | | Slew-rate control | | ✓ | ✓ | | | | | | | | MultiVolt interface (2) | ✓ | ✓ | ✓ | | | | | | | | Programmable register | ✓ | ✓ | ✓ | | | | | | | | Parallel expanders | ✓ | ✓ | ✓ | | | | | | | | Shared expanders | ✓ | ✓ | ✓ | | | | | | | | Power-saving mode | ✓ | ✓ | ✓ | | | | | | | | Security bit | ✓ | ✓ | ✓ | | | | | | | | PCI-compliant devices available | ✓ | ✓ | ✓ | | | | | | | #### Notes: - (1) Available only in EPM7128S, EPM7160S, EPM7192S, and EPM7256S devices only. - (2) The MultiVolt I/O interface is not available in 44-pin packages. The MAX 7000 architecture includes four dedicated inputs that can be used as general-purpose inputs or as high-speed, global control signals (clock, clear, and two output enable signals) for each macrocell and I/O pin. Figure 1 shows the architecture of EPM7032, EPM7064, and EPM7096 devices. Figure 1. EPM7032, EPM7064 & EPM7096 Device Block Diagram Figure 4 shows a MAX 7000E and MAX 7000S device macrocell. Combinatorial logic is implemented in the logic array, which provides five product terms per macrocell. The product-term select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as secondary inputs to the macrocell's register clear, preset, clock, and clock enable control functions. Two kinds of expander product terms ("expanders") are available to supplement macrocell logic resources: - Shareable expanders, which are inverted product terms that are fed back into the logic array - Parallel expanders, which are product terms borrowed from adjacent macrocells The Altera development system automatically optimizes product-term allocation according to the logic requirements of the design. For registered functions, each macrocell flipflop can be individually programmed to implement D, T, JK, or SR operation with programmable clock control. The flipflop can be bypassed for combinatorial operation. During design entry, the designer specifies the desired flipflop type; the Altera development software then selects the most efficient flipflop operation for each registered function to optimize resource utilization. Each programmable register can be clocked in three different modes: - By a global clock signal. This mode achieves the fastest clock-tooutput performance. - By a global clock signal and enabled by an active-high clock enable. This mode provides an enable on each flipflop while still achieving the fast clock-to-output performance of the global clock. - By an array clock implemented with a product term. In this mode, the flipflop can be clocked by signals from buried macrocells or I/O pins. In EPM7032, EPM7064, and EPM7096 devices, the global clock signal is available from a dedicated clock pin, GCLK1, as shown in Figure 1. In MAX 7000E and MAX 7000S devices, two global clock signals are available. As shown in Figure 2, these global clock signals can be the true or the complement of either of the global clock pins, GCLK1 or GCLK2. Each register also supports asynchronous preset and clear functions. As shown in Figures 3 and 4, the product-term select matrix allocates product terms to control these operations. Although the product-term-driven preset and clear of the register are active high, active-low control can be obtained by inverting the signal within the logic array. In addition, each register clear function can be individually driven by the active-low dedicated global clear pin (GCLRn). Upon power-up, each register in the device will be set to a low state. All MAX 7000E and MAX 7000S I/O pins have a fast input path to a macrocell register. This dedicated path allows a signal to bypass the PIA and combinatorial logic and be driven to an input D flipflop with an extremely fast (2.5 ns) input setup time. # **Expander Product Terms** Although most logic functions can be implemented with the five product terms available in each macrocell, the more complex logic functions require additional product terms. Another macrocell can be used to supply the required logic resources; however, the MAX 7000 architecture also allows both shareable and parallel expander product terms ("expanders") that