

Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Obsolete
Programmable Type	EE PLD
Delay Time tpd(1) Max	12 ns
Voltage Supply - Internal	4.75V ~ 5.25V
Number of Logic Elements/Blocks	16
Number of Macrocells	256
Number of Gates	5000
Number of I/O	164
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	208-BFQFP Exposed Pad
Supplier Device Package	208-RQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm7256erc208-12

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. MAX	7000S Device I	Features -				
Feature	EPM7032S	EPM7064S	EPM7128S	EPM7160S	EPM7192S	EPM7256S
Usable gates	600	1,250	2,500	3,200	3,750	5,000
Macrocells	32	64	128	160	192	256
Logic array blocks	2	4	8	10	12	16
Maximum user I/O pins	36	68	100	104	124	164
t _{PD} (ns)	5	5	6	6	7.5	7.5
t _{SU} (ns)	2.9	2.9	3.4	3.4	4.1	3.9
t _{FSU} (ns)	2.5	2.5	2.5	2.5	3	3
t _{CO1} (ns)	3.2	3.2	4	3.9	4.7	4.7
f _{CNT} (MHz)	175.4	175.4	147.1	149.3	125.0	128.2

...and More Features

- Open-drain output option in MAX 7000S devices
- Programmable macrocell flipflops with individual clear, preset, clock, and clock enable controls
- Programmable power-saving mode for a reduction of over 50% in each macrocell
- Configurable expander product-term distribution, allowing up to 32 product terms per macrocell
- 44 to 208 pins available in plastic J-lead chip carrier (PLCC), ceramic pin-grid array (PGA), plastic quad flat pack (PQFP), power quad flat pack (RQFP), and 1.0-mm thin quad flat pack (TQFP) packages
- Programmable security bit for protection of proprietary designs
- 3.3-V or 5.0-V operation
 - MultiVoltTM I/O interface operation, allowing devices to interface with 3.3-V or 5.0-V devices (MultiVolt I/O operation is not available in 44-pin packages)
 - Pin compatible with low-voltage MAX 7000A and MAX 7000B devices
- Enhanced features available in MAX 7000E and MAX 7000S devices
 - Six pin- or logic-driven output enable signals
 - Two global clock signals with optional inversion
 - Enhanced interconnect resources for improved routability
 - Fast input setup times provided by a dedicated path from I/O pin to macrocell registers
 - Programmable output slew-rate control
- Software design support and automatic place-and-route provided by Altera's development system for Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 workstations

The MAX 7000E devices—including the EPM7128E, EPM7160E, EPM7192E, and EPM7256E devices—have several enhanced features: additional global clocking, additional output enable controls, enhanced interconnect resources, fast input registers, and a programmable slew rate.

In-system programmable MAX 7000 devices—called MAX 7000S devices—include the EPM7032S, EPM7064S, EPM7128S, EPM7160S, EPM7192S, and EPM7256S devices. MAX 7000S devices have the enhanced features of MAX 7000E devices as well as JTAG BST circuitry in devices with 128 or more macrocells, ISP, and an open-drain output option. See Table 4.

Table 4. MAX 7000 Device Feat	ures		
Feature	EPM7032 EPM7064 EPM7096	All MAX 7000E Devices	All MAX 7000S Devices
ISP via JTAG interface			✓
JTAG BST circuitry			√ (1)
Open-drain output option			✓
Fast input registers		✓	✓
Six global output enables		✓	✓
Two global clocks		✓	✓
Slew-rate control		✓	✓
MultiVolt interface (2)	✓	✓	✓
Programmable register	✓	✓	✓
Parallel expanders	✓	✓	✓
Shared expanders	✓	✓	✓
Power-saving mode	✓	✓	✓
Security bit	✓	✓	✓
PCI-compliant devices available	✓	✓	✓

Notes:

- (1) Available only in EPM7128S, EPM7160S, EPM7192S, and EPM7256S devices only.
- (2) The MultiVolt I/O interface is not available in 44-pin packages.

The MAX 7000 architecture includes four dedicated inputs that can be used as general-purpose inputs or as high-speed, global control signals (clock, clear, and two output enable signals) for each macrocell and I/O pin. Figure 1 shows the architecture of EPM7032, EPM7064, and EPM7096 devices.

