
## Intel - 5AGTFC7H3F35I5N Datasheet





Welcome to <u>E-XFL.COM</u>

#### Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

#### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

#### Details

| Details                        |                                                            |
|--------------------------------|------------------------------------------------------------|
| Product Status                 | Obsolete                                                   |
| Number of LABs/CLBs            | 11460                                                      |
| Number of Logic Elements/Cells | 242000                                                     |
| Total RAM Bits                 | 15470592                                                   |
| Number of I/O                  | 544                                                        |
| Number of Gates                | -                                                          |
| Voltage - Supply               | 1.07V ~ 1.13V                                              |
| Mounting Type                  | Surface Mount                                              |
| Operating Temperature          | -40°C ~ 100°C (TJ)                                         |
| Package / Case                 | 1152-BBGA, FCBGA Exposed Pad                               |
| Supplier Device Package        | 1152-FBGA (35x35)                                          |
| Purchase URL                   | https://www.e-xfl.com/product-detail/intel/5agtfc7h3f35i5n |
|                                |                                                            |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### 1-4 Recommended Operating Conditions

| Symbol  | Description      | Condition (V) | Overshoot Duration as % of High Time | Unit |
|---------|------------------|---------------|--------------------------------------|------|
|         |                  | 3.8           | 100                                  | %    |
|         |                  | 3.85          | 68                                   | %    |
|         |                  | 3.9           | 45                                   | %    |
|         |                  | 3.95          | 28                                   | %    |
|         |                  | 4             | 15                                   | %    |
|         |                  | 4.05          | 13                                   | %    |
|         |                  | 4.1           | 11                                   | %    |
|         |                  | 4.15          | 9                                    | %    |
| Vi (AC) | AC input voltage | 4.2           | 8                                    | %    |
|         |                  | 4.25          | 7                                    | %    |
|         |                  | 4.3           | 5.4                                  | %    |
|         |                  | 4.35          | 3.2                                  | %    |
|         |                  | 4.4           | 1.9                                  | %    |
|         |                  | 4.45          | 1.1                                  | %    |
|         |                  | 4.5           | 0.6                                  | %    |
|         |                  | 4.55          | 0.4                                  | %    |
|         |                  | 4.6           | 0.2                                  | %    |

## **Recommended Operating Conditions**

This section lists the functional operation limits for the AC and DC parameters for Arria V devices.

#### **Recommended Operating Conditions**

## Table 1-3: Recommended Operating Conditions for Arria V Devices

This table lists the steady-state voltage values expected from Arria V devices. Power supply ramps must all be strictly monotonic, without plateaus.



| Symbol                    | Description                                  | Maximum | Unit |
|---------------------------|----------------------------------------------|---------|------|
| I <sub>XCVR-RX (DC)</sub> | DC current per transceiver receiver (RX) pin | 50      | mA   |

#### Internal Weak Pull-Up Resistor

All I/O pins, except configuration, test, and JTAG pins, have an option to enable weak pull-up.

#### Table 1-13: Internal Weak Pull-Up Resistor Values for Arria V Devices

| Symbol          | Description                                                                                                         | Condition (V) <sup>(11)</sup> | Value <sup>(12)</sup> | Unit |
|-----------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------|------|
|                 |                                                                                                                     | $V_{CCIO} = 3.3 \pm 5\%$      | 25                    | kΩ   |
|                 |                                                                                                                     | $V_{CCIO} = 3.0 \pm 5\%$      | 25                    | kΩ   |
|                 |                                                                                                                     | $V_{CCIO} = 2.5 \pm 5\%$      | 25                    | kΩ   |
| R <sub>PU</sub> | Value of the I/O pin pull-up resistor before and during configuration, as well as user mode if you have enabled the | $V_{CCIO} = 1.8 \pm 5\%$      | 25                    | kΩ   |
| Кру             | programmable pull-up resistor option.                                                                               | $V_{CCIO} = 1.5 \pm 5\%$      | 25                    | kΩ   |
|                 |                                                                                                                     | $V_{CCIO} = 1.35 \pm 5\%$     | 25                    | kΩ   |
|                 |                                                                                                                     | $V_{CCIO} = 1.25 \pm 5\%$     | 25                    | kΩ   |
|                 |                                                                                                                     | $V_{CCIO} = 1.2 \pm 5\%$      | 25                    | kΩ   |

#### **Related Information**

#### Arria V GT, GX, ST, and SX Device Family Pin Connection Guidelines

Provides more information about the pins that support internal weak pull-up and internal weak pull-down features.



<sup>(10)</sup> The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns,  $|I_{IOPIN}| = C dv/dt$ , in which C is the I/O pin capacitance and dv/dt is the slew rate.

 $<sup>^{(11)}</sup>$  Pin pull-up resistance values may be lower if an external source drives the pin higher than V<sub>CCIO</sub>.

<sup>&</sup>lt;sup>(12)</sup> Valid with  $\pm 10\%$  tolerances to cover changes over PVT.

