Welcome to **E-XFL.COM** **Understanding Embedded - CPLDs (Complex Programmable Logic Devices)** Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware. ## **Applications of Embedded - CPLDs** | Details | | |---------------------------------|---| | Product Status | Obsolete | | Programmable Type | EE PLD | | Delay Time tpd(1) Max | 12 ns | | Voltage Supply - Internal | 4.75V ~ 5.25V | | Number of Logic Elements/Blocks | 16 | | Number of Macrocells | 256 | | Number of Gates | 5000 | | Number of I/O | 132 | | Operating Temperature | 0°C ~ 70°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 160-BQFP | | Supplier Device Package | 160-PQFP (28x28) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epm7256eqc160-12mm | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong - Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, and VeriBest - Programming support - Altera's Master Programming Unit (MPU) and programming hardware from third-party manufacturers program all MAX 7000 devices - The BitBlasterTM serial download cable, ByteBlasterMVTM parallel port download cable, and MasterBlasterTM serial/universal serial bus (USB) download cable program MAX 7000S devices # General Description The MAX 7000 family of high-density, high-performance PLDs is based on Altera's second-generation MAX architecture. Fabricated with advanced CMOS technology, the EEPROM-based MAX 7000 family provides 600 to 5,000 usable gates, ISP, pin-to-pin delays as fast as 5 ns, and counter speeds of up to 175.4 MHz. MAX 7000S devices in the -5, -6, -7, and -10 speed grades as well as MAX 7000 and MAX 7000E devices in -5, -6, -7, -10P, and -12P speed grades comply with the PCI Special Interest Group (PCI SIG) *PCI Local Bus Specification, Revision 2.2.* See Table 3 for available speed grades. | Device | Speed Grade | | | | | | | | | | | | |----------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|--| | | -5 | -6 | -7 | -10P | -10 | -12P | -12 | -15 | -15T | -20 | | | | EPM7032 | | ✓ | ✓ | | ✓ | | ✓ | ✓ | ✓ | | | | | EPM7032S | ✓ | ✓ | ✓ | | ✓ | | | | | | | | | EPM7064 | | ✓ | ✓ | | ~ | | ✓ | ✓ | | | | | | EPM7064S | ✓ | ✓ | ✓ | | ~ | | | | | | | | | EPM7096 | | | ✓ | | ~ | | ✓ | ✓ | | | | | | EPM7128E | | | ✓ | ✓ | ~ | | ✓ | ✓ | | ✓ | | | | EPM7128S | | ✓ | ✓ | | ~ | | | ✓ | | | | | | EPM7160E | | | | ✓ | ✓ | | ✓ | ✓ | | ✓ | | | | EPM7160S | | ✓ | ✓ | | ~ | | | ✓ | | | | | | EPM7192E | | | | | | ✓ | ✓ | ✓ | | ✓ | | | | EPM7192S | | | ✓ | | ✓ | | | ✓ | | | | | | EPM7256E | | | | | | ✓ | ✓ | ✓ | | ✓ | | | | EPM7256S | | | ✓ | | ✓ | | | ✓ | | | | | The MAX 7000 architecture supports 100% TTL emulation and high-density integration of SSI, MSI, and LSI logic functions. The MAX 7000 architecture easily integrates multiple devices ranging from PALs, GALs, and 22V10s to MACH and pLSI devices. MAX 7000 devices are available in a wide range of packages, including PLCC, PGA, PQFP, RQFP, and TQFP packages. See Table 5. | Table 5. M. | AX 7000 |) Maxim | um Use | r I/O Pii | ıs N | ote (1) | | | | | | | |-------------|--------------------|--------------------|--------------------|--------------------|--------------------|---------------------|---------------------|---------------------|--------------------|--------------------|---------------------|---------------------| | Device | 44-
Pin
PLCC | 44-
Pin
PQFP | 44-
Pin
TQFP | 68-
Pin
PLCC | 84-
Pin
PLCC | 100-
Pin
PQFP | 100-
Pin
TQFP | 160-
Pin
PQFP | 160-
Pin
PGA | 192-
Pin
PGA | 208-
Pin
PQFP | 208-
Pin