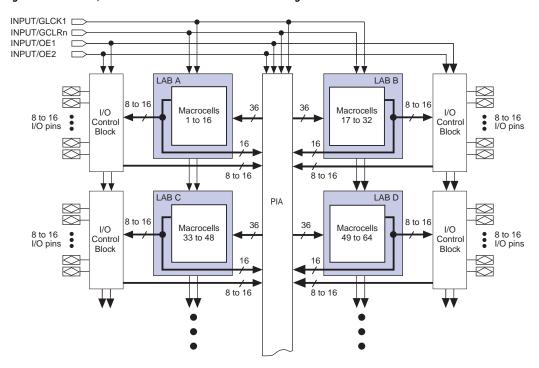
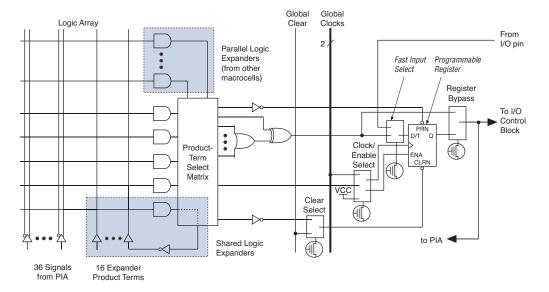


Figure 1. EPM7032, EPM7064 & EPM7096 Device Block Diagram


Each LAB is fed by the following signals:

- 36 signals from the PIA that are used for general logic inputs
- Global controls that are used for secondary register functions
- Direct input paths from I/O pins to the registers that are used for fast setup times for MAX 7000E and MAX 7000S devices

Macrocells

The MAX 7000 macrocell can be individually configured for either sequential or combinatorial logic operation. The macrocell consists of three functional blocks: the logic array, the product-term select matrix, and the programmable register. The macrocell of EPM7032, EPM7064, and EPM7096 devices is shown in Figure 3.

Figure 3. EPM7032, EPM7064 & EPM7096 Device Macrocell

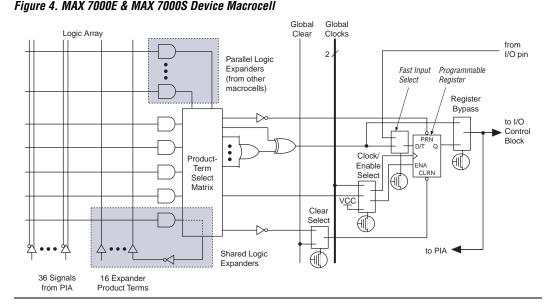
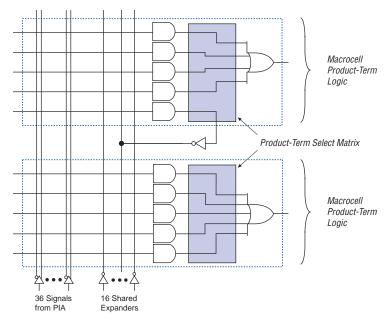


Figure 4 shows a MAX 7000E and MAX 7000S device macrocell.

Combinatorial logic is implemented in the logic array, which provides five product terms per macrocell. The product-term select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as secondary inputs to the macrocell's register clear, preset, clock, and clock enable control functions. Two kinds of expander product terms ("expanders") are available to supplement macrocell logic resources:

- Shareable expanders, which are inverted product terms that are fed back into the logic array
- Parallel expanders, which are product terms borrowed from adjacent macrocells

The Altera development system automatically optimizes product-term allocation according to the logic requirements of the design.


For registered functions, each macrocell flipflop can be individually programmed to implement D, T, JK, or SR operation with programmable clock control. The flipflop can be bypassed for combinatorial operation. During design entry, the designer specifies the desired flipflop type; the Altera development software then selects the most efficient flipflop operation for each registered function to optimize resource utilization.

Shareable Expanders

Each LAB has 16 shareable expanders that can be viewed as a pool of uncommitted single product terms (one from each macrocell) with inverted outputs that feed back into the logic array. Each shareable expander can be used and shared by any or all macrocells in the LAB to build complex logic functions. A small delay (t_{SEXP}) is incurred when shareable expanders are used. Figure 5 shows how shareable expanders can feed multiple macrocells.

Figure 5. Shareable Expanders

Shareable expanders can be shared by any or all macrocells in an LAB.

