

Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	7.5 ns
Voltage Supply - Internal	4.75V ~ 5.25V
Number of Logic Elements/Blocks	16
Number of Macrocells	256
Number of Gates	5000
Number of I/O	164
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	208-BFQFP Exposed Pad
Supplier Device Package	208-RQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm7256src208-7

Email: info@E-XFL.COM

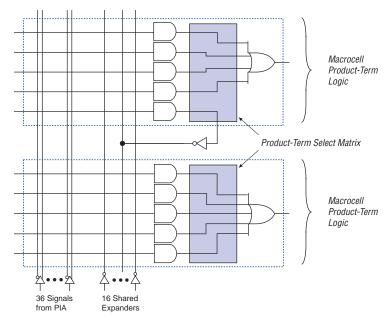
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The MAX 7000 architecture supports 100% TTL emulation and high-density integration of SSI, MSI, and LSI logic functions. The MAX 7000 architecture easily integrates multiple devices ranging from PALs, GALs, and 22V10s to MACH and pLSI devices. MAX 7000 devices are available in a wide range of packages, including PLCC, PGA, PQFP, RQFP, and TQFP packages. See Table 5.

Table 5. M.	Table 5. MAX 7000 Maximum User I/O Pins Note (1)													
Device	44- Pin PLCC	44- Pin PQFP	44- Pin TQFP	68- Pin PLCC	84- Pin PLCC	100- Pin PQFP	100- Pin TQFP	160- Pin PQFP	160- Pin PGA	192- Pin PGA	208- Pin PQFP	208- Pin RQFP		
EPM7032	36	36	36											
EPM7032S	36		36											
EPM7064	36		36	52	68	68								
EPM7064S	36		36		68		68							
EPM7096				52	64	76								
EPM7128E					68	84		100						
EPM7128S					68	84	84 (2)	100						
EPM7160E					64	84		104						
EPM7160S					64		84 (2)	104						
EPM7192E								124	124					
EPM7192S								124						
EPM7256E								132 (2)		164		164		
EPM7256S											164 (2)	164		

Notes:

- When the JTAG interface in MAX 7000S devices is used for either boundary-scan testing or for ISP, four I/O pins become JTAG pins.
- (2) Perform a complete thermal analysis before committing a design to this device package. For more information, see the Operating Requirements for Altera Devices Data Sheet.

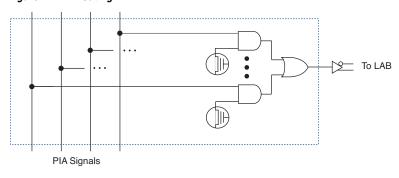

MAX 7000 devices use CMOS EEPROM cells to implement logic functions. The user-configurable MAX 7000 architecture accommodates a variety of independent combinatorial and sequential logic functions. The devices can be reprogrammed for quick and efficient iterations during design development and debug cycles, and can be programmed and erased up to 100 times.

Shareable Expanders

Each LAB has 16 shareable expanders that can be viewed as a pool of uncommitted single product terms (one from each macrocell) with inverted outputs that feed back into the logic array. Each shareable expander can be used and shared by any or all macrocells in the LAB to build complex logic functions. A small delay (t_{SEXP}) is incurred when shareable expanders are used. Figure 5 shows how shareable expanders can feed multiple macrocells.

Figure 5. Shareable Expanders

Shareable expanders can be shared by any or all macrocells in an LAB.

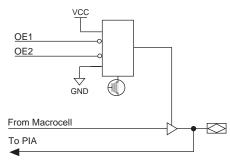

Parallel Expanders

Parallel expanders are unused product terms that can be allocated to a neighboring macrocell to implement fast, complex logic functions. Parallel expanders allow up to 20 product terms to directly feed the macrocell OR logic, with five product terms provided by the macrocell and 15 parallel expanders provided by neighboring macrocells in the LAB.

Programmable Interconnect Array

Logic is routed between LABs via the programmable interconnect array (PIA). This global bus is a programmable path that connects any signal source to any destination on the device. All MAX 7000 dedicated inputs, I/O pins, and macrocell outputs feed the PIA, which makes the signals available throughout the entire device. Only the signals required by each LAB are actually routed from the PIA into the LAB. Figure 7 shows how the PIA signals are routed into the LAB. An EEPROM cell controls one input to a 2-input AND gate, which selects a PIA signal to drive into the LAB.