#### Table 1-21: Transceiver Clocks Specifications for Arria V GX and SX Devices

| Symbol/Description                                                                | Condition            | Transceiver Speed Grade 4 |     |     | Transceiver Speed Grade 6 |     |     | Unit |
|-----------------------------------------------------------------------------------|----------------------|---------------------------|-----|-----|---------------------------|-----|-----|------|
| Symbol/Description                                                                | Condition            | Min                       | Тур | Мах | Min                       | Тур | Max | Onit |
| fixedclk clock frequency                                                          | PCIe Receiver Detect | —                         | 125 | —   | —                         | 125 | _   | MHz  |
| Transceiver Reconfigura-<br>tion Controller IP (mgmt_<br>clk_clk) clock frequency | —                    | 75                        | _   | 125 | 75                        | _   | 125 | MHz  |

## Table 1-22: Receiver Specifications for Arria V GX and SX Devices

| Symbol/Deceription                                                                                              | Condition | Transceiver Speed Grade 4 |             |             | Transceiver Speed Grade 6 |        |      | Unit |
|-----------------------------------------------------------------------------------------------------------------|-----------|---------------------------|-------------|-------------|---------------------------|--------|------|------|
| Symbol/Description                                                                                              | Condition | Min                       | Тур         | Max         | Min                       | Тур    | Max  | Onit |
| Supported I/O standards                                                                                         |           | ]                         | 1.5 V PCML, | 2.5 V PCML, | LVPECL, an                | d LVDS |      |      |
| Data rate <sup>(28)</sup>                                                                                       | _         | 611                       | _           | 6553.6      | 611                       | _      | 3125 | Mbps |
| Absolute $V_{MAX}$ for a receiver pin <sup>(29)</sup>                                                           | _         |                           | _           | 1.2         | _                         | _      | 1.2  | V    |
| Absolute V <sub>MIN</sub> for a receiver pin                                                                    | _         | -0.4                      | _           | _           | -0.4                      | _      | _    | V    |
| Maximum peak-to-peak<br>differential input voltage<br>V <sub>ID</sub> (diff p-p) before device<br>configuration | _         |                           |             | 1.6         |                           |        | 1.6  | V    |
| Maximum peak-to-peak<br>differential input voltage<br>V <sub>ID</sub> (diff p-p) after device<br>configuration  | _         |                           |             | 2.2         |                           |        | 2.2  | V    |



 <sup>&</sup>lt;sup>(28)</sup> To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.
 <sup>(29)</sup> The device cannot tolerate prolonged operation at this absolute maximum.

| Symbol | V <sub>OD</sub> Setting <sup>(58)</sup> | V <sub>OD</sub> Value (mV) | V <sub>OD</sub> Setting <sup>(58)</sup> | V <sub>OD</sub> Value (mV) |
|--------|-----------------------------------------|----------------------------|-----------------------------------------|----------------------------|
|        | 25                                      | 500                        | 53                                      | 1060                       |
|        | 26                                      | 520                        | 54                                      | 1080                       |
|        | 27                                      | 540                        | 55                                      | 1100                       |
|        | 28                                      | 560                        | 56                                      | 1120                       |
|        | 29                                      | 580                        | 57                                      | 1140                       |
|        | 30                                      | 600                        | 58                                      | 1160                       |
|        | 31                                      | 620                        | 59                                      | 1180                       |
|        | 32                                      | 640                        | 60                                      | 1200                       |
|        | 33                                      | 660                        |                                         |                            |

## **Transmitter Pre-Emphasis Levels**

The following table lists the simulation data on the transmitter pre-emphasis levels in dB for the first post tap under the following conditions:

- Low-frequency data pattern—five 1s and five 0s
- Data rate—2.5 Gbps

The levels listed are a representation of possible pre-emphasis levels under the specified conditions only and the pre-emphasis levels may change with data pattern and data rate.

Arria V devices only support 1st post tap pre-emphasis with the following conditions:

- The 1st post tap pre-emphasis settings must satisfy  $|B| + |C| \le 60$  where  $|B| = V_{OD}$  setting with termination value,  $R_{TERM} = 100 \Omega$  and |C| = 1st post tap pre-emphasis setting.
- |B| |C| > 5 for data rates < 5 Gbps and |B| |C| > 8.25 for data rates > 5 Gbps.
- $(V_{MAX}/V_{MIN} 1)\% < 600\%$ , where  $V_{MAX} = |B| + |C|$  and  $V_{MIN} = |B| |C|$ .

Exception for PCIe Gen2 design:  $V_{OD}$  setting = 43 and pre-emphasis setting = 19 are allowed for PCIe Gen2 design with transmit de-emphasis – 6dB setting (pipe\_txdeemp = 1'b0) using Altera PCIe Hard IP and PIPE IP cores.



<sup>&</sup>lt;sup>(58)</sup> Convert these values to their binary equivalent form if you are using the dynamic reconfiguration mode for PMA analog controls.

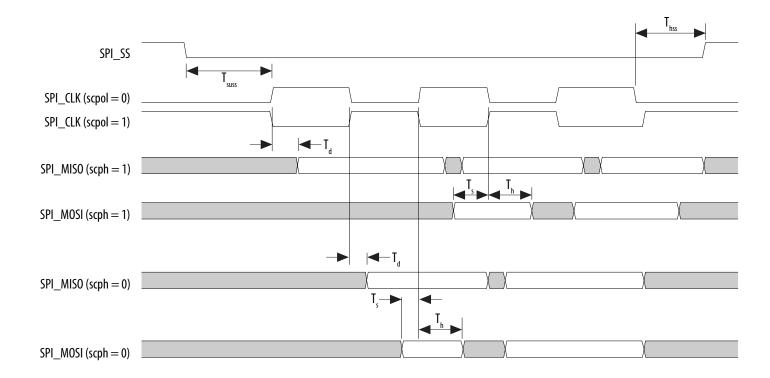
#### Table 1-38: Memory Block Performance Specifications for Arria V Devices