RQFP | | EPM7032 | 36 | 36 | 36 | | | | | | | | | | | EPM7032S | 36 | | 36 | | | | | | | | | | | EPM7064 | 36 | | 36 | 52 | 68 | 68 | | | | | | | | EPM7064S | 36 | | 36 | | 68 | | 68 | | | | | | | EPM7096 | | | | 52 | 64 | 76 | | | | | | | | EPM7128E | | | | | 68 | 84 | | 100 | | | | | | EPM7128S | | | | | 68 | 84 | 84 (2) | 100 | | | | | | EPM7160E | | | | | 64 | 84 | | 104 | | | | | | EPM7160S | | | | | 64 | | 84 (2) | 104 | | | | | | EPM7192E | | | | | | | | 124 | 124 | | | | | EPM7192S | | | | | | | | 124 | | | | | | EPM7256E | | | | | | | | 132 (2) | | 164 | | 164 | | EPM7256S | | | | | | | | | | | 164 (2) | 164 | #### Notes: - When the JTAG interface in MAX 7000S devices is used for either boundary-scan testing or for ISP, four I/O pins become JTAG pins. - (2) Perform a complete thermal analysis before committing a design to this device package. For more information, see the Operating Requirements for Altera Devices Data Sheet. MAX 7000 devices use CMOS EEPROM cells to implement logic functions. The user-configurable MAX 7000 architecture accommodates a variety of independent combinatorial and sequential logic functions. The devices can be reprogrammed for quick and efficient iterations during design development and debug cycles, and can be programmed and erased up to 100 times. The MAX 7000 architecture includes four dedicated inputs that can be used as general-purpose inputs or as high-speed, global control signals (clock, clear, and two output enable signals) for each macrocell and I/O pin. Figure 1 shows the architecture of EPM7032, EPM7064, and EPM7096 devices. Figure 1. EPM7032, EPM7064 & EPM7096 Device Block Diagram Figure 4 shows a MAX 7000E and MAX 7000S device macrocell. Combinatorial logic is implemented in the logic array, which provides five product terms per macrocell. The product-term select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as secondary inputs to the macrocell's register clear, preset, clock, and clock enable control functions. Two kinds of expander product terms ("expanders") are available to supplement macrocell logic resources: - Shareable expanders, which are inverted product terms that are fed back into the logic array - Parallel expanders, which are product terms borrowed from adjacent macrocells The Altera development system automatically optimizes product-term allocation according to the logic requirements of the design. For registered functions, each macrocell flipflop can be individually programmed to implement D, T, JK, or SR operation with programmable clock control. The flipflop can be bypassed for combinatorial operation. During design entry, the designer specifies the desired flipflop type; the Altera development software then selects the most efficient flipflop operation for each registered function to optimize resource utilization. Each programmable register can be clocked in three different modes: - By a global clock signal. This mode achieves the fastest clock-tooutput performance. - By a global clock signal and enabled by an active-high clock enable. This mode provides an enable on each flipflop while still achieving the fast clock-to-output performance of the global clock. - By an array clock implemented with a product term. In this mode, the flipflop can be clocked by signals from buried macrocells or I/O pins. In EPM7032, EPM7064, and EPM7096 devices, the global clock signal is available from a dedicated clock pin, GCLK1, as shown in Figure 1. In MAX 7000E and MAX 7000S devices, two global clock signals are available. As shown in Figure 2, these global clock signals can be the true or the complement of either of the global clock pins, GCLK1 or GCLK2. Each register also supports asynchronous preset and clear functions. As shown in Figures 3 and 4, the product-term select matrix allocates product terms to control these operations. Although the product-term-driven preset and clear of the register are active high, active-low control can be obtained by inverting the signal within the logic array. In addition, each register clear function can be individually driven by the active-low dedicated global clear pin (GCLRn). Upon power-up, each register in the device will be set to a low state. All MAX 7000E and MAX 7000S I/O pins have a fast input path to a macrocell register. This dedicated path allows a signal to bypass the PIA and combinatorial logic and be driven to an input D flipflop with an