Figure 7. PIA Routing


While the routing delays of channel-based routing schemes in masked or FPGAs are cumulative, variable, and path-dependent, the MAX 7000 PIA has a fixed delay. The PIA thus eliminates skew between signals and makes timing performance easy to predict.

I/O Control Blocks

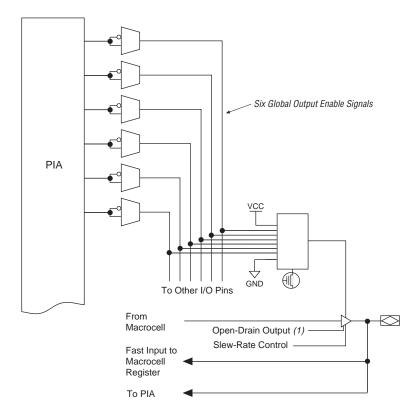

The I/O control block allows each I/O pin to be individually configured for input, output, or bidirectional operation. All I/O pins have a tri-state buffer that is individually controlled by one of the global output enable signals or directly connected to ground or $V_{\rm CC}$. Figure 8 shows the I/O control block for the MAX 7000 family. The I/O control block of EPM7032, EPM7064, and EPM7096 devices has two global output enable signals that are driven by two dedicated active-low output enable pins (OE1 and OE2). The I/O control block of MAX 7000E and MAX 7000S devices has six global output enable signals that are driven by the true or complement of two output enable signals, a subset of the I/O pins, or a subset of the I/O macrocells.

Figure 8. I/O Control Block of MAX 7000 Devices

EPM7032, EPM7064 & EPM7096 Devices

MAX 7000E & MAX 7000S Devices

Note:

(1) The open-drain output option is available only in MAX 7000S devices.

The programming times described in Tables 6 through 8 are associated with the worst-case method using the enhanced ISP algorithm.

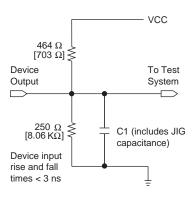
Table 6. MAX 7000S t _{PU}	_{LSE} & Cycle _{TCK} Values	3					
Device	Progra	ımming	Stand-Alone Verification				
	t _{PPULSE} (s)	Cycle _{PTCK}	t _{VPULSE} (s)	Cycle _{VTCK}			
EPM7032S	4.02	342,000	0.03	200,000			
EPM7064S	4.50	504,000	0.03	308,000			
EPM7128S	5.11	832,000	0.03	528,000			
EPM7160S	5.35	1,001,000	0.03	640,000			
EPM7192S	5.71	1,192,000	0.03	764,000			
EPM7256S	6.43	1,603,000	0.03	1,024,000			

Tables 7 and 8 show the in-system programming and stand alone verification times for several common test clock frequencies.

Table 7. MAX	Table 7. MAX 7000S In-System Programming Times for Different Test Clock Frequencies												
Device				f	TCK				Units				
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz					
EPM7032S	4.06	4.09	4.19	4.36	4.71	5.73	7.44	10.86	s				
EPM7064S	4.55	4.60	4.76	5.01	5.51	7.02	9.54	14.58	S				
EPM7128S	5.19	5.27	5.52	5.94	6.77	9.27	13.43	21.75	S				
EPM7160S	5.45	5.55	5.85	6.35	7.35	10.35	15.36	25.37	S				
EPM7192S	5.83	5.95	6.30	6.90	8.09	11.67	17.63	29.55	S				
EPM7256S	6.59	6.75	7.23	8.03	9.64	14.45	22.46	38.49	S				

Table 8. MAX	7000S Stai	000S Stand-Alone Verification Times for Different Test Clock Frequencies													
Device		f _{TCK}													
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz							
EPM7032S	0.05	0.07	0.13	0.23	0.43	1.03	2.03	4.03	s						
EPM7064S	0.06	0.09	0.18	0.34	0.64	1.57	3.11	6.19	S						
EPM7128S	0.08	0.14	0.29	0.56	1.09	2.67	5.31	10.59	S						
EPM7160S	0.09	0.16	0.35	0.67	1.31	3.23	6.43	12.83	S						
EPM7192S	0.11	0.18	0.41	0.79	1.56	3.85	7.67	15.31	S						
EPM7256S	0.13	0.24	0.54	1.06	2.08	5.15	10.27	20.51	S						

Design Security


All MAX 7000 devices contain a programmable security bit that controls access to the data programmed into the device. When this bit is programmed, a proprietary design implemented in the device cannot be copied or retrieved. This feature provides a high level of design security because programmed data within EEPROM cells is invisible. The security bit that controls this function, as well as all other programmed data, is reset only when the device is reprogrammed.