| Memory                                                                                                               | Mode                                                          | Resources Used |        | Performance |          |     | Unit |
|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------|--------|-------------|----------|-----|------|
| Memory                                                                                                               | Mode                                                          | ALUTs          | Memory | -I3, -C4    | –I5, –C5 | -C6 | Onit |
|                                                                                                                      | Single port, all supported widths                             | 0              | 1      | 500         | 450      | 400 | MHz  |
|                                                                                                                      | Simple dual-port, all supported widths                        | 0              | 1      | 500         | 450      | 400 | MHz  |
| MLAB                                                                                                                 | MLAB Simple dual-port with read and write at the same address |                | 1      | 400         | 350      | 300 | MHz  |
|                                                                                                                      | ROM, all supported width                                      | —              |        | 500         | 450      | 400 | MHz  |
|                                                                                                                      | Single-port, all supported widths                             | 0              | 1      | 400         | 350      | 285 | MHz  |
|                                                                                                                      | Simple dual-port, all supported widths                        | 0              | 1      | 400         | 350      | 285 | MHz  |
| M10K<br>Block Simple dual-port with the read-during-<br>write option set to <b>Old Data</b> , all supporte<br>widths |                                                               | 0              | 1      | 315         | 275      | 240 | MHz  |
|                                                                                                                      | True dual port, all supported widths                          |                | 1      | 400         | 350      | 285 | MHz  |
|                                                                                                                      | ROM, all supported widths                                     | 0              | 1      | 400         | 350      | 285 | MHz  |

## **Internal Temperature Sensing Diode Specifications**

### Table 1-39: Internal Temperature Sensing Diode Specifications for Arria V Devices

| Temperature Range | Accuracy | Offset Calibrated<br>Option | Sampling Rate | Conversion<br>Time | Resolution | Minimum Resolution with no<br>Missing Codes |
|-------------------|----------|-----------------------------|---------------|--------------------|------------|---------------------------------------------|
| -40 to 100°C      | ±8°C     | No                          | 1 MHz         | < 100 ms           | 8 bits     | 8 bits                                      |


# **Periphery Performance**

This section describes the periphery performance, high-speed I/O, and external memory interface.

Actual achievable frequency depends on design and system specific factors. Ensure proper timing closure in your design and perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.



#### Figure 1-10: SPI Slave Timing Diagram



#### **Related Information**

#### SPI Controller, Arria V Hard Processor System Technical Reference Manual

Provides more information about rx\_sample\_delay.

## **SD/MMC Timing Characteristics**

#### Table 1-54: Secure Digital (SD)/MultiMediaCard (MMC) Timing Requirements for Arria V Devices

After power up or cold reset, the Boot ROM uses drvsel = 3 and smplsel = 0 to execute the code. At the same time, the SD/MMC controller enters the Identification Phase followed by the Data Phase. During this time, the value of interface output clock SDMMC\_CLK\_OUT changes from a maximum of 400 kHz (Identification Phase) up to a maximum of 12.5 MHz (Data Phase), depending on the internal reference clock SDMMC\_CLK and the CSEL setting. The value of SDMMC\_CLK is based on the external oscillator frequency and has a maximum value of 50 MHz.



| Variant    | Member Code | Configuration .rbf Size (bits) | IOCSR .rbf Size (bits) |
|------------|-------------|--------------------------------|------------------------|
|            | A1          | 71,015,712                     | 439,960                |
|            | A3          | 71,015,712                     | 439,960                |
|            | A5          | 101,740,800                    | 446,360                |
| Arria V GX | A7          | 101,740,800                    | 446,360                |
| Allia V GA | B1          | 137,785,088                    | 457,368                |
|            | B3          | 137,785,088                    | 457,368                |
|            | B5          | 185,915,808                    | 463,128                |
|            | B7          | 185,915,808                    | 463,128                |
|            | C3          | 71,015,712                     | 439,960                |
| Arria V GT | C7          | 101,740,800                    | 446,360                |
| Allia v GI | D3          | 137,785,088                    | 457,368                |
|            | D7          | 185,915,808                    | 463,128                |
| Arria V SX | B3          | 185,903,680                    | 450,968                |
| Allia v SA | B5          | 185,903,680                    | 450,968                |
| Arria V ST | D3          | 185,903,680                    | 450,968                |
| 7111a V 51 | D5          | 185,903,680                    | 450,968                |

# **Minimum Configuration Time Estimation**

### Table 1-73: Minimum Configuration Time Estimation for Arria V Devices

The estimated values are based on the configuration .rbf sizes in Uncompressed .rbf Sizes for Arria V Devices table.