provide additional product terms directly to any macrocell in the same LAB. These expanders help ensure that logic is synthesized with the fewest possible logic resources to obtain the fastest possible speed. The compiler can allocate up to three sets of up to five parallel expanders automatically to the macrocells that require additional product terms. Each set of five parallel expanders incurs a small, incremental timing delay (t_{PEXP}). For example, if a macrocell requires 14 product terms, the Compiler uses the five dedicated product terms within the macrocell and allocates two sets of parallel expanders; the first set includes five product terms and the second set includes four product terms, increasing the total delay by $2 \times t_{PEXP}$. Two groups of 8 macrocells within each LAB (e.g., macrocells 1 through 8 and 9 through 16) form two chains to lend or borrow parallel expanders. A macrocell borrows parallel expanders from lower-numbered macrocells. For example, macrocell 8 can borrow parallel expanders from macrocell 7, from macrocells 7 and 6, or from macrocells 7, 6, and 5. Within each group of 8, the lowest-numbered macrocell can only lend parallel expanders and the highest-numbered macrocell can only borrow them. Figure 6 shows how parallel expanders can be borrowed from a neighboring macrocell. Figure 6. Parallel Expanders Unused product terms in a macrocell can be allocated to a neighboring macrocell. ## Programmable Interconnect Array Logic is routed between LABs via the programmable interconnect array (PIA). This global bus is a programmable path that connects any signal source to any destination on the device. All MAX 7000 dedicated inputs, I/O pins, and macrocell outputs feed the PIA, which makes the signals available throughout the entire device. Only the signals required by each LAB are actually routed from the PIA into the LAB. Figure 7 shows how the PIA signals are routed into the LAB. An EEPROM cell controls one input to a 2-input AND gate, which selects a PIA signal to drive into the LAB. Figure 7. PIA Routing While the routing delays of channel-based routing schemes in masked or FPGAs are cumulative, variable, and path-dependent, the MAX 7000 PIA has a fixed delay. The PIA thus eliminates skew between signals and makes timing performance easy to predict. #### I/O Control Blocks The I/O control block allows each I/O pin to be individually configured for input, output, or bidirectional operation. All I/O pins have a tri-state buffer that is individually controlled by one of the global output enable signals or directly connected to ground or V_{CC}. Figure 8 shows the I/O control block for the MAX 7000 family. The I/O control block of EPM7032, EPM7064, and EPM7096 devices has two global output enable signals that are driven by two dedicated active-low output enable pins (OE1 and OE2). The I/O control block of MAX 7000E and MAX 7000S devices has six global output enable signals that are driven by the true or complement of two output enable signals, a subset of the I/O pins, or a subset of the I/O macrocells. When the tri-state buffer control is connected to ground, the output is tri-stated (high impedance) and the I/O pin can be used as a dedicated input. When the tri-state buffer control is connected to V_{CC} , the output is enabled. The MAX 7000 architecture provides dual I/O feedback, in which macrocell and pin feedbacks are independent. When an I/O pin is configured as an input, the associated macrocell can be used for buried logic. # In-System Programmability (ISP) MAX 7000S devices are in-system programmable via an industry-standard 4-pin Joint Test Action Group (JTAG) interface (IEEE Std. 1149.1-1990). ISP allows quick, efficient iterations during design development and debugging cycles. The MAX 7000S architecture internally generates the high programming voltage required to program EEPROM cells, allowing in-system programming with only a single 5.0 V power supply. During in-system programming, the I/O pins are tri-stated and pulled-up to eliminate board conflicts. The pull-up value is