Generic Testing

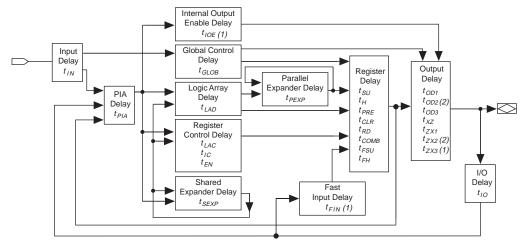
Each MAX 7000 device is functionally tested. Complete testing of each programmable EEPROM bit and all internal logic elements ensures 100% programming yield. AC test measurements are taken under conditions equivalent to those shown in Figure 10. Test patterns can be used and then erased during early stages of the production flow.

Figure 10. MAX 7000 AC Test Conditions

Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast ground-current transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground. significant reductions in observable noise immunity can result. Numbers in brackets are for 2.5-V devices and outputs. Numbers without brackets are for 3.3-V devices and outputs.

QFP Carrier & Development Socket

MAX 7000 and MAX 7000E devices in QFP packages with 100 or more pins are shipped in special plastic carriers to protect the QFP leads. The carrier is used with a prototype development socket and special programming hardware available from Altera. This carrier technology makes it possible to program, test, erase, and reprogram a device without exposing the leads to mechanical stress.



For detailed information and carrier dimensions, refer to the *QFP Carrier* & *Development Socket Data Sheet*.

MAX 7000S devices are not shipped in carriers.

Figure 12. MAX 7000 Timing Model

Notes:

- (1) Only available in MAX 7000E and MAX 7000S devices.
- (2) Not available in 44-pin devices.

The timing characteristics of any signal path can be derived from the timing model and parameters of a particular device. External timing parameters, which represent pin-to-pin timing delays, can be calculated as the sum of internal parameters. Figure 13 shows the internal timing relationship of internal and external delay parameters.

For more infomration, see *Application Note* 94 (Understanding MAX 7000 *Timing*).

Table 2	21. MAX 7000 & MAX 7000E Ext	ernal Timing Param	eters Note	(1)			
Symbol	Parameter	Conditions		Speed (Grade		Unit
			MAX 700	0E (-10P)		000 (-10) 00E (-10)	
			Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF		10.0		10.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		10.0		10.0	ns
t _{SU}	Global clock setup time		7.0		8.0		ns
t _H	Global clock hold time		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input	(2)	3.0		3.0		ns
t _{FH}	Global clock hold time of fast input	(2)	0.5		0.5		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		5.0		5	ns
t _{CH}	Global clock high time		4.0		4.0		ns
t _{CL}	Global clock low time		4.0		4.0		ns
t _{ASU}	Array clock setup time		2.0		3.0		ns
t _{AH}	Array clock hold time		3.0		3.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		10.0		10.0	ns
t _{ACH}	Array clock high time		4.0		4.0		ns
t _{ACL}	Array clock low time		4.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	4.0		4.0		ns
t _{ODH}	Output data hold time after clock	C1 = 35 pF (4)	1.0		1.0		ns
t _{CNT}	Minimum global clock period			10.0		10.0	ns
f _{CNT}	Maximum internal global clock frequency	(5)	100.0		100.0		MHz
t _{ACNT}	Minimum array clock period			10.0		10.0	ns
f _{ACNT}	Maximum internal array clock frequency	(5)	100.0		100.0		MHz
f _{MAX}	Maximum clock frequency	(6)	125.0		125.0		MHz