#### 1-96 Document Revision History

| Date      | Version    | Changes                                                                                                                                                                                                                                                                                                                                 |
|-----------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| June 2015 | 2015.06.16 | • Added the supported data rates for the following output standards using true LVDS output buffer types in the High-Speed I/O Specifications for Arria V Devices table:                                                                                                                                                                 |
|           |            | True RSDS output standard: data rates of up to 360 Mbps                                                                                                                                                                                                                                                                                 |
|           |            | True mini-LVDS output standard: data rates of up to 400 Mbps                                                                                                                                                                                                                                                                            |
|           |            | <ul> <li>Added note in the condition for Transmitter—Emulated Differential I/O Standards f<sub>HSDR</sub> data rate parameter<br/>in the High-Speed I/O Specifications for Arria V Devices table. Note: When using True LVDS RX channels<br/>for emulated LVDS TX channel, only serialization factors 1 and 2 are supported.</li> </ul> |
|           |            | Changed Queued Serial Peripheral Interface (QSPI) to Quad Serial Peripheral Interface (SPI) Flash.                                                                                                                                                                                                                                      |
|           |            | Updated T <sub>h</sub> location in I <sup>2</sup> C Timing Diagram.                                                                                                                                                                                                                                                                     |
|           |            | Updared T <sub>wp</sub> location in NAND Address Latch Timing Diagram.                                                                                                                                                                                                                                                                  |
|           |            | <ul> <li>Corrected the unit for t<sub>DH</sub> from ns to s in FPP Timing Parameters When DCLK-to-DATA[] Ratio is &gt;1 for<br/>Arria V Devices table.</li> </ul>                                                                                                                                                                       |
|           |            | • Updated the maximum value for t <sub>CO</sub> from 4 ns to 2 ns in AS Timing Parameters for AS ×1 and ×4 Configurations in Arria V Devices table.                                                                                                                                                                                     |
|           |            | • Moved the following timing diagrams to the Configuration, Design Security, and Remote System Upgrades in Arria V Devices chapter.                                                                                                                                                                                                     |
|           |            | FPP Configuration Timing Waveform When DCLK-to-DATA[] Ratio is 1                                                                                                                                                                                                                                                                        |
|           |            | • FPP Configuration Timing Waveform When DCLK-to-DATA[] Ratio is >1                                                                                                                                                                                                                                                                     |
|           |            | AS Configuration Timing Waveform                                                                                                                                                                                                                                                                                                        |
|           |            | PS Configuration Timing Waveform                                                                                                                                                                                                                                                                                                        |



| Date         | Version    | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| January 2015 | 2015.01.30 | • Updated the description for V <sub>CC_AUX_SHARED</sub> to "HPS auxiliary power supply" in the following tables:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              |            | <ul> <li>Absolute Maximum Ratings for Arria V Devices</li> <li>HPS Power Supply Operating Conditions for Arria V SX and ST Devices</li> <li>Added statement in I/O Standard Specifications: You must perform timing closure analysis to determine the maximum achievable frequency for general purpose I/O standards.</li> <li>Updated the conditions for transceiver reference clock rise time and fall time: Measure at ±60 mV of differential signal. Added a note to the conditions: REFCLK performance requires to meet transmitter REFCLK phase noise specification.</li> <li>Updated the description in Periphery Performance Specifications to mention that proper timing closure is required in design.</li> </ul>                                                                                                                                                                                                                                              |
|              |            | <ul> <li>Updated HPS Clock Performance main_base_clk specifications from 525 MHz (for -I3 speed grade) and 462 MHz (for -C4 speed grade) to 400 MHz.</li> <li>Updated HPS PLL VCO maximum frequency to 1,600 MHz (for -C5, -I5, and -C6 speed grades), 1,850 MHz (for -C4 speed grade), and 2,100 MHz (for -I3 speed grade).</li> <li>Changed the symbol for HPS PLL input jitter divide value from NR to N.</li> <li>Removed "Slave select pulse width (Texas Instruments SSP mode)" parameter from the following tables:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              |            | <ul> <li>SPI Master Timing Requirements for Arria V Devices</li> <li>SPI Slave Timing Requirements for Arria V Devices</li> <li>Added descriptions to USB Timing Characteristics section in HPS Specifications: PHYs that support LPM mode may not function properly with the USB controller due to a timing issue. It is recommended that designers use the MicroChip USB3300 PHY device that has been proven to be successful on the development board.</li> <li>Added HPS JTAG timing specifications.</li> <li>Updated FPGA JTAG timing specifications note as follows: A 1-ns adder is required for each V<sub>CCIO</sub> voltage step down from 3.0 V. For example, t<sub>JPCO</sub> = 13 ns if V<sub>CCIO</sub> of the TDO I/O bank = 2.5 V, or 14 ns if it equals 1.8 V.</li> <li>Updated the value in the V<sub>ICM</sub> (AC Coupled) row and in note 6 from 650 mV to 750 mV in the Transceiver Specifications for Arria V GT and ST Devices table.</li> </ul> |



| Date          | Version | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| June 2012     | 2.0     | <ul> <li>Updated for the Quartus II software v12.0 release:</li> <li>Restructured document.</li> <li>Updated "Supply Current and Power Consumption" section.</li> <li>Updated Table 20, Table 21, Table 24, Table 25, Table 26, Table 35, Table 39, Table 43, and Table 52.</li> <li>Added Table 22, Table 23, and Table 33.</li> <li>Added Figure 1–1 and Figure 1–2.</li> <li>Added "Initialization" and "Configuration Files" sections.</li> </ul> |
| February 2012 | 1.3     | <ul> <li>Updated Table 2–1.</li> <li>Updated Transceiver-FPGA Fabric Interface rows in Table 2–20.</li> <li>Updated V<sub>CCP</sub> description.</li> </ul>                                                                                                                                                                                                                                                                                           |
| December 2011 | 1.2     | Updated Table 2–1 and Table 2–3.                                                                                                                                                                                                                                                                                                                                                                                                                      |
| November 2011 | 1.1     | <ul> <li>Updated Table 2–1, Table 2–19, Table 2–26, and Table 2–36.</li> <li>Added Table 2–5.</li> <li>Added Figure 2–4.</li> </ul>                                                                                                                                                                                                                                                                                                                   |
| August 2011   | 1.0     | Initial release.                                                                                                                                                                                                                                                                                                                                                                                                                                      |