extremely fast (2.5 ns) input setup time. ## **Expander Product Terms** Although most logic functions can be implemented with the five product terms available in each macrocell, the more complex logic functions require additional product terms. Another macrocell can be used to supply the required logic resources; however, the MAX 7000 architecture also allows both shareable and parallel expander product terms ("expanders") that provide additional product terms directly to any macrocell in the same LAB. These expanders help ensure that logic is synthesized with the fewest possible logic resources to obtain the fastest possible speed. For more information on using the Jam language, refer to AN 122: Using Jam STAPL for ISP & ICR via an Embedded Processor. The ISP circuitry in MAX 7000S devices is compatible with IEEE Std. 1532 specification. The IEEE Std. 1532 is a standard developed to allow concurrent ISP between multiple PLD vendors. ## **Programming Sequence** During in-system programming, instructions, addresses, and data are shifted into the MAX 7000S device through the TDI input pin. Data is shifted out through the TDO output pin and compared against the expected data. Programming a pattern into the device requires the following six ISP stages. A stand-alone verification of a programmed pattern involves only stages 1, 2, 5, and 6. - Enter ISP. The enter ISP stage ensures that the I/O pins transition smoothly from user mode to ISP mode. The enter ISP stage requires 1 ms. - 2. *Check ID*. Before any program or verify process, the silicon ID is checked. The time required to read this silicon ID is relatively small compared to the overall programming time. - 3. *Bulk Erase*. Erasing the device in-system involves shifting in the instructions to erase the device and applying one erase pulse of 100 ms. - Program. Programming the device in-system involves shifting in the address and data and then applying the programming pulse to program the EEPROM cells. This process is repeated for each EEPROM address. - Verify. Verifying an Altera device in-system involves shifting in addresses, applying the read pulse to verify the EEPROM cells, and shifting out the data for comparison. This process is repeated for each EEPROM address. - 6. Exit ISP. An exit ISP stage ensures that the I/O pins transition smoothly from ISP mode to user mode. The exit ISP stage requires 1 ms. The programming times described in Tables 6 through 8 are associated with the worst-case method using the enhanced ISP algorithm. | Table 6. MAX 7000S t _{PU} | ble 6. MAX 7000S t _{PULSE} & Cycle _{TCK} Values | | | | | | | | | | | | |------------------------------------|---|-----------------------|--------------------------|-----------------------|--|--|--|--|--|--|--|--| | Device | Progra | ımming | Stand-Alone Verification | | | | | | | | | | | | t _{PPULSE} (s) | Cycle _{PTCK} | t _{VPULSE} (s) | Cycle _{VTCK} | | | | | | | | | | EPM7032S | 4.02 | 342,000 | 0.03 | 200,000 | | | | | | | | | | EPM7064S | 4.50 | 504,000 | 0.03 | 308,000 | | | | | | | | | | EPM7128S | 5.11 | 832,000 | 0.03 | 528,000 | | | | | | | | | | EPM7160S | 5.35 | 1,001,000 | 0.03 | 640,000 | | | | | | | | | | EPM7192S | 5.71 | 1,192,000 | 0.03 | 764,000 | | | | | | | | | | EPM7256S | 6.43 | 1,603,000 | 0.03 | 1,024,000 | | | | | | | | | Tables 7 and 8 show the in-system programming and stand alone verification times for several common test clock frequencies. | Table 7. MAX 7000S In-System Programming Times for Different Test Clock Frequencies | | | | | | | | | | | | |---|--------|-------|-------|-------|---------|---------|---------|--------|-------|--|--| | Device | | | | f | TCK | | | | Units | | | | | 10 MHz | 5 MHz | 2 MHz | 1 MHz | 500 kHz | 200 kHz | 100 kHz | 50 kHz | | | | | EPM7032S | 4.06 | 4.09 | 4.19 | 4.36 | 4.71 | 5.73 | 7.44 | 10.86 | s | | | | EPM7064S | 4.55 | 4.60 | 4.76 | 5.01 | 5.51 | 7.02 | 9.54 | 14.58 | S | | | | EPM7128S | 5.19 | 5.27 | 5.52 | 5.94 | 6.77 | 9.27 | 13.43 | 21.75 | S | | | | EPM7160S | 5.45 | 5.55 | 5.85 | 6.35 | 7.35 | 10.35 | 15.36 | 25.37 | S | | | | EPM7192S | 5.83 | 5.95 | 6.30 | 6.90 | 8.09 | 11.67 | 17.63 | 29.55 | S | | | | EPM7256S | 6.59 | 6.75 | 7.23 | 8.03 | 9.64 | 14.45 | 22.46 | 38.49 | S | | | | Table 8. MAX 7000S Stand-Alone Verification Times for Different Test Clock Frequencies | | | | | | | | | | | | |--|--------|-------|-------|-------|---------|---------|---------|--------|-------|--|--| | Device | | | | 1 | тск | | | | Units | | | | | 10 MHz | 5 MHz | 2 MHz | 1 MHz | 500 kHz | 200 kHz | 100 kHz | 50 kHz | | | | | EPM7032S | 0.05 | 0.07 | 0.13 | 0.23 | 0.43 | 1.03 | 2.03 | 4.03 | s | | | | EPM7064S | 0.06 | 0.09 | 0.18 | 0.34 | 0.64 | 1.57 | 3.11 | 6.19 | S | | | | EPM7128S | 0.08 | 0.14 | 0.29 | 0.56 | 1.09 | 2.67 | 5.31 | 10.59 | S | | | | EPM7160S | 0.09 | 0.16 | 0.35 | 0.67 | 1.31 | 3.23 | 6.43 | 12.83 | S | | | | EPM7192S | 0.11 | 0.18 | 0.41 | 0.79 | 1.56 | 3.85 | 7.67 | 15.31 | S | | | | EPM7256S | 0.13 | 0.24 | 0.54 | 1.06 | 2.08 | 5.15 | 10.27 | 20.51 | S | | | # Programmable Speed/Power Control MAX 7000 devices offer a power-saving mode that supports low-power operation across user-defined signal paths or the entire device. This feature allows total power dissipation to be reduced by 50% or more, because most logic applications require only a small fraction of all gates to operate at maximum frequency. The designer can program each individual macrocell in a MAX 7000 device for either high-speed (i.e., with the Turbo BitTM option turned on) or low-power (i.e., with the Turbo Bit option turned off) operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths can operate at reduced power. Macrocells that run at low power incur a nominal timing delay adder (t_{LPA}) for the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , and t_{SEXP} , t_{ACL} , and t_{CPPW} parameters. ## Output Configuration MAX 7000 device outputs can be programmed to meet a variety of system-level requirements. ## MultiVolt I/O Interface MAX 7000 devices—except 44-pin devices—support the MultiVolt I/O interface feature, which allows MAX 7000 devices to interface with systems that have differing supply voltages. The 5.0-V devices in all packages can be set for 3.3-V or 5.0-V I/O pin operation. These devices have one set of VCC pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO). The VCCINT pins must always be connected to a 5.0-V power supply. With a 5.0-V $V_{\rm CCINT}$ level, input voltage thresholds are at TTL levels, and are therefore compatible with both 3.3-V and 5.0-V inputs. The VCCIO pins can be connected to either a 3.3-V or a 5.0-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 5.0-V supply, the output levels are compatible with 5.0-V systems. When $V_{\rm CCIO}$ is connected to a 3.3-V supply, the output high is 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with $V_{\rm CCIO}$ levels lower than 4.75 V incur a nominally greater timing delay of $t_{\rm OD2}$ instead of $t_{\rm OD1}$. ## Open-Drain Output Option (MAX 7000S Devices Only) MAX 7000S devices provide an optional open-drain (functionally equivalent to open-collector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. It can also provide an additional wired-OR plane. By using an external 5.0-V pull-up resistor, output pins on MAX 7000S devices can be set to meet 5.0-V CMOS input voltages. When $V_{\rm CCIO}$ is 3.3 V, setting the open drain option will turn off the output pull-up transistor, allowing the external pull-up resistor to pull the output high enough to meet 5.0-V CMOS input voltages. When $V_{\rm CCIO}$ is 5.0 V, setting the output drain option is not necessary because the pull-up transistor will already turn off when the pin exceeds approximately 3.8 V, allowing the external pull-up resistor to pull the output high enough to meet 5.0-V CMOS input voltages. ### Slew-Rate Control The output buffer