Symbol	Parameter	Conditions			Speed	Grade			Unit
			-	15	-1	5T	-2	20	
			Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			2.0		2.0		3.0	ns
t _{IO}	I/O input pad and buffer delay			2.0		2.0		3.0	ns
t _{FIN}	Fast input delay	(2)		2.0		_		4.0	ns
t _{SEXP}	Shared expander delay			8.0		10.0		9.0	ns
t _{PEXP}	Parallel expander delay			1.0		1.0		2.0	ns
t _{LAD}	Logic array delay			6.0		6.0		8.0	ns
t _{LAC}	Logic control array delay			6.0		6.0		8.0	ns
t _{IOE}	Internal output enable delay	(2)		3.0		_		4.0	ns
t _{OD1}	Output buffer and pad delay Slow slew rate = off V _{CCIO} = 5.0 V	C1 = 35 pF		4.0		4.0		5.0	ns
t _{OD2}	Output buffer and pad delay Slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF (7)		5.0		-		6.0	ns
t _{OD3}	Output buffer and pad delay Slow slew rate = on V _{CCIO} = 5.0 V or 3.3 V	C1 = 35 pF (2)		8.0		-		9.0	ns
t _{ZX1}	Output buffer enable delay Slow slew rate = off V _{CCIO} = 5.0 V	C1 = 35 pF		6.0		6.0		10.0	ns
t _{ZX2}	Output buffer enable delay Slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF (7)		7.0		-		11.0	ns
t _{ZX3}	Output buffer enable delay Slow slew rate = on V _{CCIO} = 5.0 V or 3.3 V	C1 = 35 pF (2)		10.0		-		14.0	ns
t_{XZ}	Output buffer disable delay	C1 = 5 pF		6.0		6.0		10.0	ns
t _{SU}	Register setup time		4.0		4.0		4.0		ns
t _H	Register hold time		4.0		4.0		5.0		ns
t _{FSU}	Register setup time of fast input	(2)	2.0		-	İ	4.0	İ	ns
t _{FH}	Register hold time of fast input	(2)	2.0		-		3.0		ns
t _{RD}	Register delay			1.0		1.0		1.0	ns
t _{COMB}	Combinatorial delay			1.0		1.0		1.0	ns
t _{IC}	Array clock delay			6.0		6.0		8.0	ns
t _{EN}	Register enable time			6.0		6.0		8.0	ns
t _{GLOB}	Global control delay			1.0		1.0		3.0	ns
t _{PRE}	Register preset time			4.0		4.0		4.0	ns
t _{CLR}	Register clear time			4.0		4.0		4.0	ns
t _{PIA}	PIA delay		1	2.0		2.0		3.0	ns
t _{LPA}	Low-power adder	(8)		13.0		15.0		15.0	ns

Table 2	Table 27. EPM7032S External Timing Parameters (Part 2 of 2) Note (1)													
Symbol	Parameter	Conditions				Speed	Grade	1			Unit			
			-	-5 -6 -7 -10										
			Min	Max	Min	Max	Min	Max	Min	Max				
f _{ACNT}	Maximum internal array clock frequency	(4)	175.4		142.9		116.3		100.0		MHz			
f _{MAX}	Maximum clock frequency	(5)	250.0		200.0		166.7		125.0		MHz			

Table 28. EPM7032\$ Internal Timing Parameters Note (1)													
Symbol	Parameter	Conditions				Speed	Grade)			Unit		
			_	5	-	6	-	7	-	10			
			Min	Max	Min	Max	Min	Max	Min	Max			
t _{IN}	Input pad and buffer delay			0.2		0.2		0.3		0.5	ns		
t _{IO}	I/O input pad and buffer delay			0.2		0.2		0.3		0.5	ns		
t _{FIN}	Fast input delay			2.2		2.1		2.5		1.0	ns		
t _{SEXP}	Shared expander delay			3.1		3.8		4.6		5.0	ns		
t _{PEXP}	Parallel expander delay			0.9		1.1		1.4		0.8	ns		
t_{LAD}	Logic array delay			2.6		3.3		4.0		5.0	ns		
t _{LAC}	Logic control array delay			2.5		3.3		4.0		5.0	ns		
t _{IOE}	Internal output enable delay			0.7		0.8		1.0		2.0	ns		
t _{OD1}	Output buffer and pad delay	C1 = 35 pF		0.2		0.3		0.4		1.5	ns		
t _{OD2}	Output buffer and pad delay	C1 = 35 pF (6)		0.7		0.8		0.9		2.0	ns		
t _{OD3}	Output buffer and pad delay	C1 = 35 pF		5.2		5.3		5.4		5.5	ns		
t _{ZX1}	Output buffer enable delay	C1 = 35 pF		4.0		4.0		4.0		5.0	ns		
t _{ZX2}	Output buffer enable delay	C1 = 35 pF (6)		4.5		4.5		4.5		5.5	ns		
t _{ZX3}	Output buffer enable delay	C1 = 35 pF		9.0		9.0		9.0		9.0	ns		
t_{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		4.0		5.0	ns		
t _{SU}	Register setup time		0.8		1.0		1.3		2.0		ns		
t_H	Register hold time		1.7		2.0		2.5		3.0		ns		
t _{FSU}	Register setup time of fast input		1.9		1.8		1.7		3.0		ns		
t _{FH}	Register hold time of fast input		0.6		0.7		0.8		0.5		ns		
t_{RD}	Register delay			1.2		1.6		1.9		2.0	ns		
t_{COMB}	Combinatorial delay			0.9		1.1		1.4		2.0	ns		
t _{IC}	Array clock delay			2.7		3.4		4.2		5.0	ns		
t _{EN}	Register enable time			2.6		3.3		4.0		5.0	ns		
t _{GLOB}	Global control delay			1.6		1.4		1.7		1.0	ns		
t _{PRE}	Register preset time			2.0		2.4		3.0		3.0	ns		
t _{CLR}	Register clear time			2.0		2.4		3.0		3.0	ns		