## **Transceiver Power Supply Requirements**

## Table 2-7: Transceiver Power Supply Voltage Requirements for Arria V GZ Devices

| Conditions                                                                                                                                | VCCR_GXB and VCCT_GXB <sup>(122)</sup> | VCCA_GXB | VCCH_GXB | Unit |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------|----------|------|
| If BOTH of the following conditions are true:                                                                                             | 1.05                                   |          |          |      |
| <ul><li>Data rate &gt; 10.3 Gbps.</li><li>DFE is used.</li></ul>                                                                          |                                        |          |          |      |
| If ANY of the following conditions are true <sup>(123)</sup> :                                                                            | 1.0                                    | 3.0      |          |      |
| <ul> <li>ATX PLL is used.</li> <li>Data rate &gt; 6.5Gbps.</li> <li>DFE (data rate ≤ 10.3 Gbps), AEQ, or EyeQ feature is used.</li> </ul> |                                        |          | 1.5      | V    |
| If ALL of the following conditions are true:                                                                                              | 0.85                                   | 2.5      | -        |      |
| <ul> <li>ATX PLL is not used.</li> <li>Data rate ≤ 6.5Gbps.</li> <li>DFE, AEQ, and EyeQ are not used.</li> </ul>                          |                                        |          |          |      |

# **DC Characteristics**

#### **Supply Current**

Standby current is the current drawn from the respective power rails used for power budgeting.

Use the Excel-based Early Power Estimator (EPE) to get supply current estimates for your design because these currents vary greatly with the resources you use.



<sup>&</sup>lt;sup>(122)</sup> If the VCCR\_GXB and VCCT\_GXB supplies are set to 1.0 V or 1.05 V, they cannot be shared with the VCC core supply. If the VCCR\_GXB and VCCT\_GXB are set to 0.85 V, they can be shared with the VCC core supply.

<sup>&</sup>lt;sup>(123)</sup> Choose this power supply voltage requirement option if you plan to upgrade your design later with any of the listed conditions.

#### **Hot Socketing**

#### Table 2-14: Hot Socketing Specifications for Arria V GZ Devices

| Symbol                    | Description                                | Maximum               |
|---------------------------|--------------------------------------------|-----------------------|
| I <sub>IOPIN (DC)</sub>   | DC current per I/O pin                     | 300 µA                |
| I <sub>IOPIN (AC)</sub>   | AC current per I/O pin                     | 8 mA <sup>(124)</sup> |
| I <sub>XCVR-TX (DC)</sub> | DC current per transceiver transmitter pin | 100 mA                |
| I <sub>XCVR-RX (DC)</sub> | DC current per transceiver receiver pin    | 50 mA                 |

#### Internal Weak Pull-Up Resistor

#### Table 2-15: Internal Weak Pull-Up Resistor for Arria V GZ Devices

All I/O pins have an option to enable the weak pull-up resistor except the configuration, test, and JTAG pins. The internal weak pull-down feature is only available for the JTAG TCK pin. The typical value for this internal weak pull-down resistor is approximately 25 k $\Omega$ .

| Symbol   | Description                           | V <sub>CCIO</sub> Conditions (V) <sup>(125)</sup> | Value <sup>(126)</sup> | Unit |
|----------|---------------------------------------|---------------------------------------------------|------------------------|------|
|          |                                       | 3.0 ±5%                                           | 25                     | kΩ   |
|          |                                       | 2.5 ±5%                                           | 25                     | kΩ   |
|          | Value of the I/O pin pull-up resistor | 1.8 ±5%                                           | 25                     | kΩ   |
| $R_{PU}$ | programmable pull-up resistor option. | 1.5 ±5%                                           | 25                     | kΩ   |
|          |                                       | 1.35 ±5%                                          | 25                     | kΩ   |
|          |                                       | 1.25 ±5%                                          | 25                     | kΩ   |
|          |                                       | 1.2 ±5%                                           | 25                     | kΩ   |

<sup>(124)</sup> The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns,  $|I_{IOPIN}| = C dv/dt$ , in which C is the I/O pin capacitance and dv/dt is the slew rate.





 $<sup>^{(125)}</sup>$  The pin pull-up resistance values may be lower if an external source drives the pin higher than  $V_{CCIO}$ .

 $<sup>^{(126)}</sup>$  These specifications are valid with a ±10% tolerance to cover changes over PVT.