Parallel Expanders

Parallel expanders are unused product terms that can be allocated to a neighboring macrocell to implement fast, complex logic functions. Parallel expanders allow up to 20 product terms to directly feed the macrocell OR logic, with five product terms provided by the macrocell and 15 parallel expanders provided by neighboring macrocells in the LAB.

The compiler can allocate up to three sets of up to five parallel expanders automatically to the macrocells that require additional product terms. Each set of five parallel expanders incurs a small, incremental timing delay (t_{PEXP}). For example, if a macrocell requires 14 product terms, the Compiler uses the five dedicated product terms within the macrocell and allocates two sets of parallel expanders; the first set includes five product terms and the second set includes four product terms, increasing the total delay by $2 \times t_{PEXP}$.

Two groups of 8 macrocells within each LAB (e.g., macrocells 1 through 8 and 9 through 16) form two chains to lend or borrow parallel expanders. A macrocell borrows parallel expanders from lower-numbered macrocells. For example, macrocell 8 can borrow parallel expanders from macrocell 7, from macrocells 7 and 6, or from macrocells 7, 6, and 5. Within each group of 8, the lowest-numbered macrocell can only lend parallel expanders and the highest-numbered macrocell can only borrow them. Figure 6 shows how parallel expanders can be borrowed from a neighboring macrocell.

Figure 6. Parallel Expanders

Unused product terms in a macrocell can be allocated to a neighboring macrocell.

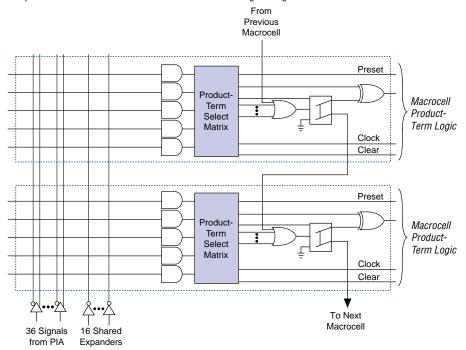
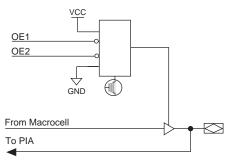
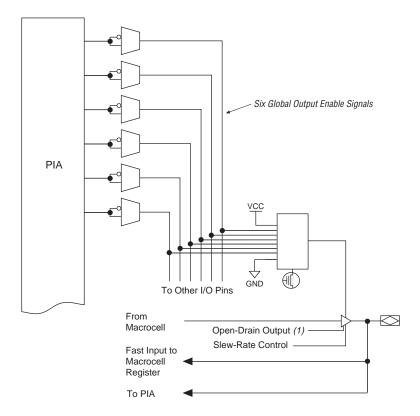




Figure 8. I/O Control Block of MAX 7000 Devices

EPM7032, EPM7064 & EPM7096 Devices

MAX 7000E & MAX 7000S Devices

Note:

(1) The open-drain output option is available only in MAX 7000S devices.

Programming Times

The time required to implement each of the six programming stages can be broken into the following two elements:

- A pulse time to erase, program, or read the EEPROM cells.
- A shifting time based on the test clock (TCK) frequency and the number of TCK cycles to shift instructions, address, and data into the device.

By combining the pulse and shift times for each of the programming stages, the program or verify time can be derived as a function of the TCK frequency, the number of devices, and specific target device(s). Because different ISP-capable devices have a different number of EEPROM cells, both the total fixed and total variable times are unique for a single device.

Programming a Single MAX 7000S Device

The time required to program a single MAX 7000S device in-system can be calculated from the following formula:

$$t_{PROG} = t_{PPULSE} + \frac{Cycle_{PTCK}}{f_{TCK}}$$

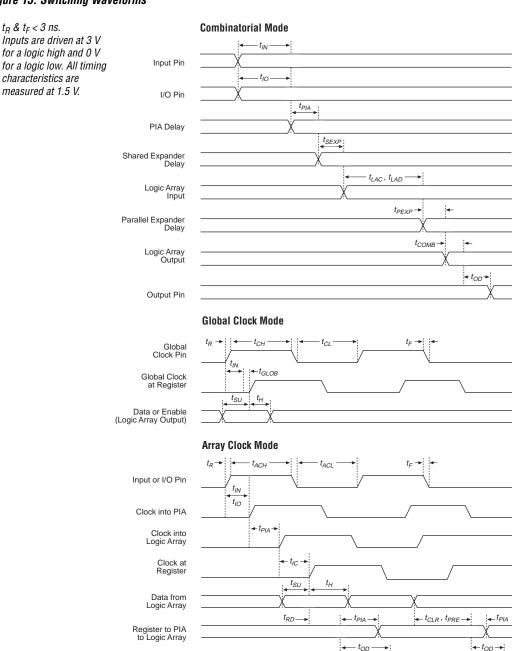
where: t_{PROG} = Programming time t_{PPULSE} = Sum of the fixed times to erase, program, and

verify the EEPROM cells

 $Cycle_{PTCK}$ = Number of TCK cycles to program a device

= TCK frequency

The ISP times for a stand-alone verification of a single MAX 7000S device can be calculated from the following formula:


$$t_{VER} = t_{VPULSE} + \frac{Cycle_{VTCK}}{f_{TCK}}$$

where: t_{VER} = Verify time

 t_{VPULSE} = Sum of the fixed times to verify the EEPROM cells

 $Cycle_{VTCK}$ = Number of TCK cycles to verify a device

Figure 13. Switching Waveforms

30 Altera Corporation

Register Output to Pin

Table 2	21. MAX 7000 & MAX 7000E Ext	ernal Timing Param	eters Note	(1)			
Symbol	Parameter	Conditions		Speed (Grade		Unit
			MAX 700	0E (-10P)	MAX 70		
			Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF		10.0		10.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		10.0		10.0	ns
t _{SU}	Global clock setup time		7.0		8.0		ns
t _H	Global clock hold time		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input	(2)	3.0		3.0		ns
t _{FH}	Global clock hold time of fast input	(2)	0.5		0.5		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		5.0		5	ns
t _{CH}	Global clock high time		4.0		4.0		ns
t _{CL}	Global clock low time		4.0		4.0		ns
t _{ASU}	Array clock setup time		2.0		3.0		ns
t _{AH}	Array clock hold time		3.0		3.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		10.0		10.0	ns
t _{ACH}	Array clock high time		4.0		4.0		ns
t _{ACL}	Array clock low time		4.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	4.0		4.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF (4)	1.0		1.0		ns
t _{CNT}	Minimum global clock period			10.0		10.0	ns
f _{CNT}	Maximum internal global clock frequency	(5)	100.0		100.0		MHz
t _{ACNT}	Minimum array clock period			10.0		10.0	ns
f _{ACNT}	Maximum internal array clock frequency	(5)	100.0		100.0		MHz
f _{MAX}	Maximum clock frequency	(6)	125.0		125.0		MHz

Symbol	Parameter	Conditions		Speed	Grade		Unit
			MAX 700	OE (-10P)		00 (-10) DOE (-10)	
			Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.5		1.0	ns
t _{IO}	I/O input pad and buffer delay			0.5		1.0	ns
t _{FIN}	Fast input delay	(2)		1.0		1.0	ns
t _{SEXP}	Shared expander delay			5.0		5.0	ns
t _{PEXP}	Parallel expander delay			0.8		0.8	ns
t_{LAD}	Logic array delay			5.0		5.0	ns
t _{LAC}	Logic control array delay			5.0		5.0	ns
t _{IOE}	Internal output enable delay	(2)		2.0		2.0	ns
t _{OD1}	Output buffer and pad delay Slow slew rate = off V _{CCIO} = 5.0 V	C1 = 35 pF		1.5		2.0	ns
t _{OD2}	Output buffer and pad delay Slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF (7)		2.0		2.5	ns
t _{OD3}	Output buffer and pad delay Slow slew rate = on V _{CCIO} = 5.0 V or 3.3 V	C1 = 35 pF (2)		5.5		6.0	ns
t _{ZX1}	Output buffer enable delay Slow slew rate = off V _{CCIO} = 5.0 V	C1 = 35 pF		5.0		5.0	ns
t _{ZX2}	Output buffer enable delay Slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF (7)		5.5		5.5	ns
t _{ZX3}	Output buffer enable delay Slow slew rate = on V _{CCIO} = 5.0 V or 3.3 V	C1 = 35 pF (2)		9.0		9.0	ns
t_{XZ}	Output buffer disable delay	C1 = 5 pF		5.0		5.0	ns
t_{SU}	Register setup time		2.0		3.0		ns
t_H	Register hold time		3.0		3.0		ns
t _{FSU}	Register setup time of fast input	(2)	3.0		3.0		ns
t_{FH}	Register hold time of fast input	(2)	0.5		0.5		ns
t_{RD}	Register delay			2.0		1.0	ns
t _{COMB}	Combinatorial delay			2.0		1.0	ns
t _{IC}	Array clock delay			5.0		5.0	ns
t_{EN}	Register enable time			5.0		5.0	ns
t _{GLOB}	Global control delay			1.0		1.0	ns
t _{PRE}	Register preset time			3.0		3.0	ns
t _{CLR}	Register clear time			3.0		3.0	ns
t_{PIA}	PIA delay			1.0		1.0	ns
t _{LPA}	Low-power adder	(8)		11.0		11.0	ns