Table 2	Table 29. EPM7064S External Timing Parameters (Part 2 of 2) Note (1)													
Symbol	Parameter	Conditions				Speed	Grade				Unit			
			-	5	-	6	-	7	-1	10				
			Min	Max	Min	Max	Min	Max	Min	Max				
t _{ACO1}	Array clock to output delay	C1 = 35 pF		5.4		6.7		7.5		10.0	ns			
t _{ACH}	Array clock high time		2.5		2.5		3.0		4.0		ns			
t _{ACL}	Array clock low time		2.5		2.5		3.0		4.0		ns			
t _{CPPW}	Minimum pulse width for clear and preset	(2)	2.5		2.5		3.0		4.0		ns			
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		1.0		ns			
t _{CNT}	Minimum global clock period			5.7		7.1		8.0		10.0	ns			
f _{CNT}	Maximum internal global clock frequency	(4)	175.4		140.8		125.0		100.0		MHz			
t _{ACNT}	Minimum array clock period			5.7		7.1		8.0		10.0	ns			
f _{ACNT}	Maximum internal array clock frequency	(4)	175.4		140.8		125.0		100.0		MHz			
f _{MAX}	Maximum clock frequency	(5)	250.0		200.0		166.7		125.0		MHz			

Table 3	Table 30. EPM7064S Internal Timing Parameters (Part 1 of 2) Note (1)													
Symbol	Parameter	Conditions				Speed	Grade				Unit			
			-	5	-	6	-7		-10					
			Min	Max	Min	Max	Min	Max	Min	Max				
t _{IN}	Input pad and buffer delay			0.2		0.2		0.5		0.5	ns			
t _{IO}	I/O input pad and buffer delay			0.2		0.2		0.5		0.5	ns			
t _{FIN}	Fast input delay			2.2		2.6		1.0		1.0	ns			
t _{SEXP}	Shared expander delay			3.1		3.8		4.0		5.0	ns			
t _{PEXP}	Parallel expander delay			0.9		1.1		0.8		0.8	ns			
t_{LAD}	Logic array delay			2.6		3.2		3.0		5.0	ns			
t _{LAC}	Logic control array delay			2.5		3.2		3.0		5.0	ns			
t _{IOE}	Internal output enable delay			0.7		0.8		2.0		2.0	ns			
t _{OD1}	Output buffer and pad delay	C1 = 35 pF		0.2		0.3		2.0		1.5	ns			
t _{OD2}	Output buffer and pad delay	C1 = 35 pF (6)		0.7		0.8		2.5		2.0	ns			
t _{OD3}	Output buffer and pad delay	C1 = 35 pF		5.2		5.3		7.0		5.5	ns			
t _{ZX1}	Output buffer enable delay	C1 = 35 pF		4.0		4.0		4.0		5.0	ns			
t _{ZX2}	Output buffer enable delay	C1 = 35 pF (6)		4.5		4.5		4.5		5.5	ns			
t_{ZX3}	Output buffer enable delay	C1 = 35 pF		9.0		9.0		9.0		9.0	ns			
t_{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		4.0		5.0	ns			
t _{SU}	Register setup time		0.8		1.0		3.0		2.0		ns			
t _H	Register hold time		1.7		2.0		2.0		3.0		ns			