for each MAX 7000E and MAX 7000S I/O pin has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A faster slew rate provides high-speed transitions for high-performance systems. However, these fast transitions may introduce noise transients into the system. A slow slew rate reduces system noise, but adds a nominal delay of 4 to 5 ns. In MAX 7000E devices, when the Turbo Bit is turned off, the slew rate is set for low noise performance. For MAX 7000S devices, each I/O pin has an individual EEPROM bit that controls the slew rate, allowing designers to specify the slew rate on a pin-by-pin basis. ## Programming with External Hardware MAX 7000 devices can be programmed on Windows-based PCs with the Altera Logic Programmer card, the Master Programming Unit (MPU), and the appropriate device adapter. The MPU performs a continuity check to ensure adequate electrical contact between the adapter and the device. For more information, see the *Altera Programming Hardware Data Sheet*. The Altera development system can use text- or waveform-format test vectors created with the Text Editor or Waveform Editor to test the programmed device. For added design verification, designers can perform functional testing to compare the functional behavior of a MAX 7000 device with the results of simulation. Moreover, Data I/O, BP Microsystems, and other programming hardware manufacturers also provide programming support for Altera devices. For more information, see the *Programming Hardware Manufacturers*. # Operating Conditions Tables 13 through 18 provide information about absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for 5.0-V MAX 7000 devices. | Table 1 | 3. MAX 7000 5.0-V Device Abso | plute Maximum Ratings Note (1) | | | | |------------------|-------------------------------|------------------------------------|------|-----|------| | Symbol | Parameter | Conditions | Min | Max | Unit | | V _{CC} | Supply voltage | With respect to ground (2) | -2.0 | 7.0 | V | | VI | DC input voltage | | -2.0 | 7.0 | V | | I _{OUT} | DC output current, per pin | | -25 | 25 | mA | | T _{STG} | Storage temperature | No bias | -65 | 150 | ° C | | T _{AMB} | Ambient temperature | Under bias | -65 | 135 | ° C | | TJ | Junction temperature | Ceramic packages, under bias | | 150 | °C | | | | PQFP and RQFP packages, under bias | | 135 | °C | | Symbol | Parameter | Conditions | Min | Max | Unit | |--------------------|---|--------------------|----------------|--------------------------|------| | V _{CCINT} | Supply voltage for internal logic and input buffers | (3), (4), (5) | 4.75
(4.50) | 5.25
(5.50) | V | | V _{CCIO} | Supply voltage for output drivers, 5.0-V operation | (3), (4) | 4.75
(4.50) | 5.25
(5.50) | V | | | Supply voltage for output drivers, 3.3-V operation | (3), (4), (6) | 3.00
(3.00) | 3.60
(3.60) | V | | V _{CCISP} | Supply voltage during ISP | (7) | 4.75 | 5.25 | V | | V _I | Input voltage | | -0.5 (8) | V _{CCINT} + 0.5 | V | | Vo | Output voltage | | 0 | V _{CCIO} | V | | T _A | Ambient temperature | For commercial use | 0 | 70 | °C | | | | For industrial use | -40 | 85 | °C | | TJ | Junction temperature | For commercial use | 0 | 90 | °C | | | | For industrial use | -40 | 105 | ° C | | t _R | Input rise time | | | 40 | ns | | t _F | Input fall time | | | 40 | ns | #### Notes to tables: - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) Minimum DC input voltage on I/O pins is –0.5 V and on 4 dedicated input pins is –0.3 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 7.0 V for input currents less than 100 mA and periods shorter than 20 ns. - (3) Numbers in parentheses are for industrial-temperature-range devices. - (4) V_{CC} must rise monotonically. - (5) The POR time for all 7000S devices does not exceed 300 μs. The sufficient V_{CCINT} voltage level for POR is 4.5 V. The device is fully initialized within the POR time after V_{CCINT} reaches the sufficient POR voltage level. - (6) 3.3-V I/O