Table 2	5. MAX 7000 & MAX 7000E	External Timing I	Paramete	ers /	lote (1)				
Symbol	Parameter	Conditions			Speed	Grade			Unit
			-	15	-1	5T	-2	20	
			Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF		15.0		15.0		20.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		15.0		15.0		20.0	ns
t _{SU}	Global clock setup time		11.0		11.0		12.0		ns
t _H	Global clock hold time		0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input	(2)	3.0		-		5.0		ns
t _{FH}	Global clock hold time of fast input	(2)	0.0		-		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		8.0		8.0		12.0	ns
t _{CH}	Global clock high time		5.0		6.0		6.0		ns
t _{CL}	Global clock low time		5.0		6.0		6.0		ns
t _{ASU}	Array clock setup time		4.0		4.0		5.0		ns
t _{AH}	Array clock hold time		4.0		4.0		5.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		15.0		15.0		20.0	ns
t _{ACH}	Array clock high time		6.0		6.5		8.0		ns
t _{ACL}	Array clock low time		6.0		6.5		8.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	6.0		6.5		8.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF (4)	1.0		1.0		1.0		ns
t _{CNT}	Minimum global clock period			13.0		13.0		16.0	ns
f _{CNT}	Maximum internal global clock frequency	(5)	76.9		76.9		62.5		MHz
t _{ACNT}	Minimum array clock period			13.0		13.0		16.0	ns
f _{ACNT}	Maximum internal array clock frequency	(5)	76.9		76.9		62.5		MHz
f _{MAX}	Maximum clock frequency	(6)	100		83.3	_	83.3	_	MHz

Notes to tables:

- These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode.

Tables 33 and 34 show the EPM7160S AC operating conditions.

Table 3	33. EPM7160S External Timi	ng Parameters	(Part	1 of 2)	No	nte (1)					
Symbol	Parameter	Conditions				Speed	Grade)			Unit
			-	6	-	7	-1	0	-1	15	
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns
t _{SU}	Global clock setup time		3.4		4.2		7.0		11.0		ns
t _H	Global clock hold time		0.0		0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.5		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		3.9		4.8		5		8	ns
t _{CH}	Global clock high time		3.0		3.0		4.0		5.0		ns
t _{CL}	Global clock low time		3.0		3.0		4.0		5.0		ns
t _{ASU}	Array clock setup time		0.9		1.1		2.0		4.0		ns
t _{AH}	Array clock hold time		1.7		2.1		3.0		4.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		6.4		7.9		10.0		15.0	ns
t _{ACH}	Array clock high time		3.0		3.0		4.0		6.0		ns
t _{ACL}	Array clock low time		3.0		3.0		4.0		6.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(2)	2.5		3.0		4.0		6.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		1.0		ns
t _{CNT}	Minimum global clock period			6.7		8.2		10.0		13.0	ns
f _{CNT}	Maximum internal global clock frequency	(4)	149.3		122.0		100.0		76.9		MHz

Table 3	4. EPM7160S Internal Tin	ning Parameters	(Part	2 of 2)	No	te (1)					
Symbol	Parameter	Conditions		Speed Grade							
			-	-6 -7 -10 -15							
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{CLR}	Register clear time			2.4		3.0		3.0		4.0	ns
t _{PIA}	PIA delay	(7)		1.6		2.0		1.0		2.0	ns
t _{LPA}	Low-power adder	(8)		11.0		10.0		11.0		13.0	ns

Notes to tables:

- These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells running in the low-power mode.