nominally 50 k%. ISP simplifies the manufacturing flow by allowing devices to be mounted on a printed circuit board with standard in-circuit test equipment before they are programmed. MAX 7000S devices can be programmed by downloading the information via in-circuit testers (ICT), embedded processors, or the Altera MasterBlaster, ByteBlasterMV, ByteBlaster, BitBlaster download cables. (The ByteBlaster cable is obsolete and is replaced by the ByteBlasterMV cable, which can program and configure 2.5-V, 3.3-V, and 5.0-V devices.) Programming the devices after they are placed on the board eliminates lead damage on high-pin-count packages (e.g., QFP packages) due to device handling and allows devices to be reprogrammed after a system has already shipped to the field. For example, product upgrades can be performed in the field via software or modem. In-system programming can be accomplished with either an adaptive or constant algorithm. An adaptive algorithm reads information from the unit and adapts subsequent programming steps to achieve the fastest possible programming time for that unit. Because some in-circuit testers cannot support an adaptive algorithm, Altera offers devices tested with a constant algorithm. Devices tested to the constant algorithm have an "F" suffix in the ordering code. The JamTM Standard Test and Programming Language (STAPL) can be used to program MAX 7000S devices with in-circuit testers, PCs, or embedded processor. For more information on using the Jam language, refer to AN 122: Using Jam STAPL for ISP & ICR via an Embedded Processor. The ISP circuitry in MAX 7000S devices is compatible with IEEE Std. 1532 specification. The IEEE Std. 1532 is a standard developed to allow concurrent ISP between multiple PLD vendors. ## **Programming Sequence** During in-system programming, instructions, addresses, and data are shifted into the MAX 7000S device through the TDI input pin. Data is shifted out through the TDO output pin and compared against the expected data. Programming a pattern into the device requires the following six ISP stages. A stand-alone verification of a programmed pattern involves only stages 1, 2, 5, and 6. - Enter ISP. The enter ISP stage ensures that the I/O pins transition smoothly from user mode to ISP mode. The enter ISP stage requires 1 ms. - 2. *Check ID*. Before any program or verify process, the silicon ID is checked. The time required to read this silicon ID is relatively small compared to the overall programming time. - 3. *Bulk Erase*. Erasing the device in-system involves shifting in the instructions to erase the device and applying one erase pulse of 100 ms. - Program. Programming the device in-system involves shifting in the address and data and then applying the programming pulse to program the EEPROM cells. This process is repeated for each EEPROM address. - Verify. Verifying an Altera device in-system involves shifting in addresses, applying the read pulse to verify the EEPROM cells, and shifting out the data for comparison. This process is repeated for each EEPROM address. - 6. Exit ISP. An exit ISP stage ensures that the I/O pins transition smoothly from ISP mode to user mode. The exit ISP stage requires 1 ms. # **Programming Times** The time required to implement each of the six programming stages can be broken into the following two elements: - A pulse time to erase, program, or read the EEPROM cells. - A shifting time based on the test clock (TCK) frequency and the number of TCK cycles to shift instructions, address, and data into the device. By combining the pulse and shift times for each of the programming stages, the program or verify time can be derived as a function of the TCK frequency, the number of devices, and specific target device(s). Because different ISP-capable devices have a different number of EEPROM cells, both the total fixed and total variable times are unique for a single device. ### Programming a Single MAX 7000S Device The time required to program a single MAX 7000S device in-system can be calculated from the following formula: $$t_{PROG} = t_{PPULSE} + \frac{Cycle_{PTCK}}{f_{TCK}}$$ where: t_{PROG} = Programming time t_{PPULSE} = Sum of the fixed times to erase, program, and verify the EEPROM cells $Cycle_{PTCK}$ = Number of TCK cycles to program a device = TCK frequency The ISP times for a stand-alone verification of a single MAX 7000S device can be calculated from the following formula: $$t_{VER} = t_{VPULSE} + \frac{Cycle_{VTCK}}{f_{TCK}}$$ where: t_{VER} = Verify time t_{VPULSE} = Sum of the fixed times to verify the EEPROM cells $Cycle_{VTCK}$ = Number of TCK cycles to verify a device #### Notes to tables: - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) Minimum DC input voltage on I/O pins is –0.5 V and on 4 dedicated input pins is –0.3 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 7.0 V for input currents less than 100 mA and periods shorter than 20 ns. - (3) Numbers in parentheses are for industrial-temperature-range devices. - (4) V_{CC} must rise monotonically. - (5) The POR time for all 7000S devices does not exceed 300 μs. The sufficient V_{CCINT} voltage level for POR is 4.5 V. The device is fully initialized within the POR time after V_{CCINT} reaches the sufficient POR voltage level. - (6) 3.3-V I/O operation is not available for 44-pin packages. - (7) The V_{CCISP} parameter applies only to MAX 7000S devices. - (8) During in-system programming, the minimum DC input voltage is –0.3 V. - (9) These values are specified under the MAX 7000 recommended operating conditions in Table 14 on page 26. - (10) The parameter is measured with 50% of the outputs each sourcing the specified current. The I_{OH} parameter refers to high-level TTL or CMOS output current. - (11) The parameter is measured with 50% of the outputs each sinking the specified current. The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. - (12) When the JTAG interface is enabled in MAX 7000S devices, the input leakage current on the JTAG pins is typically -60 uA. - (13) Capacitance is measured at 25° C and is sample-tested only. The OE1 pin has a maximum capacitance of 20 pF. Figure 11 shows the typical output drive characteristics of MAX 7000 devices. Figure 11. Output Drive Characteristics of 5.0-V MAX 7000 Devices # **Timing Model** MAX 7000 device timing can be analyzed with the Altera software, with a variety of popular industry-standard EDA simulators and timing analyzers, or with the timing model shown in Figure 12. MAX 7000 devices have fixed internal delays that enable the designer to determine the worst-case timing of any design. The Altera software provides timing simulation, point-to-point delay prediction, and detailed timing analysis for a device-wide performance evaluation. Figure 12. MAX 7000 Timing Model #### Notes: - (1) Only available in MAX 7000E and MAX 7000S devices. - (2) Not available in 44-pin devices. The timing characteristics of any signal path can be derived from the timing model and parameters of a particular device. External timing parameters, which represent pin-to-pin timing delays, can be calculated as the sum of internal parameters. Figure 13 shows the internal timing relationship of internal and external delay parameters. For more infomration, see *Application Note* 94 (Understanding MAX 7000 *Timing*). | Symbol | Parameter | Conditions | Speed | Grade -6 | Speed (| Unit | | |-------------------|---|----------------|-------|----------|---------|------|----| | | | | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.4 | | 0.5 | ns | | t_{IO} | I/O input pad and buffer delay | | | 0.4 | | 0.5 | ns | | t _{FIN} | Fast input delay | (2) | | 0.8 | | 1.0 | ns | | t _{SEXP} | Shared expander delay | | | 3.5 | | 4.0 | ns | | t_{PEXP} | Parallel expander delay | | | 0.8 | | 0.8 | ns | | t_{LAD} | Logic array delay | | | 2.0 | | 3.0 | ns | | t _{LAC} | Logic control array delay | | | 2.0 | | 3.0 | ns | | t _{IOE} | Internal output enable delay | (2) | | | | 2.0 | ns | | t _{OD1} | Output buffer and pad delay
Slow slew rate = off, V _{CCIO} = 5.0 V | C1 = 35 pF | | 2.0 | | 2.0 | ns | | t _{OD2} | Output buffer and pad delay