operation is not available for 44-pin packages. - (7) The V_{CCISP} parameter applies only to MAX 7000S devices. - (8) During in-system programming, the minimum DC input voltage is –0.3 V. - (9) These values are specified under the MAX 7000 recommended operating conditions in Table 14 on page 26. - (10) The parameter is measured with 50% of the outputs each sourcing the specified current. The I_{OH} parameter refers to high-level TTL or CMOS output current. - (11) The parameter is measured with 50% of the outputs each sinking the specified current. The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. - (12) When the JTAG interface is enabled in MAX 7000S devices, the input leakage current on the JTAG pins is typically -60 uA. - (13) Capacitance is measured at 25° C and is sample-tested only. The OE1 pin has a maximum capacitance of 20 pF. Figure 11 shows the typical output drive characteristics of MAX 7000 devices. Figure 11. Output Drive Characteristics of 5.0-V MAX 7000 Devices ## **Timing Model** MAX 7000 device timing can be analyzed with the Altera software, with a variety of popular industry-standard EDA simulators and timing analyzers, or with the timing model shown in Figure 12. MAX 7000 devices have fixed internal delays that enable the designer to determine the worst-case timing of any design. The Altera software provides timing simulation, point-to-point delay prediction, and detailed timing analysis for a device-wide performance evaluation. ## Figure 13. Switching Waveforms 30 Altera Corporation Register Output to Pin | Table 2 | 9. EPM7064\$ External Timi | ing Parameters | (Part 2 | 2 of 2) | No | te (1) | | | | | | |-------------------|--|----------------|---------|---------|-------|--------|-------|-----|-------|------|------| | Symbol | Parameter | Conditions | | | | Speed | Grade | | | | Unit | | | | | -5 | | -6 | | -7 | | -10 | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{ACO1} | Array clock to output delay | C1 = 35 pF | | 5.4 | | 6.7 | | 7.5 | | 10.0 | ns | | t _{ACH} | Array clock high time | | 2.5 | | 2.5 | | 3.0 | | 4.0 | | ns | | t _{ACL} | Array clock low time | | 2.5 | | 2.5 | | 3.0 | | 4.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | (2) | 2.5 | | 2.5 | | 3.0 | | 4.0 | | ns | | t _{ODH} | Output data hold time after clock | C1 = 35 pF (3) | 1.0 | | 1.0 | | 1.0 | | 1.0 | | ns | | t _{CNT} | Minimum global clock period | | | 5.7 | | 7.1 | | 8.0 | | 10.0 | ns | | f _{CNT} | Maximum internal global clock frequency | (4) | 175.4 | | 140.8 | | 125.0 | | 100.0 | | MHz | | t _{ACNT} | Minimum array clock period | | | 5.7 | | 7.1 | | 8.0 | | 10.0 | ns | | f _{ACNT} | Maximum internal array clock frequency | (4) | 175.4 | | 140.8 | | 125.0 | | 100.0 | | MHz | | f _{MAX} | Maximum clock frequency | (5) | 250.0 | | 200.0 | | 166.7 | | 125.0 | | MHz | | Table 3 | O. EPM7064\$ Internal Tim | ing Parameters | (Part | 1 of 2) | No | te (1) | | | | | | |-------------------|--------------------------------|----------------|-------|---------|-----|--------|-------|-----|-----|-----|------| | Symbol | Parameter | Conditions | | | | Speed | Grade | | | | Unit | | | | | - | -5 | | -6 | | 7 | -10 | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t_{IN} | Input pad and buffer delay | | | 0.2 | | 0.2 | | 0.5 | | 0.5 | ns | | t _{IO} | I/O input pad and buffer delay | | | 0.2 | | 0.2 | | 0.5 | | 0.5 | ns | | t _{FIN} | Fast input delay | | | 2.2 | | 2.6 | | 1.0 | | 1.0 | ns | | t _{SEXP} | Shared expander delay | | | 3.1 | | 3.8 | | 4.0 | | 5.0 | ns | | t _{PEXP} | Parallel expander delay | | | 0.9 | | 1.1 | | 0.8 | | 0.8 | ns | | t_{LAD} | Logic array delay | | | 2.6 | | 3.2 | | 3.0 | | 5.0 | ns | | t _{LAC} | Logic control array delay | | | 2.5 | | 3.2 | | 3.0 | | 5.0 | ns | | t _{IOE} | Internal output enable delay | | | 0.7 | | 0.8 | | 2.0 | | 2.0 | ns | | t _{OD1} | Output buffer and pad delay | C1 = 35 pF | | 0.2 | | 0.3 | | 2.0 | | 1.5 | ns | | t _{OD2} | Output buffer and pad delay | C1 = 35 pF (6) | | 0.7 | | 0.8 | | 2.5 | | 2.0 | ns | | t _{OD3} | Output buffer and pad delay | C1 = 35 pF | | 5.2 | | 5.3 | | 7.0 | | 5.5 | ns | | t_{ZX1} | Output buffer enable delay | C1 = 35 pF | | 4.0 | | 4.0 | | 4.0 | | 5.0 | ns | | t_{ZX2} | Output buffer enable delay | C1 = 35 pF (6) | | 4.5 | | 4.5 | | 4.5 | | 5.5 | ns | | t _{ZX3} | Output buffer enable delay | C1 = 35 pF | | 9.0 | | 9.0 | | 9.0 | | 9.