Tables 35 and 36 show the EPM7192S AC operating conditions.

Table 3	5. EPM71928 External Timi	ing Parameters (P	art 1 of 2	?) No	nte (1)					
Symbol	Parameter	Conditions	Speed Grade							
			-7		-10		-15			
			Min	Max	Min	Max	Min	Max		
t _{PD1}	Input to non-registered output	C1 = 35 pF		7.5		10.0		15.0	ns	
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		7.5		10.0		15.0	ns	
t _{SU}	Global clock setup time		4.1		7.0		11.0		ns	
t _H	Global clock hold time		0.0		0.0		0.0		ns	
t _{FSU}	Global clock setup time of fast input		3.0		3.0		3.0		ns	
t _{FH}	Global clock hold time of fast input		0.0		0.5		0.0		ns	
t _{CO1}	Global clock to output delay	C1 = 35 pF		4.7		5.0		8.0	ns	
t _{CH}	Global clock high time		3.0		4.0		5.0		ns	
t _{CL}	Global clock low time		3.0		4.0		5.0		ns	
t _{ASU}	Array clock setup time		1.0		2.0		4.0		ns	

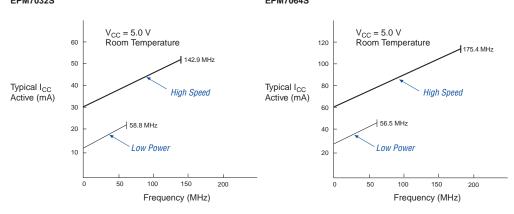

Table 3	35. EPM71928 External Timi	ing Parameters (F	art 2 of 2	?) No	ote (1)				
Symbol	Parameter	Conditions	Speed Grade						
			-	-7		-10		15	
			Min	Max	Min	Max	Min	Max	
t _{AH}	Array clock hold time		1.8		3.0		4.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		7.8		10.0		15.0	ns
t _{ACH}	Array clock high time		3.0		4.0		6.0		ns
t _{ACL}	Array clock low time		3.0		4.0		6.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(2)	3.0		4.0		6.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		ns
t _{CNT}	Minimum global clock period			8.0		10.0		13.0	ns
f _{CNT}	Maximum internal global clock frequency	(4)	125.0		100.0		76.9		MHz
t _{ACNT}	Minimum array clock period			8.0		10.0		13.0	ns
f _{ACNT}	Maximum internal array clock frequency	(4)	125.0		100.0		76.9		MHz
f _{MAX}	Maximum clock frequency	(5)	166.7		125.0		100.0		MHz

Table 3	6. EPM7192\$ Internal Tim	ing Parameters (Pai	t 1 of 2)	Note	(1)						
Symbol	Parameter	Conditions		Speed Grade							
			-	7	-1	10	-1	15			
			Min	Max	Min	Max	Min	Max			
t _{IN}	Input pad and buffer delay			0.3		0.5		2.0	ns		
t _{IO}	I/O input pad and buffer delay			0.3		0.5		2.0	ns		
t _{FIN}	Fast input delay			3.2		1.0		2.0	ns		
t _{SEXP}	Shared expander delay			4.2		5.0		8.0	ns		
t _{PEXP}	Parallel expander delay			1.2		0.8		1.0	ns		
t_{LAD}	Logic array delay			3.1		5.0		6.0	ns		
t _{LAC}	Logic control array delay			3.1		5.0		6.0	ns		
t _{IOE}	Internal output enable delay			0.9		2.0		3.0	ns		
t _{OD1}	Output buffer and pad delay	C1 = 35 pF		0.5		1.5		4.0	ns		
t _{OD2}	Output buffer and pad delay	C1 = 35 pF (6)		1.0		2.0		5.0	ns		
t _{OD3}	Output buffer and pad delay	C1 = 35 pF		5.5		5.5		7.0	ns		
t_{ZX1}	Output buffer enable delay	C1 = 35 pF		4.0		5.0		6.0	ns		
t _{ZX2}	Output buffer enable delay	C1 = 35 pF (6)		4.5		5.5		7.0	ns		
t _{ZX3}	Output buffer enable delay	C1 = 35 pF		9.0		9.0		10.0	ns		
t_{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		5.0		6.0	ns		
t _{SU}	Register setup time		1.1		2.0		4.0		ns		