AV-51002 2017.02.10

| Symbol/Description                                                                              | Conditions                                  | Trans | ceiver Spee  | d Grade 2 | Transceiver Speed Grade 3 |              |     | Unit |  |
|-------------------------------------------------------------------------------------------------|---------------------------------------------|-------|--------------|-----------|---------------------------|--------------|-----|------|--|
| Symbol/Description                                                                              | Conditions                                  | Min   | Тур          | Мах       | Min                       | Тур          | Max |      |  |
| Maximum peak-to-peak differential input voltage $V_{ID}$ (diff p-p) before device configuration | _                                           | _     | _            | 1.6       | _                         | _            | 1.6 | V    |  |
| Maximum peak-to-peak differential input voltage V <sub>ID</sub> (diff p-p) after                | $V_{CCR\_GXB} = 1.0 V$ $(V_{ICM} = 0.75 V)$ | _     | _            | 1.8       | _                         |              | 1.8 | V    |  |
| device configuration <sup>(146)</sup>                                                           | $V_{CCR\_GXB} = 0.85 V$ $(V_{ICM} = 0.6 V)$ |       | _            | 2.4       | _                         | _            | 2.4 | V    |  |
| Minimum differential eye opening at receiver serial input pins <sup>(147)(148)</sup>            | _                                           | 85    | _            | _         | 85                        | _            |     | mV   |  |
|                                                                                                 | 85– $\Omega$ setting                        |       | 85 ± 30%     | _         | _                         | 85<br>± 30%  | _   | Ω    |  |
| Differential on-chip termination                                                                | 100– $\Omega$ setting                       |       | 100<br>± 30% |           | _                         | 100<br>± 30% |     | Ω    |  |
| resistors                                                                                       | 120– $\Omega$ setting                       | —     | 120<br>± 30% |           | —                         | 120<br>± 30% |     | Ω    |  |
|                                                                                                 | 150– $\Omega$ setting                       | _     | 150<br>± 30% |           | _                         | 150<br>± 30% |     | Ω    |  |



<sup>&</sup>lt;sup>(146)</sup> The maximum peak to peak differential input voltage  $V_{ID}$  after device configuration is equal to 4 × (absolute  $V_{MAX}$  for receiver pin -  $V_{ICM}$ ).

<sup>&</sup>lt;sup>(147)</sup> The differential eye opening specification at the receiver input pins assumes that **Receiver Equalization** is disabled. If you enable **Receiver Equalization**, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.

<sup>&</sup>lt;sup>(148)</sup> Minimum eye opening of 85 mV is only for the unstressed input eye condition.

| Symbol/Description   | Conditions          | Transceiver Speed Grade 2 |     |     | Transceiver Speed Grade 3 |     |     | Unit |
|----------------------|---------------------|---------------------------|-----|-----|---------------------------|-----|-----|------|
| Symbol/Description   | Conditions          | Min                       | Тур | Мах | Min                       | Тур | Max |      |
|                      | DC gain setting = 0 |                           | 0   | _   | —                         | 0   | _   | dB   |
|                      | DC gain setting = 1 | —                         | 2   | _   |                           | 2   | _   | dB   |
| Programmable DC gain | DC gain setting = 2 |                           | 4   | _   |                           | 4   |     | dB   |
|                      | DC gain setting = 3 | —                         | 6   | _   | _                         | 6   | _   | dB   |
|                      | DC gain setting = 4 | —                         | 8   | —   | _                         | 8   | —   | dB   |

#### **Related Information**

#### Arria V Device Overview

For more information about device ordering codes.

## Transmitter

#### Table 2-25: Transmitter Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Arria V Device Overview*.

| Symbol/Description       | Conditions           | Conditions Transceiver Speed Grade 2 |     | Transceiver Speed Grade 3 |     |     | Unit    |      |
|--------------------------|----------------------|--------------------------------------|-----|---------------------------|-----|-----|---------|------|
| Symbol/Description       | Conditions           | Min                                  | Тур | Мах                       | Min | Тур | Мах     | Onit |
| Supported I/O Standards  | 1.4-V and 1.5-V PCML |                                      |     |                           |     |     |         |      |
| Data rate (Standard PCS) | —                    | 600                                  | _   | 9900                      | 600 | _   | 8800    | Mbps |
| Data rate (10G PCS)      | _                    | 600                                  |     | 12500                     | 600 | _   | 10312.5 | Mbps |



AV-51002 2017.02.10

| Symbol                                                                                               | Conditions                                   | C3, I3L |     | L         |     | Unit |           |      |
|------------------------------------------------------------------------------------------------------|----------------------------------------------|---------|-----|-----------|-----|------|-----------|------|
| Symbol                                                                                               | Conditions                                   | Min     | Тур | Мах       | Min | Тур  | Max       | Onic |
| f <sub>HSCLK_in</sub> (input clock<br>frequency) True Differential<br>I/O Standards <sup>(179)</sup> | Clock boost factor<br>W = 1 to 40 $^{(180)}$ | 5       | _   | 625       | 5   | _    | 525       | MHz  |
| f <sub>HSCLK_in</sub> (input clock<br>frequency) Single Ended I/O<br>Standards                       | Clock boost factor<br>W = 1 to 40 $^{(180)}$ | 5       |     | 625       | 5   | _    | 525       | MHz  |
| f <sub>HSCLK_in</sub> (input clock<br>frequency) Single Ended I/O<br>Standards                       | Clock boost factor<br>W = 1 to 40 $^{(180)}$ | 5       | _   | 420       | 5   | _    | 420       | MHz  |
| f <sub>HSCLK_OUT</sub> (output clock<br>frequency)                                                   | _                                            | 5       | _   | 625 (181) | 5   | —    | 525 (181) | MHz  |

#### Transmitter High-Speed I/O Specifications

## Table 2-40: Transmitter High-Speed I/O Specifications for Arria V GZ Devices

When J = 3 to 10, use the serializer/deserializer (SERDES) block.

When J = 1 or 2, bypass the SERDES block.



 $<sup>^{(179)}\,</sup>$  This only applies to DPA and soft-CDR modes.

<sup>&</sup>lt;sup>(180)</sup> Clock Boost Factor (W) is the ratio between the input data rate to the input clock rate.