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 4.0 | | 4.0 | | 5.0 | ns | | t _{SU} | Register setup time | | 0.8 | | 1.0 | | 3.0 | | 2.0 | | ns | | t _H | Register hold time | | 1.7 | | 2.0 | | 2.0 | | 3.0 | | ns | | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | | |-------------------|-----------------------------------|------------|-------------|------|-----|------|-----|------|-----|------|----| | | | | - | 5 | - | -6 | | -7 | | 10 | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{FSU} | Register setup time of fast input | | 1.9 | | 1.8 | | 3.0 | | 3.0 | | ns | | t _{FH} | Register hold time of fast input | | 0.6 | | 0.7 | | 0.5 | | 0.5 | | ns | | t _{RD} | Register delay | | | 1.2 | | 1.6 | | 1.0 | | 2.0 | ns | | t _{COMB} | Combinatorial delay | | | 0.9 | | 1.0 | | 1.0 | | 2.0 | ns | | t _{IC} | Array clock delay | | | 2.7 | | 3.3 | | 3.0 | | 5.0 | ns | | t _{EN} | Register enable time | | | 2.6 | | 3.2 | | 3.0 | | 5.0 | ns | | t_{GLOB} | Global control delay | | | 1.6 | | 1.9 | | 1.0 | | 1.0 | ns | | t _{PRE} | Register preset time | | | 2.0 | | 2.4 | | 2.0 | | 3.0 | ns | | t _{CLR} | Register clear time | | | 2.0 | | 2.4 | | 2.0 | | 3.0 | ns | | t _{PIA} | PIA delay | (7) | | 1.1 | | 1.3 | | 1.0 | | 1.0 | ns | | t_{LPA} | Low-power adder | (8) | | 12.0 | | 11.0 | | 10.0 | | 11.0 | ns | #### Notes to tables: - (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms. - (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path. - (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking. - (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (5) The f_{MAX} values represent the highest frequency for pipelined data. - (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use. - (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value. - (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode. | Table 33. EPM7160S External Timing Parameters (Part 2 of 2) Note (1) | | | | | | | | | | | | |--|--|------------|---------------|-----|-------|-----|-------|------|-------|------|-----| | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | | | | | | -6 -7 -10 -15 | | | | | | | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{ACNT} | Minimum array clock period | | | 6.7 | | 8.2 | | 10.0 | | 13.0 | ns | | f _{ACNT} | Maximum internal array clock frequency | (4) | 149.3 | | 122.0 | | 100.0 | | 76.9 | | MHz | | f _{MAX} | Maximum clock frequency | (5) | 166.7 | | 166.7 | | 125.0 | | 100.0 | | MHz | | Table 34. EPM7160S Internal Timing Parameters (Part 1 of 2) Note (1) | | | | | | | | | | | | |--|-----------------------------------|----------------|-----|-----|-----|-------|-------|-----|-----|------|------| | Symbol | Parameter | Conditions | | | | Speed | Grade | | | | Unit | | | | | - | 6 | - | 7 | -1 | 10 | -1 | 15 | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.2 | | 0.3 | | 0.5 | | 2.0 | ns | | t _{IO} | I/O input pad and buffer delay | | | 0.2 | | 0.3 | | 0.5 | | 2.0 | ns | | t _{FIN} | Fast input delay | | | 2.6 | | 3.2 | | 1.0 | | 2.0 | ns | | t _{SEXP} | Shared expander delay | | | 3.6 | | 4.3 | | 5.0 | | 8.0 | ns | | t _{PEXP} | Parallel expander delay | | | 1.0 | | 1.3 | | 0.8 | | 1.0 | ns | | t_{LAD} | Logic array delay | | | 2.8 | | 3.4 | | 5.0 | | 6.0 | ns | | t _{LAC} | Logic control array delay | | | 2.8 | | 3.4 | | 5.0 | | 6.0 | ns | | t _{IOE} | Internal output enable delay | | | 0.7 | | 0.9 | | 2.0 | | 3.0 | ns | | t _{OD1} | Output buffer and pad delay | C1 = 35 pF | | 0.4 | | 0.5 | | 1.5 | | 