Slow slew rate = off, V _{CCIO} = 3.3 V | C1 = 35 pF (7) | | 2.5 | | 2.5 | ns | | t _{OD3} | Output buffer and pad delay
Slow slew rate = on,
V _{CCIO} = 5.0 V or 3.3 V | C1 = 35 pF (2) | | 7.0 | | 7.0 | ns | | t _{ZX1} | Output buffer enable delay
Slow slew rate = off, V _{CCIO} = 5.0 V | C1 = 35 pF | | 4.0 | | 4.0 | ns | | t _{ZX2} | Output buffer enable delay
Slow slew rate = off, V _{CCIO} = 3.3 V | C1 = 35 pF (7) | | 4.5 | | 4.5 | ns | | t _{ZX3} | Output buffer enable delay
Slow slew rate = on
V _{CCIO} = 5.0 V or 3.3 V | C1 = 35 pF (2) | | 9.0 | | 9.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 4.0 | ns | | t_{SU} | Register setup time | | 3.0 | | 3.0 | | ns | | t_H | Register hold time | | 1.5 | | 2.0 | | ns | | t _{FSU} | Register setup time of fast input | (2) | 2.5 | | 3.0 | | ns | | t_{FH} | Register hold time of fast input | (2) | 0.5 | | 0.5 | | ns | | t_{RD} | Register delay | | | 0.8 | | 1.0 | ns | | t _{COMB} | Combinatorial delay | | | 0.8 | | 1.0 | ns | | t _{IC} | Array clock delay | | | 2.5 | | 3.0 | ns | | t _{EN} | Register enable time | | | 2.0 | | 3.0 | ns | | t _{GLOB} | Global control delay | | | 0.8 | | 1.0 | ns | | t _{PRE} | Register preset time | | | 2.0 | | 2.0 | ns | | t _{CLR} | Register clear time | | | 2.0 | | 2.0 | ns | | t _{PIA} | PIA delay | | | 0.8 | | 1.0 | ns | | t_{LPA} | Low-power adder | (8) | | 10.0 | | 10.0 | ns | | Symbol | Parameter | Conditions | Speed Grade | | | | | | |-------------------|--|----------------|-------------|-----------|--------|------|----|--| | | | | MAX 700 | OE (-10P) | MAX 70 | | | | | | | | Min | Max | Min | Max | | | | t _{IN} | Input pad and buffer delay | | | 0.5 | | 1.0 | ns | | | t _{IO} | I/O input pad and buffer delay | | | 0.5 | | 1.0 | ns | | | t _{FIN} | Fast input delay | (2) | | 1.0 | | 1.0 | ns | | | t _{SEXP} | Shared expander delay | | | 5.0 | | 5.0 | ns | | | t _{PEXP} | Parallel expander delay | | | 0.8 | | 0.8 | ns | | | t_{LAD} | Logic array delay | | | 5.0 | | 5.0 | ns | | | t _{LAC} | Logic control array delay | | | 5.0 | | 5.0 | ns | | | t _{IOE} | Internal output enable delay | (2) | | 2.0 | | 2.0 | ns | | | t _{OD1} | Output buffer and pad delay
Slow slew rate = off
V _{CCIO} = 5.0 V | C1 = 35 pF | | 1.5 | | 2.0 | ns | | | t _{OD2} | Output buffer and pad delay
Slow slew rate = off
V _{CCIO} = 3.3 V | C1 = 35 pF (7) | | 2.0 | | 2.5 | ns | | | t _{OD3} | Output buffer and pad delay
Slow slew rate = on
V _{CCIO} = 5.0 V or 3.3 V | C1 = 35 pF (2) | | 5.5 | | 6.0 | ns | | | t _{ZX1} | Output buffer enable delay
Slow slew rate = off
V _{CCIO} = 5.0 V | C1 = 35 pF | | 5.0 | | 5.0 | ns | | | t _{ZX2} | Output buffer enable delay
Slow slew rate = off
V _{CCIO} = 3.3 V | C1 = 35 pF (7) | | 5.5 | | 5.5 | ns | | | t _{ZX3} | Output buffer enable delay
Slow slew rate = on
V _{CCIO} = 5.0 V or 3.3 V | C1 = 35 pF (2) | | 9.0 | | 9.0 | ns | | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 5.0 | | 5.0 | ns | | | t_{SU} | Register setup time | | 2.0 | | 3.0 | | ns | | | t_H | Register hold time | | 3.0 | | 3.0 | | ns | | | t _{FSU} | Register setup time of fast input | (2) | 3.0 | | 3.0 | | ns | | | t_{FH} | Register hold time of fast input | (2) | 0.5 | | 0.5 | | ns | | | t _{RD} | Register delay | | | 2.0 | | 1.0 | ns | | | t _{COMB} | Combinatorial delay | | | 2.0 | | 1.0 | ns | | | t _{IC} | Array clock delay | | | 5.0 | | 5.0 | ns | | | t_{EN} | Register enable time | | | 5.0 | | 5.0 | ns | | | t _{GLOB} | Global control delay | | | 1.0 | | 1.0 | ns | | | t _{PRE} | Register preset time | | | 3.0 | | 3.0 | ns | | | t _{CLR} | Register clear time | | | 3.0 | | 3.0 | ns | | | t_{PIA} | PIA delay | | | 1.0 | | 1.0 | ns | | | t _{LPA} | Low-power adder | (8) | | 11.0 | | 11.0 | ns | | | Table 3 | Table 36. EPM7192S Internal Timing Parameters (Part 2 of 2)Note (1) | | | | | | | | | | | |-------------------|---|------------|-----|------|-------------|------|-----|------|----|--|--| | Symbol | Parameter | Conditions | | | Speed Grade | | | | | | | | | | | | -7 | | -10 | | 15 | | | | | İ | | | Min | Max | Min | Max | Min | Max | | | | | t _H | Register hold