Symbol	Parameter	Conditions			Speed	Unit			
			-	7	-10		-15		
			Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.3		0.5		2.0	ns
t _{IO}	I/O input pad and buffer delay			0.3		0.5		2.0	ns
t _{FIN}	Fast input delay			3.4		1.0		2.0	ns
t _{SEXP}	Shared expander delay			3.9		5.0		8.0	ns
t_{PEXP}	Parallel expander delay			1.1		0.8		1.0	ns
t_{LAD}	Logic array delay			2.6		5.0		6.0	ns
t _{LAC}	Logic control array delay			2.6		5.0		6.0	ns
t _{IOE}	Internal output enable delay			0.8		2.0		3.0	ns
t _{OD1}	Output buffer and pad delay	C1 = 35 pF		0.5		1.5		4.0	ns
t _{OD2}	Output buffer and pad delay	C1 = 35 pF (6)		1.0		2.0		5.0	ns
t _{OD3}	Output buffer and pad delay	C1 = 35 pF		5.5		5.5		8.0	ns
t _{ZX1}	Output buffer enable delay	C1 = 35 pF		4.0		5.0		6.0	ns
t _{ZX2}	Output buffer enable delay	C1 = 35 pF (6)		4.5		5.5		7.0	ns
t _{ZX3}	Output buffer enable delay	C1 = 35 pF		9.0		9.0		10.0	ns
t_{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		5.0		6.0	ns
t _{SU}	Register setup time		1.1		2.0		4.0		ns
t _H	Register hold time		1.6		3.0		4.0		ns
t _{FSU}	Register setup time of fast input		2.4		3.0		2.0		ns
t _{FH}	Register hold time of fast input		0.6		0.5		1.0		ns
t_{RD}	Register delay			1.1		2.0		1.0	ns
t _{COMB}	Combinatorial delay			1.1		2.0		1.0	ns
t _{IC}	Array clock delay			2.9		5.0		6.0	ns
t_{EN}	Register enable time			2.6		5.0		6.0	ns
t _{GLOB}	Global control delay			2.8		1.0		1.0	ns
t _{PRE}	Register preset time			2.7		3.0		4.0	ns
t _{CLR}	Register clear time			2.7		3.0		4.0	ns
t _{PIA}	PIA delay	(7)		3.0		1.0		2.0	ns
t _{LPA}	Low-power adder	(8)		10.0	İ	11.0		13.0	ns

Figure 15 shows typical supply current versus frequency for MAX 7000S devices.

EPM7128S EPM7160S

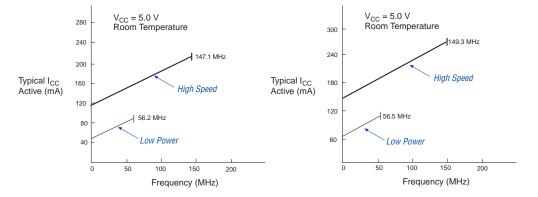
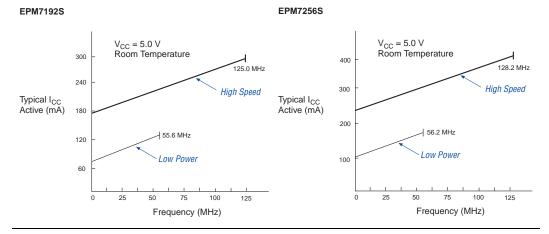
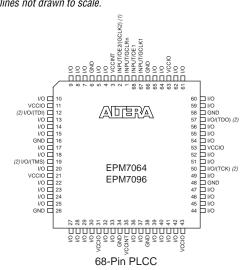



Figure 15. I_{CC} vs. Frequency for MAX 7000S Devices (Part 2 of 2)



Device Pin-Outs

See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information.

Figure 17. 68-Pin Package Pin-Out Diagram

Package outlines not drawn to scale.

Notes:

- The pin functions shown in parenthesis are only available in MAX 7000E and MAX 7000S devices.
- (2) JTAG ports are available in MAX 7000S devices only.