<sup>&</sup>lt;sup>(181)</sup> This is achieved by using the LVDS clock network.

| Number of DQS Delay Buffers | C3, I3L | C4, I4 | Unit |
|-----------------------------|---------|--------|------|
| 4                           | 120     | 128    | ps   |

## **Memory Output Clock Jitter Specifications**

#### Table 2-50: Memory Output Clock Jitter Specification for Arria V GZ Devices

The clock jitter specification applies to the memory output clock pins generated using differential signal-splitter and DDIO circuits clocked by a PLL output routed on a PHY, regional, or global clock network as specified. Altera recommends using PHY clock networks whenever possible.

The clock jitter specification applies to the memory output clock pins clocked by an integer PLL.

The memory output clock jitter is applicable when an input jitter of 30 ps peak-to-peak is applied with bit error rate (BER) -12, equivalent to 14 sigma.


| Clock Network | Parameter                    | Symbol                 | С3,   | C3, I3L |       | C4, I4 |      |
|---------------|------------------------------|------------------------|-------|---------|-------|--------|------|
| CIOCK NELWOIK | ralameter                    | Symbol                 | Min   | Мах     | Min   | Мах    | Unit |
|               | Clock period jitter          | t <sub>JIT(per)</sub>  | -55   | 55      | -55   | 55     | ps   |
| Regional      | Cycle-to-cycle period jitter | t <sub>JIT(cc)</sub>   | -110  | 110     | -110  | 110    | ps   |
|               | Duty cycle jitter            | t <sub>JIT(duty)</sub> | -82.5 | 82.5    | -82.5 | 82.5   | ps   |
|               | Clock period jitter          | t <sub>JIT(per)</sub>  | -82.5 | 82.5    | -82.5 | 82.5   | ps   |
| Global        | Cycle-to-cycle period jitter | t <sub>JIT(cc)</sub>   | -165  | 165     | -165  | 165    | ps   |
|               | Duty cycle jitter            | t <sub>JIT(duty)</sub> | -90   | 90      | -90   | 90     | ps   |
|               | Clock period jitter          | t <sub>JIT(per)</sub>  | -30   | 30      | -35   | 35     | ps   |
| PHY Clock     | Cycle-to-cycle period jitter | t <sub>JIT(cc)</sub>   | -60   | 60      | -70   | 70     | ps   |
|               | Duty cycle jitter            | t <sub>JIT(duty)</sub> | -45   | 45      | -56   | 56     | ps   |



## FPP Configuration Timing when DCLK to DATA[] = 1

#### Figure 2-7: FPP Configuration Timing Waveform When the DCLK-to-DATA[] Ratio is 1

Timing waveform for FPP configuration when using a MAX<sup>®</sup> II or MAX V device as an external host.



Notes:

- 1. The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF\_DONE are at logic-high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- 2. After power-up, the Arria V GZ device holds nSTATUS low for the time of the POR delay.
- 3. After power-up, before and during configuration, CONF\_DONE is low.
- 4. Do not leave DCLK floating after configuration. DCLK is ignored after configuration is complete. It can toggle high or low if required.
- 5. For FPP ×16, use DATA[15..0]. For FPP ×8, use DATA[7..0]. DATA[31..0] are available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings.
- 6. To ensure a successful configuration, send the entire configuration data to the Arria V GZ device. CONF\_DONE is released high when the Arria V GZ device receives all the configuration data successfully. After CONF\_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- 7. After the option bit to enable the INIT\_DONE pin is configured into the device, the INIT\_DONE goes low.

Arria V GZ Device Datasheet





#### Table 2-57: FPP Timing Parameters for Arria V GZ Devices When the DCLK-to-DATA[] Ratio is >1

Use these timing parameters when you use the decompression and design security features.

| Symbol                              | Parameter                                    | Minimum                                | Maximum     | Unit |
|-------------------------------------|----------------------------------------------|----------------------------------------|-------------|------|
| t <sub>CF2CD</sub>                  | nconfig low to conf_done low                 | -                                      | 600         | ns   |
| t <sub>CF2ST0</sub>                 | nconfig low to nstatus low                   | -                                      | 600         | ns   |
| t <sub>CFG</sub>                    | nCONFIG low pulse width                      | 2                                      | _           | μs   |
| t <sub>STATUS</sub>                 | nSTATUS low pulse width                      | 268                                    | 1,506 (210) | μs   |
| t <sub>CF2ST1</sub>                 | nCONFIG high to nSTATUS high                 | —                                      | 1,506 (211) | μs   |
| t <sub>CF2CK</sub> <sup>(212)</sup> | nCONFIG high to first rising edge on DCLK    | 1,506                                  | _           | μs   |
| t <sub>ST2CK</sub> <sup>(212)</sup> | nSTATUS high to first rising edge of DCLK    | 2                                      | _           | μs   |
| t <sub>DSU</sub>                    | DATA[] setup time before rising edge on DCLK | 5.5                                    | _           | ns   |
| t <sub>DH</sub>                     | DATA[] hold time after rising edge on DCLK   | N-1/f <sub>DCLK</sub> <sup>(213)</sup> | _           | S    |
| t <sub>CH</sub>                     | DCLK high time                               | $0.45 	imes 1/f_{MAX}$                 | _           | S    |
| t <sub>CL</sub>                     | DCLK low time                                | $0.45 \times 1/f_{MAX}$                | _           | S    |
| t <sub>CLK</sub>                    | DCLK period                                  | 1/f <sub>MAX</sub>                     | _           | S    |
| £                                   | DCLK frequency (FPP ×8/×16)                  | -                                      | 125         | MHz  |
| $f_{MAX}$                           | DCLK frequency (FPP ×32)                     | -                                      | 100         | MHz  |
| t <sub>R</sub>                      | Input rise time                              | -                                      | 40          | ns   |
| t <sub>F</sub>                      | Input fall time                              | -                                      | 40          | ns   |
| t <sub>CD2UM</sub>                  | CONF_DONE high to user mode <sup>(214)</sup> | 175                                    | 437         | μs   |

<sup>(210)</sup> You can obtain this value if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.