time | | 1.7 | | 3.0 | | 4.0 | | ns | | | | t _{FSU} | Register setup time of fast input | | 2.3 | | 3.0 | | 2.0 | | ns | | | | t _{FH} | Register hold time of fast input | | 0.7 | | 0.5 | | 1.0 | | ns | | | | t _{RD} | Register delay | | | 1.4 | | 2.0 | | 1.0 | ns | | | | t _{COMB} | Combinatorial delay | | | 1.2 | | 2.0 | | 1.0 | ns | | | | t_{IC} | Array clock delay | | | 3.2 | | 5.0 | | 6.0 | ns | | | | t _{EN} | Register enable time | | | 3.1 | | 5.0 | | 6.0 | ns | | | | t_{GLOB} | Global control delay | | | 2.5 | | 1.0 | | 1.0 | ns | | | | t _{PRE} | Register preset time | | | 2.7 | | 3.0 | | 4.0 | ns | | | | t _{CLR} | Register clear time | | | 2.7 | | 3.0 | | 4.0 | ns | | | | t _{PIA} | PIA delay | (7) | | 2.4 | | 1.0 | | 2.0 | ns | | | | t_{LPA} | Low-power adder | (8) | | 10.0 | | 11.0 | | 13.0 | ns | | | #### Notes to tables: - These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms. - (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path. - (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking. - (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (5) The f_{MAX} values represent the highest frequency for pipelined data. - (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use. - (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value. - (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode. | Symbol | Parameter | Conditions | Speed Grade | | | | | | | |-------------------|-----------------------------------|----------------|-------------|------|-----|------|-----|------|----| | | | | -7 | | -10 | | -15 | | 1 | | | | | Min | Max | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.3 | | 0.5 | | 2.0 | ns | | t _{IO} | I/O input pad and buffer delay | | | 0.3 | | 0.5 | | 2.0 | ns | | t _{FIN} | Fast input delay | | | 3.4 | | 1.0 | | 2.0 | ns | | t _{SEXP} | Shared expander delay | | | 3.9 | | 5.0 | | 8.0 | ns | | t_{PEXP} | Parallel expander delay | | | 1.1 | | 0.8 | | 1.0 | ns | | t_{LAD} | Logic array delay | | | 2.6 | | 5.0 | | 6.0 | ns | | t _{LAC} | Logic control array delay | | | 2.6 | | 5.0 | | 6.0 | ns | | t _{IOE} | Internal output enable delay | | | 0.8 | | 2.0 | | 3.0 | ns | | t _{OD1} | Output buffer and pad delay | C1 = 35 pF | | 0.5 | | 1.5 | | 4.0 | ns | | t _{OD2} | Output buffer and pad delay | C1 = 35 pF (6) | | 1.0 | | 2.0 | | 5.0 | ns | | t _{OD3} | Output buffer and pad delay | C1 = 35 pF | | 5.5 | | 5.5 | | 8.0 | ns | | t _{ZX1} | Output buffer enable delay | C1 = 35 pF | | 4.0 | | 5.0 | | 6.0 | ns | | t _{ZX2} | Output buffer enable delay | C1 = 35 pF (6) | | 4.5 | | 5.5 | | 7.0 | ns | | t _{ZX3} | Output buffer enable delay | C1 = 35 pF | | 9.0 | | 9.0 | | 10.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 5.0 | | 6.0 | ns | | t _{SU} | Register setup time | | 1.1 | | 2.0 | | 4.0 | | ns | | t _H | Register hold time | | 1.6 | | 3.0 | | 4.0 | | ns | | t _{FSU} | Register setup time of fast input | | 2.4 | | 3.0 | | 2.0 | | ns | | t _{FH} | Register hold time of fast input | | 0.6 | | 0.5 | | 1.0 | | ns | | t_{RD} | Register delay | | | 1.1 | | 2.0 | | 1.0 | ns | | t _{COMB} | Combinatorial delay | | | 1.1 | | 2.0 | | 1.0 | ns | | t _{IC} | Array clock delay | | | 2.9 | | 5.0 | | 6.0 | ns | | t_{EN} | Register enable time | | | 2.6 | | 5.0 | | 6.0 | ns | | t _{GLOB} | Global control delay | | | 2.8 | | 1.0 | | 1.0 | ns | | t _{PRE} | Register preset time | | | 2.7 | | 3.0 | | 4.0 | ns | | t _{CLR} | Register clear time | | | 2.7 | | 3.0 | | 4.0 | ns | | t _{PIA} | PIA delay | (7) | | 3.0 | | 1.0 | | 2.0 | ns | | t _{LPA} | Low-power adder | (8) | | 10.0 | İ | 11.0 | | 13.0 | ns | Figure 14 shows typical supply current versus frequency for MAX 7000 devices. Figure 14. I_{CC} vs. Frequency for MAX 7000 Devices (Part 1 of 2) #### EPM7096 Figure 14. I_{CC} vs. Frequency for MAX 7000 Devices (Part 2 of 2) Figure 15 shows typical supply current versus frequency for MAX 7000S devices. #### EPM7128S EPM7160S # Figure 21. 192-Pin Package Pin-Out Diagram Package outline not drawn to scale. Figure 22. 208-Pin Package Pin-Out Diagram Package outline not drawn to scale.