Symbol	Parameter	Conditions	Speed Grade							Unit	
			-	5	-6		-7		-10		
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{FSU}	Register setup time of fast input		1.9		1.8		3.0		3.0		ns
t _{FH}	Register hold time of fast input		0.6		0.7		0.5		0.5		ns
t _{RD}	Register delay			1.2		1.6		1.0		2.0	ns
t _{COMB}	Combinatorial delay			0.9		1.0		1.0		2.0	ns
t _{IC}	Array clock delay			2.7		3.3		3.0		5.0	ns
t _{EN}	Register enable time			2.6		3.2		3.0		5.0	ns
t_{GLOB}	Global control delay			1.6		1.9		1.0		1.0	ns
t _{PRE}	Register preset time			2.0		2.4		2.0		3.0	ns
t _{CLR}	Register clear time			2.0		2.4		2.0		3.0	ns
t _{PIA}	PIA delay	(7)		1.1		1.3		1.0		1.0	ns
t_{LPA}	Low-power adder	(8)		12.0		11.0		10.0		11.0	ns

Notes to tables:

- (1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode.

Symbol	Parameter	Conditions				Speed	Grade	!			Unit
			-6		-7		-10		-15		
			Min	Max	Min	Max	Min	Max	Min	Max	-
t _{IN}	Input pad and buffer delay			0.2		0.5		0.5		2.0	ns
t _{IO}	I/O input pad and buffer delay			0.2		0.5		0.5		2.0	ns
t _{FIN}	Fast input delay			2.6		1.0		1.0		2.0	ns
t _{SEXP}	Shared expander delay			3.7		4.0		5.0		8.0	ns
t _{PEXP}	Parallel expander delay			1.1		0.8		0.8		1.0	ns
t_{LAD}	Logic array delay			3.0		3.0		5.0		6.0	ns
t_{LAC}	Logic control array delay			3.0		3.0		5.0		6.0	ns
t _{IOE}	Internal output enable delay			0.7		2.0		2.0		3.0	ns
t _{OD1}	Output buffer and pad delay	C1 = 35 pF		0.4		2.0		1.5		4.0	ns
t _{OD2}	Output buffer and pad delay	C1 = 35 pF (6)		0.9		2.5		2.0		5.0	ns
t _{OD3}	Output buffer and pad delay	C1 = 35 pF		5.4		7.0		5.5		8.0	ns
t _{ZX1}	Output buffer enable delay	C1 = 35 pF		4.0		4.0		5.0		6.0	ns
t _{ZX2}	Output buffer enable delay	C1 = 35 pF (6)		4.5		4.5		5.5		7.0	ns
t_{ZX3}	Output buffer enable delay	C1 = 35 pF		9.0		9.0		9.0		10.0	ns
t_{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		5.0		6.0	ns
t _{SU}	Register setup time		1.0		3.0		2.0		4.0		ns
t _H	Register hold time		1.7		2.0		5.0		4.0		ns
t _{FSU}	Register setup time of fast input		1.9		3.0		3.0		2.0		ns
t _{FH}	Register hold time of fast input		0.6		0.5		0.5		1.0		ns
t_{RD}	Register delay			1.4		1.0		2.0		1.0	ns
t _{COMB}	Combinatorial delay			1.0		1.0		2.0		1.0	ns
t _{IC}	Array clock delay			3.1		3.0		5.0		6.0	ns
t _{EN}	Register enable time			3.0		3.0		5.0		6.0	ns
t_{GLOB}	Global control delay			2.0		1.0		1.0		1.0	ns
t _{PRE}	Register preset time			2.4		2.0		3.0		4.0	ns
t _{CLR}	Register clear time			2.4		2.0		3.0		4.0	ns
t_{PIA}	PIA delay	(7)		1.4		1.0		1.0		2.0	ns
t_{LPA}	Low-power adder	(8)		11.0		10.0		11.0		13.0	ns

Notes to tables:

- These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , $\mathbf{t_{ACL}}$, and $\mathbf{t_{CPPW}}$ parameters for macrocells running in the low-power mode.

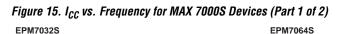
Tables 33 and 34 show the EPM7160S AC operating conditions.