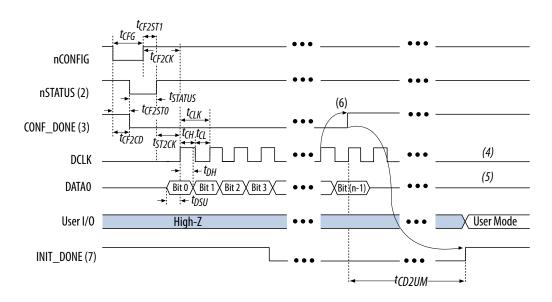
<sup>(211)</sup> You can obtain this value if you do not delay configuration by externally holding the nSTATUS low.

 $^{(212)}$  If nSTATUS is monitored, follow the  $t_{ST2CK}$  specification. If nSTATUS is not monitored, follow the  $t_{CF2CK}$  specification.

 $^{(213)}$  N is the DCLK-to-DATA ratio and  $f_{DCLK}$  is the DCLK frequency the system is operating.

<sup>(214)</sup> The minimum and maximum numbers apply only if you use the internal oscillator as the clock source for initializing the device.

Arria V GZ Device Datasheet


**Altera Corporation** 



# **Passive Serial Configuration Timing**

#### Figure 2-10: PS Configuration Timing Waveform

Timing waveform for a passive serial (PS) configuration when using a MAX II device, MAX V device, or microprocessor as an external host.



#### Notes:

- 1. The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF\_DONE are at logic high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- 2. After power-up, the Arria V GZ device holds nSTATUS low for the time of the POR delay.
- 3. After power-up, before and during configuration, CONF\_DONE is low.
- 4. Do not leave DCLK floating after configuration. DCLK is ignored after configuration is complete. It can toggle high or low if required.
- 5. DATA0 is available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings in the Device and Pins Option.
- 6. To ensure a successful configuration, send the entire configuration data to the Arria V GZ device. CONF\_DONE is released high after the Arria V GZ device receives all the configuration data successfully. After CONF\_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- 7. After the option bit to enable the INIT\_DONE pin is configured into the device, the INIT\_DONE goes low.



#### Table 2-60: PS Timing Parameters for Arria V GZ Devices

| Symbol                      | Parameter                                         | Minimum                                    | Maximum     | Unit |
|-----------------------------|---------------------------------------------------|--------------------------------------------|-------------|------|
| t <sub>CF2CD</sub>          | nCONFIG low to CONF_DONE low                      | —                                          | 600         | ns   |
| t <sub>CF2ST0</sub>         | nCONFIG low to nSTATUS low                        | _                                          | 600         | ns   |
| t <sub>CFG</sub>            | nCONFIG low pulse width                           | 2                                          |             | μs   |
| t <sub>STATUS</sub>         | nSTATUS low pulse width                           | 268                                        | 1,506 (217) | μs   |
| t <sub>CF2ST1</sub>         | nCONFIG high to nSTATUS high                      | _                                          | 1,506 (218) | μs   |
| t <sub>CF2CK</sub><br>(219) | nCONFIG high to first rising edge on DCLK         | 1,506                                      | _           | μs   |
| t <sub>ST2CK</sub> (219)    | nSTATUS high to first rising edge of DCLK         | 2                                          |             | μs   |
| t <sub>DSU</sub>            | DATA[] setup time before rising edge on DCLK      | 5.5                                        |             | ns   |
| t <sub>DH</sub>             | DATA[] hold time after rising edge on DCLK        | 0                                          | _           | ns   |
| t <sub>CH</sub>             | DCLK high time                                    | $0.45 	imes 1/f_{MAX}$                     |             | S    |
| t <sub>CL</sub>             | DCLK low time                                     | $0.45 	imes 1/f_{MAX}$                     | —           | S    |
| t <sub>CLK</sub>            | DCLK period                                       | 1/f <sub>MAX</sub>                         |             | S    |
| f <sub>MAX</sub>            | DCLK frequency                                    | _                                          | 125         | MHz  |
| t <sub>CD2UM</sub>          | CONF_DONE high to user mode <sup>(220)</sup>      | 175                                        | 437         | μs   |
| t <sub>CD2CU</sub>          | CONF_DONE high to CLKUSR enabled                  | $4 \times \text{maximum DCLK}$ period      | _           |      |
| t <sub>CD2UMC</sub>         | CONF_DONE high to user mode with CLKUSR option on | $t_{CD2CU}$ + (8576 × CLKUSR period) (221) | _           | _    |

<sup>&</sup>lt;sup>(217)</sup> This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.



<sup>&</sup>lt;sup>(218)</sup> This value is applicable if you do not delay configuration by externally holding the nSTATUS low.

<sup>&</sup>lt;sup>(219)</sup> If nSTATUS is monitored, follow the t<sub>ST2CK</sub> specification. If nSTATUS is not monitored, follow the t<sub>CF2CK</sub> specification.

<sup>&</sup>lt;sup>(220)</sup> The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device.