4.0 | ns | | t _{OD2} | Output buffer and pad delay | C1 = 35 pF (6) | | 0.9 | | 1.0 | | 2.0 | | 5.0 | ns | | t _{OD3} | Output buffer and pad delay | C1 = 35 pF | | 5.4 | | 5.5 | | 5.5 | | 8.0 | ns | | t_{ZX1} | Output buffer enable delay | C1 = 35 pF | | 4.0 | | 4.0 | | 5.0 | | 6.0 | ns | | t _{ZX2} | Output buffer enable delay | C1 = 35 pF (6) | | 4.5 | | 4.5 | | 5.5 | | 7.0 | ns | | t _{ZX3} | Output buffer enable delay | C1 = 35 pF | | 9.0 | | 9.0 | | 9.0 | | 10.0 | ns | | t _{XZ} | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 4.0 | | 5.0 | | 6.0 | ns | | t _{SU} | Register setup time | | 1.0 | | 1.2 | | 2.0 | | 4.0 | | ns | | t _H | Register hold time | | 1.6 | | 2.0 | | 3.0 | | 4.0 | | ns | | t _{FSU} | Register setup time of fast input | | 1.9 | | 2.2 | | 3.0 | | 2.0 | | ns | | t _{FH} | Register hold time of fast input | | 0.6 | | 0.8 | | 0.5 | | 1.0 | | ns | | t _{RD} | Register delay | | | 1.3 | | 1.6 | | 2.0 | | 1.0 | ns | | t _{COMB} | Combinatorial delay | | | 1.0 | | 1.3 | | 2.0 | | 1.0 | ns | | t _{IC} | Array clock delay | | | 2.9 | | 3.5 | | 5.0 | | 6.0 | ns | | t _{EN} | Register enable time | | | 2.8 | | 3.4 | | 5.0 | | 6.0 | ns | | t _{GLOB} | Global control delay | | | 2.0 | | 2.4 | | 1.0 | | 1.0 | ns | | t _{PRE} | Register preset time | | | 2.4 | | 3.0 | | 3.0 | | 4.0 | ns | | Table 39. MAX 7000 I _{CC} Equation Constants | | | | | | | | | | | |---|------|------|-------|--|--|--|--|--|--|--| | Device | Α | В | С | | | | | | | | | EPM7032 | 1.87 | 0.52 | 0.144 | | | | | | | | | EPM7064 | 1.63 | 0.74 | 0.144 | | | | | | | | | EPM7096 | 1.63 | 0.74 | 0.144 | | | | | | | | | EPM7128E | 1.17 | 0.54 | 0.096 | | | | | | | | | EPM7160E | 1.17 | 0.54 | 0.096 | | | | | | | | | EPM7192E | 1.17 | 0.54 | 0.096 | | | | | | | | | EPM7256E | 1.17 | 0.54 | 0.096 | | | | | | | | | EPM7032S | 0.93 | 0.40 | 0.040 | | | | | | | | | EPM7064S | 0.93 | 0.40 | 0.040 | | | | | | | | | EPM7128S | 0.93 | 0.40 | 0.040 | | | | | | | | | EPM7160S | 0.93 | 0.40 | 0.040 | | | | | | | | | EPM7192S | 0.93 | 0.40 | 0.040 | | | | | | | | | EPM7256S | 0.93 | 0.40 | 0.040 | | | | | | | | This calculation provides an I_{CC} estimate based on typical conditions using a pattern of a 16-bit, loadable, enabled, up/down counter in each LAB with no output load. Actual I_{CC} values should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions. Figure 15 shows typical supply current versus frequency for MAX 7000S devices. ### EPM7128S EPM7160S ## Figure 21. 192-Pin Package Pin-Out Diagram Package outline not drawn to scale. Figure 22. 208-Pin Package Pin-Out Diagram Package outline not drawn to scale. # Revision History The information contained in the *MAX 7000 Programmable Logic Device Family Data Sheet* version 6.7 supersedes information published in previous versions. The following changes were made in the *MAX 7000 Programmable Logic Device Family Data Sheet* version 6.7: ## Version 6.7 The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.7: Reference to AN 88: Using the Jam Language for ISP & ICR via an Embedded Processor has been replaced by AN 122: Using Jam STAPL for ISP & ICR via an Embedded Processor. ## Version 6.6 The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.6: - Added Tables 6 through 8. - Added "Programming Sequence" section on page 17 and "Programming Times" section on page 18. ## Version 6.5 The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.5: Updated text on page 16. ## Version 6.4 The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.4: Added Note (5) on page 28. ## Version 6.3 The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.3: ■ Updated the "Open-Drain Output Option (MAX 7000S Devices Only)" section on page 20. 101 Innovation Drive San Jose, CA 95134 (408) 544-7000 www.altera.com Applications Hotline: (800) 800-EPLD Literature Services: literature@altera.com Copyright © 2005 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. I.S. EN ISO 9001