Table 3	3. EPM7160S External Timi	ng Parameters	(Part	1 of 2)	No	te (1)						
Symbol	Parameter	Conditions	Conditions Speed Grade									
			-6		-7		-10		-15		-	
			Min	Max	Min	Max	Min	Max	Min	Max		
t _{PD1}	Input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns	
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		6.0		7.5		10.0		15.0	ns	
t _{SU}	Global clock setup time		3.4		4.2		7.0		11.0		ns	
t _H	Global clock hold time		0.0		0.0		0.0		0.0		ns	
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		3.0		ns	
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.5		0.0		ns	
t _{CO1}	Global clock to output delay	C1 = 35 pF		3.9		4.8		5		8	ns	
t _{CH}	Global clock high time		3.0		3.0		4.0		5.0		ns	
t _{CL}	Global clock low time		3.0		3.0		4.0		5.0		ns	
t _{ASU}	Array clock setup time		0.9		1.1		2.0		4.0		ns	
t _{AH}	Array clock hold time		1.7		2.1		3.0		4.0		ns	
t _{ACO1}	Array clock to output delay	C1 = 35 pF		6.4		7.9		10.0		15.0	ns	
t _{ACH}	Array clock high time		3.0		3.0		4.0		6.0		ns	
t _{ACL}	Array clock low time		3.0		3.0		4.0		6.0		ns	
t _{CPPW}	Minimum pulse width for clear and preset	(2)	2.5		3.0		4.0		6.0		ns	
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		1.0		ns	
t _{CNT}	Minimum global clock period			6.7		8.2		10.0		13.0	ns	
f _{CNT}	Maximum internal global clock frequency	(4)	149.3		122.0		100.0		76.9		MHz	

Table 34. EPM7160S Internal Timing Parameters (Part 2 of 2) Note (1)											
Symbol	Parameter	Conditions	Speed Grade								
			-6 -7			-1	10	-15			
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{CLR}	Register clear time			2.4		3.0		3.0		4.0	ns
t _{PIA}	PIA delay	(7)		1.6		2.0		1.0		2.0	ns
t _{LPA}	Low-power adder	(8)		11.0		10.0		11.0		13.0	ns

Notes to tables:

- These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more information on switching waveforms.
- (2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This parameter applies for both global and array clocking.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) The f_{MAX} values represent the highest frequency for pipelined data.
- (6) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial and industrial use.
- (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices, these values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (8) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells running in the low-power mode.


Tables 35 and 36 show the EPM7192S AC operating conditions.

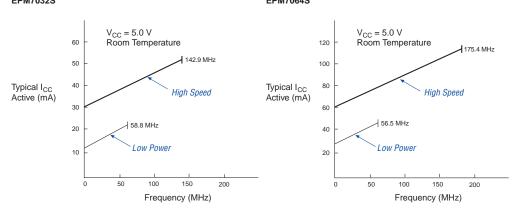

Table 35. EPM7192S External Timing Parameters (Part 1 of 2)Note (1)											
Symbol	Parameter	Conditions	Speed Grade								
			-7		-10		-15		1		
			Min	Max	Min	Max	Min	Max			
t _{PD1}	Input to non-registered output	C1 = 35 pF		7.5		10.0		15.0	ns		
t _{PD2}	I/O input to non-registered output	C1 = 35 pF		7.5		10.0		15.0	ns		
t _{SU}	Global clock setup time		4.1		7.0		11.0		ns		
t _H	Global clock hold time		0.0		0.0		0.0		ns		
t _{FSU}	Global clock setup time of fast input		3.0		3.0		3.0		ns		
t _{FH}	Global clock hold time of fast input		0.0		0.5		0.0		ns		
t _{CO1}	Global clock to output delay	C1 = 35 pF		4.7		5.0		8.0	ns		
t _{CH}	Global clock high time		3.0		4.0		5.0		ns		
t _{CL}	Global clock low time		3.0		4.0		5.0		ns		
t _{ASU}	Array clock setup time		1.0		2.0		4.0		ns		

Table 35. EPM7192S External Timing Parameters (Part 2 of 2) Note (1)											
Symbol	Parameter	Conditions			Speed	Grade			Unit		
			-7		-10		-15				
			Min	Max	Min	Max	Min	Max			
t _{AH}	Array clock hold time		1.8		3.0		4.0		ns		
t _{ACO1}	Array clock to output delay	C1 = 35 pF		7.8		10.0		15.0	ns		
t _{ACH}	Array clock high time		3.0		4.0		6.0		ns		
t _{ACL}	Array clock low time		3.0		4.0		6.0		ns		
t _{CPPW}	Minimum pulse width for clear and preset	(2)	3.0		4.0		6.0		ns		
t _{ODH}	Output data hold time after clock	C1 = 35 pF (3)	1.0		1.0		1.0		ns		
t _{CNT}	Minimum global clock period			8.0		10.0		13.0	ns		
f _{CNT}	Maximum internal global clock frequency	(4)	125.0		100.0		76.9		MHz		
t _{ACNT}	Minimum array clock period			8.0		10.0		13.0	ns		
f _{ACNT}	Maximum internal array clock frequency	(4)	125.0		100.0		76.9		MHz		
f _{MAX}	Maximum clock frequency	(5)	166.7		125.0		100.0		MHz		

Table 36. EPM7192S Internal Timing Parameters (Part 1 of 2) Note (1)												
Symbol	Parameter	Conditions				Unit						
			-7		-10		-15		1			
			Min	Max	Min	Max	Min	Max				
t _{IN}	Input pad and buffer delay			0.3		0.5		2.0	ns			
t _{IO}	I/O input pad and buffer delay			0.3		0.5		2.0	ns			
t _{FIN}	Fast input delay			3.2		1.0		2.0	ns			
t _{SEXP}	Shared expander delay			4.2		5.0		8.0	ns			
t _{PEXP}	Parallel expander delay			1.2		0.8		1.0	ns			
t_{LAD}	Logic array delay			3.1		5.0		6.0	ns			
t _{LAC}	Logic control array delay			3.1		5.0		6.0	ns			
t _{IOE}	Internal output enable delay			0.9		2.0		3.0	ns			
t _{OD1}	Output buffer and pad delay	C1 = 35 pF		0.5		1.5		4.0	ns			
t _{OD2}	Output buffer and pad delay	C1 = 35 pF (6)		1.0		2.0		5.0	ns			
t _{OD3}	Output buffer and pad delay	C1 = 35 pF		5.5		5.5		7.0	ns			
t_{ZX1}	Output buffer enable delay	C1 = 35 pF		4.0		5.0		6.0	ns			
t _{ZX2}	Output buffer enable delay	C1 = 35 pF (6)		4.5		5.5		7.0	ns			
t _{ZX3}	Output buffer enable delay	C1 = 35 pF		9.0		9.0		10.0	ns			
t _{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		5.0		6.0	ns			
t _{SU}	Register setup time		1.1		2.0		4.0		ns			

Figure 15 shows typical supply current versus frequency for MAX 7000S devices.

EPM7128S EPM7160S

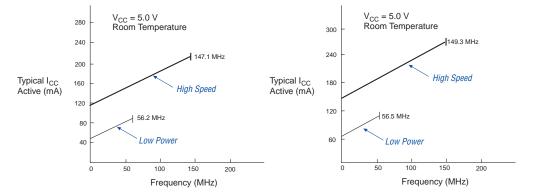
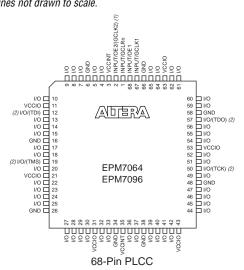



Figure 17. 68-Pin Package Pin-Out Diagram

Package outlines not drawn to scale.

Notes:

- The pin functions shown in parenthesis are only available in MAX 7000E and MAX 7000S devices.
- (2) JTAG ports are available in MAX 7000S devices only.

Revision History

The information contained in the *MAX 7000 Programmable Logic Device Family Data Sheet* version 6.7 supersedes information published in previous versions. The following changes were made in the *MAX 7000 Programmable Logic Device Family Data Sheet* version 6.7:

Version 6.7

The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.7:

Reference to AN 88: Using the Jam Language for ISP & ICR via an Embedded Processor has been replaced by AN 122: Using Jam STAPL for ISP & ICR via an Embedded Processor.

Version 6.6

The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.6:

- Added Tables 6 through 8.
- Added "Programming Sequence" section on page 17 and "Programming Times" section on page 18.

Version 6.5

The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.5:

Updated text on page 16.

Version 6.4

The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.4:

Added Note (5) on page 28.

Version 6.3

The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.3:

■ Updated the "Open-Drain Output Option (MAX 7000S Devices Only)" section on page 20.

